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Abstract 

MicroRNA s (miRNA s) play indispensable roles in posttranscriptional gene regulation. Their cellular regulatory impact is determined not solely by 
their sheer number, which likely amounts to > 20 0 0 individual miRNAs in human, than by the regulatory effectiveness of single miRNAs. Although, 
one begins to de v elop an understanding of the complex mechanisms underlying miRNA–target interactions (MTIs), the o v erall kno wledge of MTI 
functionality is still rather patchy. In this critical review, we summarize key features of mammalian MTIs. We especially highlight latest insights 
on (i) the dynamic make-up of miRNA binding sites including non-canonical binding sites, (ii) the cooperativity between miRNA binding sites, (iii) 
the adaptivity of MTIs through sequence modifications, (iv) the bearing of intra-cellular miRNA localization changes and (v) the role of cell type 
and cell status specific miRNA interaction partners. The MTI biology is discussed against the background of state-of-the-art approaches with 
particular emphasis on experimental strategies for evaluating miRNA functionality. 
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Introduction 

Since their discovery in 1993 ( 1 ), microRNAs (miRNAs,
miRs) have emerged as potent modulators of cellular gene ex-
pression. They are involved in the post-transcriptional regu-
lation of almost all cellular processes and play consequently
important roles in the development of many diseases. Accord-
ingly, miRNAs have attracted great interest as potential novel
tools for diagnosis and even therapy ( 2 ,3 ). The highly com-
plex nature of the regulatory networks centered around miR-
NAs has, however, dampened the hopes initially associated
with a rapid use of miRNAs in a clinical context. While one
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is only slowly beginning to acknowledge the complexity of 
miRNA networks, many supposedly reliable findings must be 
regarded as preliminary. In addition, it is certainly not least 
due to the rapid development of miRNA research that many 
central terms, like the one of a miRNA ‘target’, are far from 

being uniformly and clearly defined. The lack of generally ac- 
cepted definition renders statements blurred that operate with 

such terms. For example, many studies with rather heteroge- 
nous definitions of miRNA targets refer to the statement that 
60 % of all protein coding genes are potential targets ( 4 ).
Such ambiguities have serious consequences if falsely defined 
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argets are used in the context of miRNA–target networks.
hese networks have already an inherent fuzziness about them
ince they are by no means static structures but are subject to
onstant dynamic changes, not at least in response to varying
ellular conditions ( 5–7 ). It is of utmost importance to achieve
 greater clarity about the terminology including the defini-
ions of miRNA targets and miRNA–target interactions. 

Here, we provide a broad and systematic overview on the
omplex miRNA–target interactions (MTIs) with a special
onsideration of state-of-the art approaches to experimentally
ssess MTIs. To this end we emphasis the factors that con-
ribute most to the great variability of miRNA-to-target bind-
ng, the impact of the miRNA localization on their functional-
ty and the mutual stochiometric effects between miRNA and
RNA targets. Finally, we shed light on databases and their

apacity to further our understanding of MTIs. 

iRNA biogenesis and database entries of miRNAs 

nd their targets 

ndogenous miRNAs arise during a complex biogenesis pro-
ess, of which the main features are summarized in Figure
 . In brief, a hairpin-formed transcript is generated from en-
ogenous DNA loci and stepwise processed into a 19–22 nu-
leotide (nt) miRNA duplex structure ( 8 ,9 ). Within the cy-
osol, this mature miRNA interacts with proteins of the Arg-
naute (Ago) family and is subsequently incorporated into
he RNA induced silencing complex (RISC) ( 10 ). Canonical
iRNA–target interactions are mediated by the ‘seed region’

hat covers the nucleotides 2–8 at the miRNA´s 5 

′ -end ( 11 ).
everse-complementary miRNA binding sites, which are also

eferred to as miRNA responsive elements (MREs), are com-
only located within the 3 

′ Untranslated Regions (3 

′ UTRs) of
he targeted messenger RNAs (mRNAs) ( 11 ,12 ), but can also
ap within 5 

′ UTRs or the protein coding sequence ( 13 ,14 ).
he binding ultimately results in a decrease of the correspond-

ng protein levels, due to for example a RISC catalyzed de-
apping or deadenylation, degradation or inhibition of pro-
ein translation ( 15–17 ). The miRNA-coupled RISC (miRISC)
an interfere with the translation machinery at various stages
f the translation process, including initiation, post-initiation
nd elongation ( 18 ). Under specific conditions, as for example
uring cell cycle arrest, some miRNAs can also promote pro-
ein translation ( 19 ). This unusual miRNA functionality has
rst been reported in 2007 but there is a lack of further studies
o substantiate this finding ( 20 ). 

In the early times of miRNA research, single miRNAs
ere identified by classical Sanger sequencing and their cel-

ular expression status was often experimentally verified ( 21 ).
ut high-throughput technologies have led to a tremen-
ous increase in the amount of miRNA sequence data ( 22 ).
equencing-based miRNA identification resulted in the anno-
ation of numerous miRNAs, which found their way into var-
ous databases, such as miRBase ( 21–23 ). However, as of to-
ay only ∼5 % of the human miRNA entries appear to be
xperimentally verified by other techniques such as northern
lotting ( 23 ). Systematic evaluations indicate that many of the
nnotated sequences likely do not represent true miRNAs,
ut rather other RNA species or even sequencing artifacts
 21 , 23 , 24 ). A premature and wrong annotation as true miR-
As has consequences not only for the understanding of bio-

ogical networks, whose structure may be judged completely
ncorrect by considering false miRNAs, but also for clinical
settings in which miRNAs and / or their targets are envisaged
as starting points for therapeutical interventions ( 2 ,25 ). This
caveat is acknowledged in recent miRBase releases by a rating
of confidence for miRNA candidates. The rating relies on spe-
cific criteria like the presence of characteristic 3 

′ overhangs
as part of the mature miRNA duplex ( 22 ). Here, again the
dimension of the problems becomes evident. Only ∼35% of
the human miRNA entries in the miRBase (v22.1) are classi-
fied as ‘high confidence’ miRNAs. Therefore, other databases
were developed to complement and extend the miRBase ( 26 ).
The miRCarta repository aims to provide a sensitive collec-
tion of every transcribed non-coding small RNA with prop-
erties similar to miRNAs, with the rational to prevent that
studies repeatedly claim novel miRNA candidates that have
in fact been already reported by others ( 27 ). The MirGeneDB
has emerged as the best resource for high fidelity resource for
metazoan miRNAs. It excels by considering evolutionary as-
pects on miRNAs and in that all entries are manually curated
by consequently applying established hallmarks of miRNA
processing ( 28 ). In that, MirGeneDB has emerged as a second
reference repository for miRNAs in addition to the miRBase.

The complex situation of miRNA identification is reflected
in a relative broad range of estimates on the total number of
miRNAs. Depending on the selected source of primary data
e.g. MirGeneDB (v2.1) or miRBase (v22.1) the listed num-
ber of mature human miRNAs varies between 630 and 2 656
( 22 ,28 ). In vitro studies indicate 750–900 human pri-miRNAs
as potential DROSHA substrates ( 29 ,30 ). The true number
of mature human miRNAs that are experimentally verified
seems to be in between these counts and amount to slightly
over 2 000 of which not all are annotated in miRbase yet
( 23 ). Overall, database entries of miRNAs should be viewed
with some caution or better yet skepticism, as long as there
is no thorough and robust characterization of a deposited
miRNA. As a final remark, even constantly curated and up-
dated databases do not prevent, that formerly annotated miR-
NAs, which have been removed from databases, are still in-
vestigated in recent publications as for example miR-1273g,
which despite being withdrawn from the miRBase in version
22 ( 22 ) is still analyzed as a functional miRNA in seven publi-
cations since 2020. Removal from the database does, however,
not necessarily imply the absence of functionality of such miR-
NAs, especially not the absence of non-canonical functions. 

As for databases that list experimentally supported miRNA
targets, the DIANA-TarBase allows retrieval of positive and
negative miRNA targets per species, methodology, cell type
and tissue ( 31 ). Verified MTIs from curated articles and CLIP-
seq data are collected in the miRTarBase. It includes infor-
mation on single-nucleotide polymorphisms, disease-related
variants related to the binding efficiency of miRNA to their
targets and extracellular miRNA expression profiles ( 32 ). De-
spite their usefulness, database entries of miRNAs and the tar-
geted mRNAs should be viewed with some caution or better
yet skepticism, as long as there is no thorough and robust char-
acterization of the deposited miRNAs and miRNA targets. 

MiRNA–target binding 

Seed length, 3 

′ extended binding, and seedless binding 
The efficiency of miRNA–target interactions (MTIs) depends
on various factors as detailed in the following and summa-
rized in Figure 2 A. The RISC-coupled miRNA interacts with
its specific mRNA target by Watson–Crick base-pairing. As
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Figure 1 . Sc heme of the canonical miRNA biogenesis pathw a y. T he first step of the canonical mammalian miRNA biogenesis encompasses the 
transcription of a primary miRNA (pri-miRNA) from endogenous DNA loci by RNA polymerase II. The primary transcript includes an imperfect hairpin 
str uct ure that is clea v ed b y the DR OSHA-DGCR8 comple x into a 60–90 nt long precursor miRNA (pre-miRNA) with a tw o nucleotide (nt) 3 ′ o v erhang. 
The pre-miRNA is transported from the nucleus to cytoplasm through the export protein XPO5 in a RAN-GTP dependent manner. The cytoplasmatic 
miRNA becomes a substrate for the RNase DICER that forms a complex with the double-stranded RNA-binding protein TRBP. Following removal of the 
loop str uct ure, a miRNA duple x of 19–22 nt in length interacts with proteins of the Argonaute (A go) f amily. One strand is incorporated into the RNA 

induced silencing complex (RISC). The strand with a higher content of purines and a lower thermodynamic st abilit y of the 5 ′ end takes the dominant 
biological functionality i.e. it acts as functional miRNA that confers post-transcriptional regulation through RISC catalyzed mRNA degradation, mRNA 

destabilization or translation repression. [The functional portion of the miRNAs are indicated in red, the mRNA target is shown as a solid blue line, and 
the degraded mRNA as a dashed blue line. Interactions between miRNA and mRNA are indicated by opposite comb-shaped lines. The Drosha–DGCR8 
complex is depicted by pink bodies, the export protein XPO5 by a violet cylinder, the DICER-TRBP complex by blue bodies, the RISC by a turquoise body 
and ribosomes by green bodies.] 

 

 

 

 

 

 

 

 

 

 

 

abovementioned canonical target binding occurs at the seed
region i.e. the nucleotides 2–8 of the miRNA´s 5 

′ end. As a
rule of thumb, there is a hierarchy in the regulatory efficiency
depending on the number of seed nucleotides involved in the
target interaction (8mer > 7-mer-m8 > 7-mer-A1 > 6-mer)
( 33 ,34 ). However, even 5-mer MTIs could play essential roles
for the miRNA targeting as recently shown for miR-34a-5p
in human cells ( 35 ). Beyond the seed region, additional bind-
ing of the miRNA´s 3 

′ sequence, in the following referred to
as 3 

′ extended binding, can also affect the target regulation.
Various studies have shown that human miRNAs of the same
family e.g. the let-7 family, can regulate different sets of tar- 
gets, even though these miRNAs share the same seed region 

and similar 5 

′ sequences ( 5 ,14 ). It has been shown as early as 
in 2007 that extended base paring within the 3 

′ region of a 
miRNA can enhance its regulatory efficiency on certain tar- 
gets. This binding is commonly denoted as ‘supplementary 
binding’ ( 36 ). In addition, 3 

′ extended binding can also com- 
pensate for mismatches within the miRNA seed region. The 
latter one is denoted as ‘compensatory binding’ ( 4 ). While for- 
mer analyses assumed a principal involvement of the miRNA 

3 

′ nucleotides 13–16 ( 36 ), recent data provide evidence that 
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Figure 2. Ov ervie w on miRNA–target bindings and miRNA localization changes. ( A ) The regulatory capacity of MTIs is a function of the length of binding 
interaction between the miRNA seed sequence and the mRNA target, the presence of 3 ′ binding sites, the cooperation between multiple 
miRNA-responsive elements and the modification of both, the miRNAs and target sequences through e.g. A-to-I RNA editing or 3 ′ UTR shortening. ( B ) 
Intra-cellular miRNA sub-localizations include membranous comparts like the nucleus or mitochondria and non-membranous comparts like granules. 
Extracellular miRNA localization can result from secretion of vesicles like exosomes. [MiRNAs are indicated as red lines, mRNAs as blue lines, 
interactions between miRNA and mRNA by opposite comb-shaped lines. Length variations are depicted by dashed two-sided arrows and translocations 
by solid two-sides arrows. Ribosomes are shown as green bodies, RISC as turquoise bodies. Sequence shortening is symbolized by cutting scissors and 
sequence e x changes b y dotted rectangles.] 
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′ extended binding can encompass the entire 3 

′ miRNA se-
uence ( 37 ). The manifestation of 3 

′ extended binding modes
ppears to depend on various factors, such as the distribution
f G residues within the miRNA sequence ( 37 ). 
In rare cases, MTIs have been described to even take place

ithout the involvement of the seed region ( 38 ). This ‘seedless’
airing mode is likely prompted by a weak pairing stability of
he seed region, due to an AU-rich sequence composition ( 39 )
nd can be supported by an interplay with nearby canonical
iRNA binding sites as shown by analyses in Caenorhabditis

leg ans ( C. eleg ans ) ( 40 ). It remains to be seen if these results
re generalizable and if they are applicable to human cells. 

epetitive binding and associated binding sites 
here is accumulating evidence that the number and distri-
ution of miRNA binding sites within the 3 

′ UTR likely im-
acts the regulation of specific targets ( 41 ). Repetitive bind-
ng sites for the same miRNA and adjacent binding sites
or different miRNAs can both result in a higher regula-
ory efficiency ( 42 ,43 ). In general, a distinction must be made
etween functional cooperativity and binding cooperativity.
hile functional cooperativity describes the summation of
iRNA-related effects, binding cooperativity is characterized
y the physical interaction of multiple RISCs, which support
ach other in their binding to the respective mRNA target ( 43 ).
n the broadest sense, functional cooperativity can not only be
he targeting of multiple miRNA responsive elements within
he same mRNA but also of different mRNAs within the same
unctional pathway ( 43 ,44 ). In the latter case, the summative
ffects lead to efficient regulation of the affected pathway. As
or the binding cooperativity, it has long been assumed that it
equires a close localization of the interacting binding sites at
istances between 8–39 nt ( 36 ,45 ). These distance restrictions
that rely on a linear perspective have been challenged by recent
studies that suggest a further impact of the target secondary
structure ( 46 ). Overall, the interactivity of binding sites ren-
ders the analysis of MTIs rather complicated, since the effect
of a single miRNAs can only be adequately described in the
context with co-expressed miRNAs, with each of the resulting
MTIs depending on factors like the accessible seed sequence
and the target structure. 

Editing within and outside of the miRNA seed region 

Adding a further level of complexity, miRNAs as well as
mRNA target sequences are not static but are subject to
changes. Sequence changes through RNA editing can e.g. be
introduced into the miRNA seed region thereby altering its
binding capacity to target mRNAs ( 47 ). Likewise, RNA edit-
ing events that occur outside the seed region can impact the
processing and the loading efficiency of miRNAs into the
RISC, thereby contributing to a flexible responsiveness to
different cellular conditions ( 48 ). Editing events have been
identified at various stages of the miRNA maturation pro-
cess ( 48 ,49 ) and miRNA editing has been described for many
different human tissues, particularly for neuronal cells ( 49 ).
Corresponding sequence changes are attributed to ADARs
(adenosine deaminases acting on RNAs) causing exchanges
of adenosine (A) to inosine (I). Additionally, cytidine deam-
inase enzymes (AID / APOBECs family) have been described
to cause cytidine (C) to uridine (U) editing. Particularly, the
A-to-I miRNA editing has frequently been shown to alter the
targeting of oncogenes in context with cancers ( 50 ). There is
recent evidence for a preferential editing of distinct miRNA
subpopulations that share specific precursor secondary struc-
tures i.e. efficient double-strand pairing at the farthest oppo-
site end (‘root region’) of the hairpin-loop ( 47 ). In contrast,
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the C-to-U miRNA editing is much less studied and appar-
ently occurs only under specific physiological conditions such
as cellular hypoxia ( 51 ). Although not the immediate focus of
this review, the role of different miRNA isoforms (isomiRs)
that becomes increasingly more recognized ( 52–55 ) needs to
be acknowledged to ultimately understand the relationship
between altered miRNA levels and their regulatory effects. 

Editing and length variations of target 3 

′ UTRs 
Besides its bearing for microRNA sequences, RNA editing
events can also affect the 3 

′ UTR sequence of the mRNA tar-
gets to vary e.g. the accessibility of certain binding sites ( 56 ).
As a further factor, the length of the 3 

′ UTRs can also be sub-
ject to changes ( 57 ). As recently shown, the prevalence of long
3 

′ UTR variants with multiple miRNA binding sites likely af-
fects the miRNA mediated target regulation in mammalian
axon growth ( 41 ). The 3 

′ UTR length variations can also af-
fect the formation of RNA secondary and tertiary structures,
which in turn can change the accessibility of the miRNA bind-
ing sites ( 58 ,59 ). Extensive 3 

′ UTR shortening as the result
of alternative transcript processing has for example been de-
scribed to cause a peripheral positioning of miRNA binding
sites, thereby enhancing the miRNA binding capacity during
the proliferation of human embryonic fibroblasts ( 7 ). 

Functional effects of different miRNA localization 

Besides their known cytoplasmic functions in the transla-
tion process, miRNAs can also exert other specific regula-
tory tasks depending on their subcellular localization (Fig-
ure 2 B). The intra-cellular localizations include membranous
organelles like the nucleus or the mitochondria and non-
membranous compartments as for example ribonucleoprotein
granules ( 60 ). 

There is accumulating evidence that miRNAs, which are lo-
calized within the nucleus are involved in the regulation of
the transcription process ( 61–64 ). To exert miRNA guided
transcriptional regulations, the mature miRNA-coupled RISC
is transported from the cytoplasm into the nucleus. Nuclear
miRNA shuttling is likely mediated by specific transporter
proteins including importin-8, importin- α/ β and XPO1 ( 65–
67 ). Since the amount of a translocated miRNA very likely im-
pacts its regulatory function in the nucleus, it is expected to be
controlled by a number of different factors including distinct
sequence motifs ( 6 , 68 , 69 ). In addition, specific environmental
conditions such as hypoxic stress have been associated with
miRNA shuttling between the cytoplasm and the nucleus ( 6 ).
Within the nucleus, the miRISC complexes can bind to pro-
moter sequences and to DNA regulatory elements, thereby im-
pacting the recruiting and binding of transcription factors and
chromatin remodeling factors ( 70 ,71 ). The miRNA guided ex-
pressional regulations have been described to result either in
transcriptional gene activation (TGA) or transcriptional gene
silencing (TGS) ( 71 ). Examples include the transcriptional up-
regulation of STAT3 by miR-551b-3p ( 72 ) or the downregu-
lation of the transcription factor EB by miR-30b-5p ( 73 ). 

As for their intracytoplasmic sub-localization, it has been
hypothesized that miRNAs such as miR-762 can be trans-
ported into the mitochondria to silence mitochondria resi-
dent transcripts ( 74 ). A dysregulation of this miRNA has re-
cently been associated with immunological changes in Parkin-
son´s Disease and with myocardial infarction ( 74 ,75 ). There
is, however, an ongoing debate on the mechanism of mito-
chondrial microRNA (mitomiR) translocation. Recent analy- 
ses indicate that shuttling into the mitochondria may be medi- 
ated by interactions of the miRNA coupled RISC with specific 
transport proteins such as the Polynucleotide Phosphorylase 
(PNPase) ( 76 ). As of now the circumstantial evidence for a 
presumed miRNA functionality in mitochondria awaits fur- 
ther experimental confirmation ( 77 ). 

Among the miRNAs that co-locate with non-membranous 
granules, there are miRNAs that group together with process- 
ing bodies (P-bodies / PBs) ( 78 ). Recent analyses found both,
active and inactive miRNAs enriched in PBs. While regula- 
tory active miRNAs were found to only temporarily associate 
with the P-bodies, inactive miRNAs were found to be stably 
anchored, suggesting a mechanism, which sets unused miR- 
NAs apart ( 79 ). 

In addition to their localization within cellular compart- 
ments, miRNAs are also found in vesicular structures like exo- 
somes. It is generally assumed that these miRNAs can be trans- 
ferred between distant cells and likely act as part of the inter- 
cellular communication ( 80 ). However, the specific steps of the 
corresponding transport processes are only partially under- 
stood. Most recent findings suggest that vesicular miRNA ex- 
port is mediated by specific RNA-binding proteins like Alyref 
and Fus ( 81 ). A selective sorting of mRNAs into exosomes ap- 
pears to be directed by cell type specific consensus sequences 
of 4–7 nt (EXOmotifs), while an intracellular retention of 
miRNAs is mediated by different motifs (CELLmotifs) ( 81 ). 

Mutual stochiometric effects between miRNAs and 

target genes 

Stochiometric effects of miRNA on mRNA targets 
The miRNA function is further modulated by interactions be- 
tween different miRNAs, mRNA targets, other types of non- 
coding RNAs and RNA binding proteins (Figure 3 ). The sto- 
chiometric ratios of these interacting partners play a criti- 
cal role for the regulatory effects of miRNAs. Various stud- 
ies have shown that altered miRNA expression levels impact 
the miRNA targeting suggesting a concentration dependence 
of miRNA regulatory effects ( 5 ,82 ). A meaningful cellular 
miRNA effect is assumed to require a minimal cellular miRNA 

abundance ( 5 ,83 ). For miRNAs that are present in sufficient 
quantities their biological effect is likely determined by a com- 
petition for limited cellular resources, most notably the avail- 
able RISCs ( 84 ,85 ). Quantitative studies describe cellular miR- 
NAs levels in the range of 10–10 

5 miRNA molecules per cell 
( 86 ), with only a small fraction of highly abundant miRNAs 
( 86 ,87 ). The small fraction of these highly abundant miRNAs 
most likely exert dominant regulatory effects in these com- 
petitions ( 83 ). However, the role of the numerous non-highly 
abundant miRNAs should not be underestimated. These miR- 
NAs have also the potential to exert important regulatory 
functions, for example through a high binding affinity to cel- 
lular key targets like transcription factors ( 88 ,89 ). In addition,
non-highly abundant miRNAs may potentiate their regulatory 
effectiveness not only by functional cooperation, but also by 
multiple rounds of target regulation ( 90–93 ). 

The miRNA functionality is furthermore influenced by the 
four Ago protein paralogs (Ago1-4) that are expressed in 

mammalian somatic cells. Although, there are some redun- 
dancies between the miRNA related function of these par- 
alogs ( 94 ), there are specific functional differences includ- 
ing their ability to efficiently cleave a targeted mRNA ( 95 ).
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Figure 3. Scheme representation on the diversity of miRNA interactomes. ( A ) Different miRNAs compete for cellular resources, including the available 
RISCs. There are specific preferences of the miRNAs for their interaction with different Ago paralogs as central part of the RISC. ( B ) Target mRNAs and 
competing endogenous RNA species, like circular RNAs (circRNAs), contest for miRNA binding. ( C ) Different mRNAs compete for RISC bound miRNAs. 
( D ) RNA-binding proteins (RBPs) modulate accessibility of a mRNA target site for miRNAs. [Different miRNAs are depicted in red, pink and orange, 
respectively. Different mRNAs (targets) are shown in shades of blue and ceRNAs in violet. A different molecular abundance is indicated by a different 
number of miRNAs or mRNAs, respectively. RISCs are shown by turquoise and RNA binding proteins by greyish bodies. Functional interactions are 
indicated by arrows and sequence interactions by opposite comb-shaped lines.] 
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ifferent tissues and cell types show variable expression lev-
ls of the different Agos ( 96 ), possibly contributing to context
pecific miRNA functions. Individual miRNAs and even dif-
erent isomiRs have been found to preferentially interact with
pecific Ago paralogs ( 97–99 ). Furthermore, the expression
f specific Ago subtypes can be impacted by the prevalence
nd abundancy of certain microRNAs, suggesting a feed-back
echanism ( 100 ). 

tochiometric effects of mRNA targets on miRNAs 
he miRNA expression not only impacts the target expres-
ion but vice versa the amount of mRNA target impacts the
iRNA abundance by affecting the turnover rate of a miRNA.
nalyses of mammalian cells provide evidence that 3 

′ ex-
ended and seedless binding modes can trigger decay of miR-
As through a process termed ‘target-directed miRNA degra-
ation’ (TDMD) ( 101 ,102 ) . Current findings also show that
he prevalence of certain mRNA targets and a high target-
o-miRNA ratio likely promote TDMD, indicating a multi-
actorial and context dependent coordination of the process
 103 ,104 ). As for the underlying mechanism, it is assumed
hat the Ago changes its conformation during the target in-
eraction, so that the miRNA´s 3 

′ end is exposed and becomes
ccessible for 3 

′ -tail trimming and exonuclease-based degra-
ation ( 105 ). Another quantitative aspect is, that a high target-
to-miRNA ratio increases the likelihood for specific miRNA
target interactions at the expense of other target bindings
( 88 ,89 ). This target competition is ultimately the result of a
molecular titration process ( 89 ,106 ). 

Impact of miRNA sponges and RNA-binding proteins 
A final but relevant quantitative aspect of MTIs concerns the
embedding of miRNA–target networks in larger networks of
various competing endogenous RNAs (ceRNAs), also referred
to as endogenous miRNA sponges. Due to competing binding
sites, these ceRNAs likely keep miRNAs from binding to their
mRNA targets ( 107 ,108 ). The ceRNAs include various types
of non-coding RNAs, such as long non-coding RNAs (lncR-
NAs) or circular RNAs (circRNAs) ( 107 ,109–111 ). Math-
ematical modeling predicts favorable settings for miRNA–
ceRNA interactions under the condition that nearly equimo-
lar expression rates are given ( 108 ,112 ). Beyond the interac-
tions of miRNAs with their mRNA targets and other types
of RNAs, there is accumulating evidence, that the prevalence
of RNA-binding proteins (RBPs) can also impact miRNA-
mediated target regulations ( 113 ). Although most RBPs likely
modulate local 3 

′ UTR secondary structures of mRNA targets
to enhance miRNA binding capability ( 114 ), there are also
reports about antagonistic effects of RBPs, including Human
antigen R (HuR), through the blocking of miRNA binding
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sites ( 115 ,116 ). Additionally, miRNA expression levels can
be controlled by direct and indirect effects of RBPs, includ-
ing AUF1 (AU-binding factor 1), DDX17 (DEAD-box helicase
17) and ILF3 (interleukin enhancer binding factor 3) ( 117–
120 ). 

Experimental access to MTIs 

MiRNA regulations usually result in rather moderate effects
on the expression levels of single targets ( 121 ). The limita-
tions are compensated in cases where the target proteins of
these miRNAs map within the same regulatory pathway ( 122–
124 ). However, the detection of the effects of a given miRNA
on single target mRNAs remains rather challenging . To this
end common criteria and tools have been developed for the in
silico prediction of potential miRNA targets. These in silico
tools have thoroughly been reviewed elsewhere ( 125 ). Func-
tional enrichment analysis by other computational tools like
‘GeneTrail’ ( 126 ), can further enhance the validation rates of
experimental testing strategies ( 122 ,127 ). In the following, we
focus on the experimental validation of MTIs. 

Induced altered miRNA expression 

In recent years, a variety of different strategies have been de-
veloped to allow for efficient miRNA manipulations. Com-
mon strategies to induce miRNA overexpression include the
use of expression plasmids or synthetic miRNAs (miRNA
mimics) ( 2 ). However, miRNA overexpression approaches
usually lead to unphysiologically high expression levels and
to off-target effects, in part due to the utilization of cellular
resources like RISCs, which will be less or no longer available
for endogenous miRNAs ( 128 ). 

Common strategies for miRNA inhibition include assays
to either down-regulate or functionally obstruct endogenous
miRNAs. As most recently shown, miRNA down-regulation
can for example be achieved by sequence specific degrada-
tions using miRNases conjugated to miRNA-binding anti-
sense oligonucleotides ( 129 ). Alternatively, a functional inhi-
bition of miRNAs can be achieved by complementary ‘RNA
zippers’ that allow for a sequence specific end-to-end con-
nection of endogenous miRNA molecules ( 130 ). To abolish
miRNA expression, miRNA knockouts have been achieved by
genome editing techniques including TALEN (Transcription
Activator-like Effector Nuclease) or CRISPR / Cas9 (Clustered
Regularly Interspaced Short Palindromic Repeats / CRISPR-
associated protein 9) ( 131–133 ). As for the miRNA over-
expression, off-target effects have been reported for both
miRNA inhibition and miRNA knockouts ( 128 ,134 ). This is-
sue has recently been addressed by sequence specific nucleic
acid masks and peptide nucleic acids (PNAs) that were de-
signed to block binding sites on mRNA targets without af-
fecting the miRNAs themselves. These approaches have been
shown to effectively inhibit miRNA functions in MTI studies
( 135 ,136 ). 

An issue that is highly relevant for both, induced miRNA
overexpression and inhibition, concerns the distance between
the time-point of manipulation and the time-point of mea-
surement. The detection of related down-stream effects is af-
fected by cellular turnover rates. In detail, the amounts of tran-
siently transfected oligonucleotides for miRNA manipulations
are subject to cellular turnover ( 137–139 ). The same applies
to miRNA targets, which can be measured as mRNAs or pro-
teins, each with their specific cellular half-lives ( 140 ,141 ). Al-
though, there are attempts to provide guidelines for the esti- 
mation of optimal time-points for miRNA downstream anal- 
ysis ( 142 ), this will remain a task that has to be optimized,
anew in each experiment. 

MiRNA and target expression analyses 
Various experimental strategies have been employed to exam- 
ine different aspects of the miRNA regulatory process (Figure 
4 ). First information on the miRNA-mRNA target interplay 
can be gained by approaches that integrate cellular expression 

data of miRNAs and their predicted targets ( 131 , 143 , 144 ).
Conclusive experimental data are obtained from comparisons 
between healthy and diseased cells or as the result of an ex- 
perimentally altered miRNA expression. Expression analysis 
on the RNA level is carried out by either low-throughput 
methods like quantitative PCR (qPCR) or high-throughput 
RNA detection methods like RNA-sequencing ( 145 ) that have 
largely replaced formerly employed array-based techniques.
Target analysis on the mRNA level is frequently comple- 
mented or even replaced by protein analyses, although most of 
the miRNA regulations appear to show their primary effects 
on the mRNA level ( 17 ,146 ). Depending on the task, proteins 
are analyzed by either low-throughput methods like West- 
ern blotting or immunostaining ( 147 ,148 ) or high-throughput 
methods like mass spectrometry ( 149 ,150 ). 

A major advantage of these descriptive miRNA–target anal- 
yses is their independence of specific experimental settings,
such as a model cell line. However, the detection of inverse 
correlation may be simply due to chance, especially when 

complex miRNA–target data sets are analyzed using a lim- 
ited number of samples. Unfortunately, there are numerous 
manuscripts that fall in this category of randomness by re- 
porting inverse miRNA–target correlations in a far too small 
number of samples. A further limitation of the observative 
approaches is that their data mostly result from the analysis 
of a single point in time. As addressed above, this caveat is 
for example relevant for processes in which target effects of 
a miRNA are found only with an extended time delay. Here,
target effects can be readily overlooked in scenarios where a 
decay of the miRNA had occurred at the time when its biologi- 
cal effect becomes measurable by an altered target abundance.
Likewise, miRNA regulatory effects may only be observable 
at specific cellular stages or at specific time-points of a disease 
process. Recent analyses address this challenge by evaluating 
time-series expression data during biological processes like for 
example T-cell activation ( 151 ). Other approaches attempt to 

associate miRNA and target expression levels by correlating 
datasets, even if they stem from different tissues ( 152 ,153 ).
These analyses allow to identify common miRNA regulations 
but fall short in identifying cell type specific miRNA functions.

Reporter assays and immunoprecipitation-based approaches 
A still limited in number of experimental approaches allow to 

validate for the miRNA-to-target binding. A common method 

of choice are reporter assays that use recombinant plasmids,
which include a reporter gene (e.g. luciferase or GFP gene) un- 
der the post-transcriptional regulatory control of the potential 
target´s 3 

′ UTR sequence ( 154 ,155 ). The MTI is determined by 
measuring the reporter activity upon overexpression or inhibi- 
tion of the respective miRNA ( 156 ). The experiment can be by 
sequence mutation of the potential miRNA binding site, either 
by a complete deletion or an exchange of the wildtype MRE,
reverting the miRNA´s impact on the reporter ( 157 ). One has,
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Figure 4. Experimental strategies for the identification of miRNA targets. MiRNA targets can be identified by comparisons of e.g. healthy vs. diseased 
cells or by downstream analysis upon experimental miRNA manipulations. Differential abundances of miRNAs and target mRNA are detectable by 
qPCR, microarray analyses, or next generation sequencing (NGS), differential levels of target proteins by western blot, immunostaining or mass 
spectrometry, direct interaction between miRNAs and their target mRNA by reporter assays or co-precipitation analyses, and down-stream miRNA 

effects by proliferation assa y s, viability assa y s or by assays tailored for specific miRNA regulated cell functions. [MiRNAs are indicated in red, target 
mRNAs in blue, and target proteins as blue spherical bodies. Interactions between miRNA and mRNA are depicted by opposite comb-shaped lines. 
Degradation of mRNA is indicated by dashed lines and reduction in protein expression by dashed outlines. Functional effects are symbolized by a grey 
shaded receptor icon. Ribosomes are shown as green bodies, RISCs as turquoise bodies.] 
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owever, to bear in mind that alterations of the 3 

′ UTR poten-
ially create alternative binding sites and change the interactiv-
ty not only with the designated miRNA, but also with other
ndogenous miRNAs and RBPs ( 158 ,159 ). MiRNA seed mu-
ations represent another option for the validation of reporter
ssays of MTIs. Here, one has to bear in mind that artificial
equence changes within the seed region potentially affect the
alf-life of miRNAs and may alter their targeting of endoge-
ous mRNAs and the TDMD ( 160 ,161 ). In addition, there
re attempts that use in vivo CRISPR screening for the identi-
cation of miRNAs targets by reverting the effects of mutated
iRNA targets by mutated seed sequences ( 162 ). 
A main advantage of the reporter assays is the possibility to
easure the effects of miRNA–target binding in a functional

etting. There are, however, several drawbacks in part due
o necessary transfections, which lead to non-physiological
iRNA and / or 3 

′ UTR-target concentrations. To address this
roblem, chemically inducible expression constructs have re-
ently been tested in context with reporter assays, mimicking
expression rates at physiological quantities ( 163 ). An addi-
tional drawback of the reporter assays is the common use of
3 

′ UTR fragments instead of the full-length 3 

′ UTRs. The po-
tentially altered 3 

′ UTR secondary structure of shorter frag-
ments likely impacts the miRNA target binding. To address
this caveat, efficient cloning protocols for the generation of
full-length 3 

′ UTR luciferase reporter constructs have recently
been proposed ( 164 ,165 ). While a reporter-based analysis of
5’UTR reporter plasmids is also conceivable, it would be
hard to implement the investigation of coding sequences. Fur-
thermore, the assays are preferentially performed with cells
that can readily be transfected with high efficiency like e.g.
HeLa or HEK293 (Human Embryonic Kidney 293) cell lines
( 166 ,167 ). It is evident that their cellular context with the
above-mentioned regulatory networks, including endogenous
miRNA pools, ceRNAs and RBPs, is largely different from
the cells of interest with the consequence that the miRNA
target interaction detected in a reporter assay may not be
found in other cell types. Finally, if done manually reporter
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assays are rather time consuming in that they require several
steps including cloning of the 3 

′ UTR sequence and transfec-
tion of both the recombinant and appropriate control con-
structs, i.e. empty reporter vectors and miRNA negative con-
trols. Recently developed high-throughput miRNA interac-
tion reporter ( HiTmIR ) assays can help to render these assays
more efficiently ( 122 ,127 ). 

In addition to reporter assays, MTIs are frequently ana-
lyzed by approaches that use Ago immunoprecipitation fol-
lowed by an examination of the bound miRNA and mRNA
fractions ( 157 ). There are various modifications of these ap-
proaches like ‘High-Throughput sequencing of RNA isolated
by crosslinking immunoprecipitation’ (HITS-CLIP), ‘Cross-
Linking Ligation and Sequencing of Hybrids’ (CLASH) and
‘Argonaute-RNA Immunoprecipitation’ (AGO-RIP). In HITS-
CLIP assays, UV-irradiation induces crosslinking of cellular
Ago proteins together with the incorporated miRNAs and
the bound target mRNA fractions. After immunoprecipita-
tion with Ago-specific antibodies, complexed RNA fractions
are purified and subjected to sequencing analysis ( 168 ). In
the CLASH assays, base paired miRNAs and mRNA target
fractions are linked by a ligation step to form a hairpin-
like structure. In this way, CLASH allows the mapping of
specific miRNAs-target pairs with high precision ( 169 ,170 ).
In the AGO-RIP assays, a native pulldown of Ago-RNA-
complexes overcomes common inefficiency of cross-linking
procedures ( 171 ,172 ). The newest precipitation-based tech-
nique includes the use of biotinylated miRNAs, a forma-
lin cross-linking step and a streptavidin-based pull-down of
miRNA–DNA-complexes for the detection of nuclear miRNA
functions ( 173 ). A major advantage of the precipitation-based
approaches is that many different cell types can be exam-
ined and not just very specific cell models, as is the case
with reporter assays. This, however, not necessarily implies the
absence of major limitations. Precipitation-based approaches
usually require large amounts of the considered miRNA. High
endogenous expression levels are commonly achieved by in-
duced expression ( 172 ). Additionally, precipitation-based ap-
proaches are often done with highly reproductive cell lines
to compensate for the overall material loss during multi-
ple experimental steps ( 174 ,175 ). This of course entails all
drawbacks associated with cultured cell lines ( 176 ) and ren-
ders conclusion on true in vivo binding effects of miRNA
problematic. A rather elaborate methodology has recently
been published describing an efficiency enhanced pulldown of
Ago2 proteins using transgenic introduced HaloTags ( 177 ).
Although this method allows the use of primary tissue mate-
rial from transgenic animals, cell samples may still need to be
pooled from different individuals to provide sufficient mate-
rial for the subsequent sequencing analysis ( 177 ). This bears
the risk of high cellular heterogeneity within the resulting bulk
data. Another disadvantage is that precipitation-based tech-
niques only detect miRNA–target binding without providing
evidence for the functional relevance of such binding. Without
this evidence, a detected binding may have also occurred by
chance. This could explain why recently published CLIP data
only poorly correlated with target repression data in human
cell lines ( 178 ). Recent studies complemented Ago immuno-
precipitation by reporter assays or by miRNA titration tests,
thereby adding functional validation of the detected binding
sites ( 179 ,180 ). 

As addressed above, the measurement of expression levels
of target mRNAs or proteins offers a straightforward readout
for miRNA manipulations ( 147 ,148 ). This readout is, how- 
ever, far from proving a link between a given miRNA and 

a biological effect. To robustly confirm such link in specific 
cellular contexts, appropriate assays are required. Although 

many targets like transcription factors offer themselves for 
specific downstream testing, frequent functional analyses in 

MTI studies address rather basic cellular functions e.g. by em- 
ploying proliferation or viability assays without establishing 
a direct link to the actual miRNA target. 

Conclusion 

Since the discovery of miRNAs, significant insights into the 
complexity of MTIs have been gained. There is an increas- 
ing understanding of the dynamics of miRNA regulations,
which acknowledges the variability of miRNA binding con- 
stellations, the context dependent modulation of miRNA se- 
quences, the alteration of miRNA subcellular localizations 
and the impact of various endogenous interaction partners.
There is also an increasing awareness of the context depen- 
dency of MTIs. The continuous improvement of experimen- 
tal strategies increasingly considers the cellular context of 
miRNA regulations thereby contributing to more reliable def- 
initions of miRNAs and miRNA targets and in consequence 
to a holistic view of their roles in cellular regulatory networks.
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