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ABSTRACT 

Background and hypothesis. Specific urinary peptides hold information on disease pathophysiology, which, in combination with 

artificial intelligence, could enable non-invasive assessment of chronic kidney disease (CKD) aetiology. Existing approaches are gen- 
erally specific for the diagnosis of single aetiologies. We present the development of models able to simultaneously distinguish and 
spatially visualize multiple CKD aetiologies. 

Methods. The urinary peptide data of 1850 healthy control (HC) and CKD [diabetic kidney disease (DKD), immunoglobulin A nephropa- 
thy (IgAN) and vasculitis] participants were extracted from the Human Urinary Proteome Database. Uniform manifold approximation 

and projection (UMAP) coupled to a support vector machine algorithm was used to generate multi-peptide models to perform binary 
(DKD, HC) and multiclass (DKD, HC, IgAN, vasculitis) classifications. This pipeline was compared with the current state-of-the-art 
single-aetiology CKD urinary peptide models. 

Results. In an independent test set, the developed models achieved 90.35% and 70.13% overall predictive accuracies, respectively, 
for the binary and the multiclass classifications. Omitting the UMAP step led to improved predictive accuracies (96.14% and 85.06%, 
respectively). As expected, the HC class was distinguished with the highest accuracy. The different classes displayed a tendency to 
form distinct clusters in the 3D space based on their disease state. 

Conclusion. Urinary peptide data present an effective basis for CKD aetiology differentiation using machine learning models. Al- 
though adding the UMAP step to the models did not improve prediction accuracy, it may provide a unique visualization advantage. 
Additional studies are warranted to further validate the pipeline’s clinical potential as well as to expand it to other CKD aetiologies 
and also other diseases. 
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GRAPHICAL ABSTRACT 

KEY LEARNING POINTS 
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• Kidney biopsy is considered the gold standard for determini
• The only diagnostic markers that allow sparing a kidney biop

receptor) for membranous nephropathy.
• Genetic test applicability is limited to cases of genetic varian

This study adds: 

• Differentiation of multiple aetiologies is possible with good
sands of exactly defined urinary peptides.

• Individual sample spatial visualization can be performed, fo
cation of the uniform manifold approximation and projectio

Potential impact: 

• The presented non-invasive differentiation and visualization
decisions.

• The approach could be applied not only for the CKD aetiolog
• With the proper design, it could also allow for a non-invasiv

thus supporting therapeutic decisions.

NTRODUCTION 

he high prevalence and economic burden [1 ] of chronic kid-
ey disease (CKD) underscore the need for further efforts to
ddress its associated challenges. CKD exhibits many aeti-
logies and considerable heterogeneity, making it a complex,
ultifaceted condition and a diagnostic challenge. Failure to
e aetiology of chronic kidney disease (CKD).
re combined serum domain antibodies (e.g., phospholipase A2 

ith varying performance.

racy by applying novel machine learning algorithms to thou- 

g distinct clusters that reflect disease state through the appli- 
orithm on urinary peptide data.

roach could be used in clinical practice to support diagnostic 

resented, but also potentially to additional CKD aetiologies.
ust e.g., disease monitoring or treatment response prediction, 

dentify CKD in early stages, where therapy is expected to lead to
ptimal outcome, eventually results in an advanced disease state,
n which irreversible kidney damage has already occurred. A ma-
or clinical concern relates to the differential diagnosis of different
KD aetiologies, mostly relying on an invasive kidney biopsy as the
old standard, despite its limitations. Since biopsy is an invasive
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procedure with potential complications like associated potential
bleeding [2 ], non-representative sampling, disagreement in the
interpretation between pathologists [3 ] and dependence on ap-
propriate organ size, the implementation of specific non-invasive
biomarkers that could support diagnosis and selection of ther-
apy appears highly relevant. In addition, repeated biopsies (to as-
sess treatment response or disease progression) are generally not
possible. 

Several efforts have been made to identify biomarkers that
could non-invasively support the CKD differential diagnosis. We
investigated the literature using the terms: ‘chronic kidney dis-
ease’, ‘CKD’, ‘kidney disease’, ‘differential diagnosis’, ‘types’, ‘ae-
tiolog*’, ‘etiolog*’, ‘classifier*’ and ‘panel’. This literature search in-
dicated that research on CKD differential diagnosis appears to be
mainly focused on genetic studies and CKD-related genetic pan-
els [4 –12 ]. These studies at times confirmed the presence of sus-
pected inherited kidney diseases [9 ] and even led to a correction of
the traditional diagnosis [7 ]. However, adult CKD might not always
be attributed to hereditary origin. In contrast, urinary protein–
based markers, being closer to the phenotype, could be of clinical
relevance. 

Glazyrin et al . [13 ] demonstrated that using urinary proteomics,
patients with nephrosclerosis could be distinguished from pa-
tients with mixed diabetic kidney disease (DKD) and glomeru-
lonephritis, with the latter two being subsequently differentiated
from each other using plasma samples. Although displaying high
classification performance, the study was based on only 34 partic-
ipants, and the performance was not evaluated in an independent
dataset. Validation was partly performed by Fernando et al . [14 ],
focusing only on differentiating CKD of unknown aetiology from
a mixed CKD aetiology class (DKD, nephrosclerosis, glomerular
diseases). 

The analysis of urinary peptides based on capillary elec-
trophoresis coupled to mass spectrometry (CE-MS) has been
extensively applied for the identification and assessment of
biomarkers in a number of diseases [15 –18 ]. The robustness of
CE-MS has been highlighted in several studies [19 –22 ]. Using the
thousands of peptides identified in urine for developing machine
learning models based on support vector machine (SVM) algo-
rithms has demonstrated superior performance in comparison
with the state of the art [23 ]. Additionally, several disease-specific
SVM-based peptide models have been established in the field of
CKD, such as the IgAN237 [24 ] or CKD273 [25 ], the latter being
recognized with a letter of support from the US Food and Drug
Administration [26 ] and implemented in a clinical trial for early
detection of DKD [27 ]. 

In a first attempt to non-invasively identify different CKD ae-
tiologies, Siwy et al . [28 ], using a cohort of 1180 participants, de-
veloped distinct models for seven CKD aetiologies, representing
the current state of the art. The individual model performances
reached an area under the curve of 0.77 or higher in the re-
ceiver operating characteristic curves using an independent test
set. Although an aetiology-specific model could demonstrate sub-
stantial prediction of the targeted aetiology, potentially conflict-
ing positive results produced by multiple single-aetiology models
could result in an ambiguous diagnosis. Thus, a common classi-
fier for distinguishing multiple aetiologies of a disease simultane-
ously appears highly clinically relevant. Novel algorithms, such
as the uniform manifold approximation and Projection (UMAP)
[29 , 30 ], have since shown a promising variety of applications
in biological data interpretation based on the ability to utilize a
dataset’s omic information (e.g., RNAs) for embeddings in a low-
dimensional space. 
Building on the available 1850 urine peptidomic datasets ob- 
tained from the Human Urinary Proteome Database [17 ], our aim
was to establish a pipeline for the non-invasive differential diag- 
nosis of CKD aetiologies in a novel approach, harnessing the di-
mensionality reduction and visualization capabilities of UMAP in 
a proof-of-concept study. 

MATERIALS AND METHODS 

Subjects and datasets 
Anonymized peptidomic data of 1850 urine samples correspond- 
ing to healthy controls (HC) and CKD patients of various aetiolo- 
gies were extracted from the Human Urinary Proteome Database 
[17 ]. The HC samples were derived from participants without signs
of CKD or significant loss of kidney function (estimated glomeru- 
lar filtration rate ≥60 mL/min/1.73 m2 ) ( n = 504). The CKD sam-
ples were derived from participants diagnosed with one of the fol- 
lowing CKD aetiologies: immunoglobulin A nephropathy (IgAN) 
( n = 737), DKD ( n = 534) and vasculitis ( n = 75). The study design
is depicted in Fig. 1 . 

All datasets were from previously published studies and fully 
anonymized. Diagnosis of IgAN and vasculitis were based on kid- 
ney biopsy. Diagnosis of DKD was generally assigned based on the 
clinical parameters. Only for six patients were results from biopsy 
available, in each case supporting the DKD diagnosis. The studies 
respected the regulations for protecting participants in medical 
research and the Declaration of Helsinki (2013). This study was 
approved by the ethics committee of the Friedrich-Alexander Uni- 
versität Erlangen-Nürnberg, Germany (ethic approval code 264_20 
B for the nephrological biobank and ethic approval code 221_20 B 
for the urinary proteomics analysis). 

Urine samples and CE-MS analysis 
The methods used in this study are described in detail in the
Appendix. All datasets used were from samples collected in the 
morning, after voiding the first urine. Samples were frozen within 
6 h and stored at below –20°C. Stability and reproducibility of 
this process was extensively investigated and described in previ- 
ous studies [19 , 20 , 22 ], demonstrating that urine samples stored 
> 10 years at –20°C did not show any significant change in pep-
tide content. Urine samples were analysed using CE-MS, pep- 
tide sequencing and data evaluation was performed as described 
( Appendix p. 1). In brief, peptides and proteins < 20 kDa were sep-
arated in the CE based on their electrophoretic mobility and then 
ionized through electrospray. Subsequently, these ions were sepa- 
rated by a mass analyser based on their mass to charge ratio, be-
fore their relative abundance was detected. Only sequenced pep- 
tides present in at least 30% of the participants were used as an
input for classification, being processed and normalized as de- 
scribed in Fig. 1 . 

Machine learning 

A machine learning pipeline was implemented to develop models 
that enable determining a diagnosis (class) of a participant using 
solely urinary peptidomics. For this non-invasive approach, mod- 
els towards the following classifications ( Appendix pp. 3–4) were 
developed: DKD and HC (binary) as well as DKD, HC, IgAN and
vasculitis (multiclass). 

To adjust for imbalance (due to different sample sizes) 
between the multiple diagnosis classes, random synthetic 
participants were introduced in each class until all were equally 
numbered reaching the ratio of the majority class (i.e., IgAN), as 

https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad200#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad200#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad200#supplementary-data
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Data extraction

Feature selection,
missing value imputation
and transformation

Data splitting

Dimensionality reduction
Oversampling

Urinary peptides (21559)

Sequenced peptides (5071)
Frequency threshold (30%)
Minimum value imputation

Normalization ([x-µ]/ )

(UMAP)
(SMOTE)

Training 
set (75%)

Group selection 
(DKD, HC,IgAN, vasculitis)

Performance
evaluation

SVM 4-fold CV (3-times repeated)
Fit in entire training set 

Nested cross-validation
and training

Prediction in independent test set (25%) 
Comparison with state of the art

Binary: 1183 peptides

Multiple: 1206 peptides

Binary: 1038 individuals

Multiple: 1850 individuals

Figure 1: Study design. The urinary peptide datasets of a cohort of 1850 HC and CKD (DKD, IgAN and vasculitis) individuals were implemented into a 
supervised machine learning pipeline for classification based on disease (or lack thereof). The pipeline was performed separately for DKD and HC 
classes (binary classification) as well as all classes (multiclass classification). Initially, a splitting of the classification data into a training (75%) and a 
test (25%) set was performed. Then, the sequenced peptides present in at least 30% of the respective participants, were considered for further analysis 
and normalized in the training and test sets {[x-mean(x)]/standard deviation(x), considering the training set} after missing peptide values of each 
dataset were imputed based on the respective minimum values. A dimensionality reduction with the UMAP algorithm was performed (or skipped), 
while as an additional step during the training procedures in the multiclass classification only, the oversampling algorithm SMOTE [31 ] was applied. 
The latter produced synthetic participants in all classes until a certain ratio of the (initially) majority class (i.e., IgAN) was achieved, so as to account 
for the class imbalance. During a three-times repeated four-fold CV, SVM models were trained (in three out of four folds of the training set) and their 
performance was recorded (on the remaining fold) along the lines of an iterative search that relied on a Bayesian optimization [35 ] of the 
hyperparameters. The model that achieved the highest average accuracy across all the CV folds was selected as having the optimal combination of 
hyperparameter values. Subsequently, the selected model was trained in the entire training set and then tested for its predictive accuracy in the 
independent test set. μ, feature mean; σ , feature standard deviation; SMOTE, Synthetic Minority Over-sampling Technique; CV, cross-validation in 
training set. 
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escribed [31 ]. The binary and multiclass classifications were per-
ormed both with and without applying the UMAP algorithm [29 ,
0 ] ( Appendix pp. 2–3 [32 , 33 ]) to the urinary peptides before they
ere used as an input to the SVM models. The UMAP algorithm
erforms dimensionality reduction, i.e. transforms the features
peptides) into a low-dimensional space (e.g., three dimensions).
his is expected to potentially remove irrelevant (‘noise’) informa-
ion of the data, while reducing complexity and the required anal-
sis time. UMAP was applied onto the input data and the gener-
ted 3D space coordinates were used to plot the samples as single
ata points. The naïve (default hyperparameters), unsupervised
without considering the diagnosis information of the samples)
MAP as well as the naïve, supervised (considering the diagnosis
nformation of the samples) and lastly, the tuned (selecting the
pecific UMAP hyperparameter values that led to the best SVM
odel classification results), supervised UMAP applications were
onsidered for visually exploring the respective impact in terms
f distinct diagnosis cluster formation in the UMAP plots. 
To objectively assess the model performance, the dataset was
andomly split into training and test sets based on sample groups
n a 75:25 ratio for classification purposes ( Appendix pp. 3–4).
he training set was used to train candidate models (differing on
heir hyperparameter values that determined, e.g., the model’s
olerance for misclassifications), with the goal of optimal diag-
osis based on the peptide relative abundance. This training
as performed for each candidate model based on the cross-
alidation (CV) method: the (training) set was randomly divided
nto four parts and each model was trained using the partici-
ants of the three parts and its performance was assessed in
he fourth one. The model with the best average performance
cross all four different combinations was considered for further
nalyses. Lastly, after fitting in the entire training set, the accu-
acy of that model was estimated by assessing its performance
n the independent test set. Since the test set is irrelevant to
he training procedures it represents an unbiased source for
ssessing the model performance. This procedure was performed

https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad200#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad200#supplementary-data
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Table 1: Cohort clinical characteristics. 

DKD ( n = 534) HC ( n = 504) IgAN ( n = 737) Vasculitis ( n = 75) 

Age (years) 63.11 (12.37) 44.4 (18.33) 42.79 (14.69) 59.44 (14.36) 
eGFR (mL/min/1.73 m2 ) 47.93 (25.36) 94.11 (17.51) 60.26 (30.79) 47.62 (30.85) 
BMI (kg/m2 ) 29.88 (5.60) 27.19 (5.49) 26.35 (3.99) 25.17 (2.97) 
dBP (mmHg) 76.96 (10.77) 78.93 (10.17) 85.86 (12.48) 80.92 (12.49) 
sBP (mmHg) 142.96 (20.17) 134.54 (20.62) 135.95 (18.82) 139.88 (22.62) 
uACR 888.23 (2487.13) 8.55 (6.38) 1241.3 (1431.66) 806.12 (885.92) 
Male (%) 58.47 52.78 66.57 47.54 

Given is the number of the participants of the entire classes. For the clinical characteristics each time a mean (standard deviation) or percentage is displayed, as 
calculated based on the available participant clinical information. 
BMI, body mass index; dBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; uACR, urinary albumin to creatinine ratio; sBP, systolic blood pressure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for each classification (w/o UMAP for binary/multiclass classi-
fications). The multiclass classification models were compared
with the ones developed by Siwy et al . [28 ]. The machine learning
pipeline was based on R statistical software ( Appendix pp. 4–5). 

RESULTS 

Urinary peptidomic data of 1850 samples were extracted from the
Human Urinary Proteome Database [17 ]. This set included 504
HC participants, 534 patients with DKD, 737 with IgAN and 75
with vasculitis, for whom the available clinical information is pre-
sented in Table 1 . The study design is illustrated in Fig. 1 . Apply-
ing a frequency threshold of 30% and limiting the analysis to se-
quenced peptides only, the subsequent steps were based on 1183
or 1206 peptides (for binary and multiclass classifications, respec-
tively). 

Binary classification: differentiation of DKD and 

HC classes 
Initially, UMAP was applied as a naive unsupervised dimension-
ality reduction method to the peptidomic data of 534 DKD and
504 HC participants to visualize their potential separation in the
3D space (Fig. 2 A). Although the majority of the patients of the
same class diagnosis appeared to be clustered, a substantial over-
lap of the clusters prevented clear separation. That observation
indicated the utility of UMAP in embedding high-dimensional uri-
nary peptidomic data in a low-dimensional space, but also that a
supervised UMAP approach may be better suited for class separa-
tion. Therefore, supervised UMAP was applied, leading to a major
class separation improvement in both its naïve (Fig. 2 B) and tuned
version (Fig. 2 C and D). The selected UMAP-SVM model achieved
89.89% average accuracy in the cross-validated training set, while
an overall 90.35% accuracy in the independent test set. The UMAP
embeddings of the training and test sets are illustrated in Fig. 2 C
and D, respectively. Per-class accuracies of the model for both the
cross-validated training set and the independent test set are illus-
trated in Fig. 2 E. 

Multiclass classification: differentiation of 
multiple CKD aetiologies and HC classes 
Subsequently, the same pipeline was utilized to differentiate all
four classes: DKD, HC, IgAN and vasculitis. Again, applying the
naïve UMAP algorithm, a related tendency, but not clear clus-
ter formation was observed (Fig. 3 A). This was substantially im-
proved in the respective supervised (naïve and tuned) UMAP em-
beddings (Fig. 3 B–D). To adjust for the numeric imbalance of these
classes, an oversampling approach [31 ] was implemented during
the training procedures. The overall performance of the selected 
model in the cross-validated training set (average of 74.18%) as 
well as the predictions in the independent test set (70.13%) were 
recorded. In detail, predictions in the independent test set dis- 
played accuracies of 56.39%, 66.30% and 78.95% for DKD, IgAN 

and vasculitis classes, respectively, achieving the highest accu- 
racy (88.89%) in differentiating the HC class from CKD aetiologies 
(Fig. 3 E). 

Comparison with SVM-only model 
To evaluate the added value of UMAP as an important dimension-
ality reduction step in urinary peptidomics as well as the proposed 
pipeline as a whole, additional comparisons were performed. Ini- 
tially, a SVM model was built and trained as described above, but
skipping the UMAP step. In the binary classification, the selected 
model displayed an overall accuracy of ≥95.56% in both the cross- 
validated training set and in the independent test set (Fig. 4 A). In
the multiclass classification, the model achieved an overall aver- 
age accuracy of 87.51% in the cross-validated training set, while 
the overall accuracy in the independent test was 85.06%, with the 
per-class accuracies of 86.47%, 82.61% and 63.16% for DKD, IgAN 

and vasculitis, respectively (Fig. 4 B). Of note, in the latter classifi-
cation, the HC class was distinguished with 90.48% accuracy. 

Comparison with the state of the art in CKD 

urinary proteomics 
Subsequently, the comparison with the individual CKD-aetiology 
models described in Siwy et al . [28 ] was performed. The models
specific for DKD (and nephrosclerosis), IgAN and vasculitis classes 
were considered since these aetiologies were relevant in the cur- 
rent study. Predictions were made only for the 373 participants 
of the independent test set ( n = 462) that had not been a part of
the training set of the CKD differential diagnosis models devel- 
oped by Siwy et al . [28 ]. These corresponded to: 88 DKD, 126 HC,
153 IgAN and 6 vasculitis individuals. To differentiate HC from 

CKD patients, the CKD273 [25 ] model was utilized. The models 
correctly predicted 62.50%, 94.44%, 63.40% and 33.33% of the DKD,
HC, IgAN and vasculitis classes, respectively (Fig. 4 C). 

DISCUSSION 

In the current work, we demonstrated that the assessment of 
CKD-specific aetiologies is possible with good accuracy, using an 
artificial intelligence–driven approach by applying the SVM algo- 
rithm on urinary peptides. The presented findings demonstrate 
that this non-invasive approach could be used as an alterna- 
tive/complementary way within the context of CKD diagnosis.

https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad200#supplementary-data
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Figure 2: Binary classification results. The peptidomic profiles of DKD (red) and HC (gray) participants were used as a basis for the default 
hyperparameters of the UMAP algorithm in its ( A ) unsupervised as well as ( B ) supervised version. Cluster formation was more evident when the 
supervised UMAP with tuned parameters was performed, as observed in the ( C ) training set and ( D ) independent test set embeddings. ( E ) Confusion 
matrices based on the results of the training set cross-validation (CV, average across all folds) as well as the predictions in the independent test set. 
Classification accuracies are displayed in percentages. 
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Figure 3: Multiclass classification results. The peptidomic profiles of DKD (red), HC (gray), IgAN (green) and vasculitis (purple) participants were used 
as a basis for the UMAP algorithm (default hyperparameters) in its ( A ) unsupervised as well as ( B ) supervised version. Cluster formation was more 
evident when the supervised UMAP with tuned parameters was performed, as observed in the ( C ) training set and ( D ) test set embeddings. ( E ) 
Confusion matrices based on the results of the training set cross-validation (CV, average across all folds) as well as the predictions in the independent 
test set. Classification accuracies are displayed in percentages. Of note, an oversampling step was performed during the training procedures. 
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Figure 4: Comparison without including UMAP in the pipeline as well as 
with the current state of the art. Confusion matrices of the predictions 
in ( A ) binary and ( B ) multiclass classifications. ( C ) Predictions using the 
current state-of-the-art single-aetiology models [25 , 28 ]. 
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e also explored whether adding a novel dimensionality reduc-
ion/visualization algorithm (UMAP) to ‘transform’ the informa-
ion (relative abundance) of these peptides into three only spa-
ial coordinates could actually improve the classification perfor-
ance (diagnosis) as well as illustrate the samples as single data
oints in the 3D space. 
While omitting the UMAP step led to higher classification ac-

uracy, a major advantage of UMAP is the visualization in low-
imensional space, irrespective of the initial number of peptides.
o our knowledge, this work is the first of its kind to reduce com-
lex peptidome or proteome data to such a degree that patients
f multiple different CKD aetiologies are efficiently presented
s single data points in space, forming distinct diagnosis clus-
ers. Dimensionality reduction and visualization properties ap-
lied to the urinary peptide information could potentially be used
n the context of determining personalized intervention, e.g., drug
esponse prediction. Such an approach may include additional
elevant parameters e.g., clinical characteristics, progression, diet,
xercise, etc. This hypothesis is currently being investigated in de-
ail and ultimately has to be proven in an appropriately-powered
andomized clinical trial. 
In the presented approach using a single model for distin-

uishing multiple CKD aetiologies (instead of multiple models for
istinguishing single CKD aetiologies), the overall model perfor-
ance in the binary classification (DKD, HC) was superior to the
ulticlass one. This was expected since binary separation is less
omplex, distinguishing CKD of one aetiology (DKD) from HC. Fur-
her, the HC class was distinguished with the highest accuracy
n both the binary and multiclass classifications. This can be at-
ributed to the fact that HC participants are pathologically dis-
ant from the CKD patients, thus justifiably being distinguishable
rom the rest of the classes. This observation can be interpreted
s further evidence for the validity of the presented approach.
n the UMAP-SVM multiclass classification, during predictions on
he independent test set, the selected model had the lowest per-
ormance distinguishing DKD, assigning a substantial part of its
articipants to the former majority class, IgAN. Nevertheless, al-
hough DKD and IgAN are not that clinically similar, this might
e the result of their routine treatment involving several com-
on aspects, especially the anti-hypertension treatment involv-

ng angiotensin-converting enzyme inhibitors and angiotensin II
eceptor blockers, as well as the recently implemented, sodium-
lucose cotransporter 2 inhibitors. 
Within a biological setting, a plethora of features (e.g., thou-

ands of peptides) detected in a relatively low number of obser-
ations (e.g., tens or hundreds, at best) could be an obstacle for
 model to identify the relevant underlying pathophysiology pat-
erns for classification (e.g., diagnosis), especially given the com-
on molecular elements between the CKD aetiologies. This situa-

ion is well-known in the field as ‘curse of dimensionality’ [34 ] and
n this context, dimensionality reduction algorithms can reduce
he number of input features, thus reducing, at least to a degree,
he complexity (and potentially irrelevant information that would
therwise ‘confuse’ the model), as well as improving the model’s
erformance. As such, the UMAP [29 , 30 ] algorithm was utilized.
owever, the SVM model performance in the independent test set
as superior when UMAP was not used ( ∼85% vs ∼70% accuracy,
espectively). The reason for this may, among others, be linked
o the noise reduction already achieved via applying the 30% se-
uenced peptide frequency threshold. Using this threshold, out
f tens of thousands of peptides detected in urine, 1183 (binary
lassification) or 1206 (multiclass classification) were considered
or further analysis. Using UMAP to further reduce the feature
pace (and thus the corresponding information contained in the
ataset) to only three spatial coordinate features could result in
oss of information and thus to a SVM model of reduced (but still
oteworthy) performance. Consequently, using UMAP to reduce
he feature space could be more useful in cases where an efficient
eature selection/removal method is not performed/established.
hat said, the dimensionality reduction along with its spatial,
ingle-sample, visualization properties constitute UMAP a sub-
tantial step in such pipelines. Of note, in the binary classification,
he model performances w/o UMAP were similar ( ∼90% vs ∼96%
ccuracy, respectively). 
Considering that proteomic/peptidomic studies are scarce in

KD differential diagnosis, in the presented study we com-
ared the DKD, IgAN and vasculitis models of the aforemen-
ioned earlier study [28 ], using the CKD273 scoring to define the
C group [25 ]. As expected from the anticipated difference in
olecular pathology, the HC class could be separated with the
ighest accuracy. In comparison with these single-aetiology mod-
ls, comparable or slightly improved performance was observed
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using our presented approach. Nevertheless, the apparent supe-
rior performance in terms of the vasculitis class should be viewed
with caution since only six vasculitis patients were tested in this
earlier single-aetiology model. 

The presented study has limitations. First, class balance was
not the case for the multiclass classification data. Class imbalance
is hardly avoidable when working with retrospective datasets,
among other things due to the inherent difference in disease
prevalence. We attempted to address this issue by introducing
randomly synthetic participants to each class using an algorithm
[31 ], but larger studies, ideally of equally-numbered classes are
warranted. Furthermore, the CKD aetiologies investigated herein
represent only a fraction (nevertheless, the majority) of the broad
CKD spectrum, and thus the inclusion of additional aetiologies in
further studies seems well justified. It is also expected that the
inclusion of relevant clinical parameters may increase model per-
formance. However, due to incomplete clinical records of some
participants, this could not be implemented in the presented
study. Additionally, since UMAP is not as interpretable as e.g., prin-
cipal component analysis, cluster sizes in UMAP plots and dis-
tances between the clusters as well as the potential impact of
random noise, among others, entail caveats that could potentially
result in misinterpreting the plots [33 ]. Lastly, only the SVM (ra-
dial basis kernel) classifier was assessed; the performance of other
machine learning algorithms may even be superior. 

Kidney biopsy can be utilized to acquire information not only
on CKD aetiology, but also in terms of disease severity, sub-
classification, chronicity and co-existing conditions. Neverthe-
less, artificial intelligence tools developed through the presented
pipeline could theoretically be trained to deliver such informa-
tion, with the advantage, due to the non-invasive approach, of
being applied multiple times, consequently enabling monitoring
of disease progression and guiding towards optimal therapeutic
decisions. 

In conclusion, in this proof-of-concept study, we established a
robust pipeline for simultaneous classification of multiple CKD
aetiologies and sample visualization in the 3D space based on uri-
nary peptides. The approach enables discrimination of major dif-
ferent CKD aetiologies and can be used to establish differential
diagnosis without the need to perform an invasive kidney biopsy,
which may be especially relevant in early detection. We anticipate
that this will also serve as a basis for developing models as sup-
plementary clinical tools, enabling the assessment of additional
CKD aetiologies and also other diseases. 
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