Skip to main content
. 2024 Feb 14;14:1291861. doi: 10.3389/fonc.2024.1291861

Table 1.

Summary of studies.

Author, Journal, Year Dataset (No.) Gliomas (No.) PCNSLs (No.) Imaging protocol Method Classifiers
Bathla, European Radiology, 2021 (12) 94 60 34 T1W, CE-T1W, T2W, T2-FLAIR, DWI ML Linear Regression, LR, RR, ENR, LASSO, NN, SVM with a polynomial kernel, SVM with a radial kernel, MLP, RF, GBRM, AdaBoost
Chen, The International Journal of Neuroscience, 2018 (13) 96 66 30 CE-T1W DL SVM
Kang, Neuro-Oncology 2018 (14) 196 119 77 T1W, CE-T1W, T2W, T2-FLAIR, DWI, PWI ML K-NN, NB, DT, LDA, RF, AdaBoost, Linear SVM, RBF kernel SVM
Kim, Neuroradiology, 2018 (15) 143 78 65 T1-FFE, T2W, DWI, T2-FLAIR ML LR, SVM, RF
Kong, Neuroimage Clinical, 2019 (16) 77 53 24 18F-FDG-PET/CT ML DT
Lu, Frontiers in neurology, 2022 (17) 101 51 50 CT scans ML LR, RF, DT, K-NN, SVM, NB
Lv, Journal of Neurosurgery, 2022 (18) 103 68 35 CE-T1W ML k-NN, GNB, RF, LR, SVM, MLP, AdaBoost
Priya, Neuroradiol J., 2021 (19) 143 97 46 T1W, CE-T1W, T2W, T2-FLAIR, DWI, PWI ML Linear regression, multinomial logistic, RR, elastic net, LASSO, NN, SVM with a polynomial kernel, SVM with a radial kernel, MLP, RF, GBRM, AdaBoost
Wu, IEEE Transanctions On Medical Imaging, 2018 (20) 102 70 32 CE-T1W, T2W ML, DL Sparse Representation, CNN
Xia, Journal of Magnetic Resonance Imaging, 2020 (21) 240 129 111 CE-T1W, T2-FLAIR, DWI ML LASSO, Multi-variable LR
Xia, Journal of Magnetic Resonance Imaging, 2021 (22) 289 153 136 T1W, T2-FLAIR, DWI DL CNN
Yun, scientific reports, 2019 (23) 195 195 119 CE-T1W, DWI DL MLP

PCNSL, primary central nervous system lymphoma; T1W, T1-weighted; CE-T1W, contrast-enhanced T1 weighted image; T2W, T2-weighted; T2-FLAIR, T2 weighted fluid-attenuated inversion recovery; DWI, diffusion-weighted imaging; PWI, perfusion-weighted imaging; T1-FFE, T1-weighted fast field echo; CT, computed tomography; 18F-FDG-PET/CT, fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography; ML, machine learning; DL, deep learning; LR, logistic regression; RR, ridge regression; ENR, elastic net regression; LASSO, least absolute shrinkage and selection operator; NN, neural network; SVM, support vector machine; MLP, multilayer perceptron; RF, random forest; GBRM, generalized boosted regression model; AdaBoost, adaptive boosting; k-NN, k-nearest neighbor; NB, naïve bayes; DT, decision tree; LDA, linear discriminant analysis; RBF, radial basis function; GNB, gaussian naïve bayes; CNN, convolutional neural network.