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Abstract

Background: Age-related cognitive decline is linked to changes in the brain, particu-

larly the deterioration of white matter (WM) microstructure that accelerates after the

age of 60. WM deterioration is associated with mild cognitive impairment and

dementia, but the origin and role of white matter signal abnormalities (WMSA) seen

in standard MRI remain debated due to their heterogeneity. This study explores the

potential of single-shell 3-tissue constrained spherical deconvolution (SS3T-CSD), a

novel technique that models diffusion data in terms of gray matter (TG), white matter

(Tw), and cerebrospinal fluid (TC), to differentiate WMSA from normal-appearing

white matter and better understand the interplay between changes in WM micro-

structure and decline in cognition.

Methods: A total of 189 individuals from the GENIC cohort were included. MRI data,

including T1-weighted and diffusion images, were obtained. Preprocessing steps

were performed on the diffusion MRI data, followed by the SS3T-CSD. WMSA were

segmented using FreeSurfer. Statistical analyses were conducted to assess the associ-

ation between age, WMSA volume, 3-tissue signal fractions (Tw, TG, and TC), and neu-

ropsychological variables.

Results: Participants above 60 years old showed worse cognitive performance and pro-

cessing speed compared to those below 60 (p < .001). Age was negatively associated with

Tw in normal-appearing white matter (p < .001) and positively associated with TG in both

WMSA (p < .01) and normal-appearing white matter (p < .001). Age was also significantly
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associated with WMSA volume (p < .001). Higher processing speed was associated with

lower Tw and higher TG, in normal-appearing white matter (p < .01 and p < .001, respec-

tively), as well as increasedWMSA volume (p < .001). Similarly, lower MMSE scores corre-

lated with lower Tw and higher TG in normal-appearing white matter (p < .05). High

cholesterol and hypertension were associated with higher WMSA volume (p < .05).

Conclusion: The microstructural heterogeneity within normal-appearing white matter

and WMSA is associated with increasing age and cognitive variation, in cognitively

unimpaired individuals. Furthermore, the 3-tissue signal fractions are more specific to

potential white matter alterations than conventional MRI measures such as WMSA

volume. These findings also support the view that the WMSA volumes may be more

influenced by vascular risk factors than the 3-tissue metrics. Finally, the 3-tissue met-

rics were able to capture associations with cognitive tests and therefore capable of

capturing subtle pathological changes in the brain in individuals who are still within

the normal range of cognitive performance.
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1 | INTRODUCTION

The World Health Organization (WHO) estimated that in 2015,

around 47 million people worldwide were living with dementia, and

this number is expected to triple by 2050 (Prince et al., 2015). Unfor-

tunately, there is to date no cure nor disease-modifying treatments

for dementia; therefore, further research in the aging field is of the

great importance (Cummings et al., 2019; Ferreira et al., 2018). Age-

related cognitive decline is primarily explained by changes of the brain

including reductions in gray matter volume and enlargement of the

ventricles. Over time, the brain loses 5% of its volume with each

decade past the age of 40 (Bonte et al., 2017; Driscoll et al., 2009;

Knoops et al., 2012; Nagai & Kario, 2009; Peters, 2006; Takao

et al., 2012). Additionally, there is deterioration of the white matter

microstructure, which accelerates after the age of 60 (Abe

et al., 2008; Davis et al., 2009; Grieve et al., 2005; King et al., 2014;

Madden et al., 2017; Marstaller et al., 2015). The brain is particularly

vulnerable to central hemodynamic alterations due to increased blood

pressure, arterial stiffening, and atherosclerosis leading to white mat-

ter damage (Badji et al., 2019; Gunning-Dixon et al., 2009). White

matter deterioration is often associated with mild cognitive impair-

ment and dementia (Bombois et al., 2007; Peters, 2006; Skoog, 1998;

Yoshita et al., 2006) explaining the interest in understanding the origin

and role of white matter signal abnormalities (WMSA) seen in mag-

netic resonance imaging (MRI).

In vivo MRI can identify the appearance of WMSA characterized

by hyperintense signal on T2-weighted images or hypointense signal

in T1-weighted images (Cedres et al., 2020). Nevertheless, the exact

role of WMSA in influencing cognitive changes, variations, decline,

and their biological interpretation remains a matter of debate, primar-

ily due to their potentially heterogeneous etiology (Mito et al., 2020).

The literature suggests that these WMSA may be preceded by micro-

structural changes that can be detected with diffusion tensor imaging

(DTI) (Maillard et al., 2014). DTI metrics such as fractional anisotropy

(FA) are negatively associated with age, while mean diffusivity (MD) is

positively associated with age (Abe et al., 2008; Lebel et al., 2012).

However, DTI metrics like FA and MD lack specificity, which makes

the biological interpretation behind these changes difficult (Badji

et al., 2019). Indeed, it can be hypothesized that the observation of a

reduction in FA may be due to various microstructural tissue changes

such as a reduction in neurite density or an increase in the dispersion

of neurite orientation distribution (Beaulieu, 2009). Advances in diffu-

sion imaging have provided novel models to overcome this problem.

For instance, a novel approach was introduced to probe the underly-

ing microstructural properties of the WM by modelling the diffusion

data in terms of 3-tissue signal space: gray matter (GM), white matter

(WM), and cerebrospinal fluid (CSF) (Dhollander et al., 2017;

Dhollander & Connelly, 2016a; Khan et al., 2020; Mito et al., 2020).

Probing microstructural properties of the WM is important for differ-

entiating true age-related white matter changes from partial volume

effects and CSF contamination. DTI metrics are less specific in this

regard, making it harder to discern tissue-specific contributions to

changes in FA. The technique, which is known as single-shell 3-tissue

constrained spherical deconvolution (SS3T-CSD, Dhollander &

Connelly, 2016b; https://3Tissue.github.io), allows us to model

WMSA and normal-appearing white matter as well as other tissues

and fluids (free water). This technique can distinguish different pro-

cesses behind various types of tissue signals, including WMSA,

despite their homogeneous appearance on conventional MRI images

(T2w, T1w). However, the SS3T-CSD has only been applied in individ-

uals with Alzheimer's disease or stroke patients, and its potential in

the field of healthy aging is still unknown.
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The goal of this study was to make a first step toward a better

understanding of the age-related changes behind white matter signal

abnormalities and normal-appearing white matter in healthy aging by

investigating cognitively unimpaired individuals with the SS3T-CSD

methodology. The SS3T-CSD technique allows us to interpret the

results based on how alike the diffusion signal properties are to those

derived from normal white matter, grey matter, and CSF (or free

water). We tested (i) the association between age and the different

SS3T-CSD metrics in contrast to its association with the established

marker of WMSA; and (ii) the association of SS3T-CSD metrics with

neuropsychological measures of processing speed and global cogni-

tion. Finally, we looked at the association between age, neuropsycho-

logical measures, SS3T-CSD metrics, and vascular risk factors. We

hypothesized that an older age would be associated with a higher

WMSA volume as well as a decreased WM tissue signal fraction in

both white matter signal abnormalities and normal-appearing white

matter, which would translate onto reduced cognitive performance.

2 | MATERIALS AND METHODS

2.1 | Participants

A total of 189 individuals (ages between 35 and 76 years old, mean

age 53.80 ± 9.63) were included from the GENIC cohort (Ferreira

et al., 2015), a community-based study from the Canary Islands

(Spain). Inclusion criteria were as follows: (1) normal cognitive perfor-

mance in comprehensive neuropsychological assessment using perti-

nent clinical normative data; (2) preserved activities of daily living and

global cognition, operationalized as a Blessed Rating Dementia Scale

(BRDS) (Blessed et al., 1968) score ≤4, a Functional Activity Question-

naire (FAQ) (Kurosaki, n.d.) score ≤5, and a Mini-Mental State Exami-

nation (MMSE) (Folstein et al., 1975) score ≥ 24; (3) no abnormal

findings such as tumors, hippocampal sclerosis, etc., in MRI according

to an experienced neuroradiologist; (4) no medical history of neuro-

logical or psychiatric disorders (including a diagnosis of major depres-

sion), systemic diseases, or head trauma; and (5) no history of

substance abuse. For the current study, we also required all partici-

pants to have MRI data available, including three-dimensional

T1-weighted and diffusion images. Subjects' recruitment in the GENIC

cohort was done through primary care centers, advertisements in local

schools, relatives, and acquaintances of the research staff, covering a

representative sample in terms of age, sex, and education as explained

in previous publications (Cedres et al., 2019). Participation was volun-

tary, and all participants provided written informed consent approved

by the local ethics committee.

2.2 | Cognitive and clinical assessment

Cognitive examination was performed by experienced neuropsycholo-

gists. Participants underwent a series of tests covering various cogni-

tive domains (e.g., processing speed, attention, executive functions,

memory) (Ferreira et al., 2015). For the current study, we selected the

MMSE as a stablished measure of global cognitive performance as

well as the Pc Vienna System Reaction time (PCv RT) test as a mea-

sure of processing speed (Ferreira et al., 2015), in line with our study

aims and hypotheses. The Wechsler Adult Intelligence Scale (WAIS-III)

Information subtest (Wechsler, 1972) was scored and used as an indi-

cator of crystallized intelligence/educational attainment as in previous

studies (Cedres et al., 2019; Correia et al., 2015; Ferreira et al., 2014;

Ferreira et al., 2015). Functional status was assessed with the Func-

tional Activities Questionnaire (FAQ) and the Blessed Dementia Rat-

ing Scale (BDRS). In addition, information about a history of stroke

and cardiovascular risk factors such as high cholesterol, hypertension,

and diabetes were self-reported by the participants.

2.3 | Image acquisition

All participants were scanned on a 3.0 T GE imaging system (General

Electric, Milwaukee, WI, USA), at the Hospital Universitario de Canar-

ias in Tenerife, Spain. For the current study, we selected the 3D

T1-weighted (T1w) fast spoiled gradient echo (FSPGR) sequence and

the diffusion MRI (dMRI) sequences. The T1w acquisition was done

with sagittal slices of 1.0-mm isotropic resolution, repetition time/

echo time/inversion time = 8.73/1.74/650 ms, field of view

250 � 250 mm, matrix 250 � 250 mm, and flip angle 12�. Diffusion

MRI (dMRI) data were acquired with 64 axial slices of 2.4 � 2 � 2 mm

resolution, with no gaps between slices. Acquisition parameters were

as follows: repetition time/echo time 15,000/72 ms, field of view

256 � 256 mm, matrix 128 � 128 mm, flip angle 90�, 31 isotropically

distributed gradient orientations (b = 1000 s/mm2), and 1 image with-

out diffusion weighting (b = 0 s/mm2). Whole-brain and skull cover-

age were required for the MRI datasets, and quality control was

carried out on all MR images according to previously published criteria

(Simmons et al., 2011).

2.4 | Image processing

The dMRI data were processed using a combination of commands in

the MRtrix3 package (Tournier et al., 2019) and the MRtrix3Tissue

(https://3tissue.github.io/) fork of MRtrix3, for the purpose of the

3-tissue response function estimation and SS3T-CSD, as well as

the FMRIB Software Library (FSL) (Jenkinson et al., 2012) and

Advanced Normalization Tools (ANTs) (Avants et al., 2014).

Preprocessing steps included denoising (Veraart et al., 2016),

motion and eddy current-induced distortion correction (Andersson &

Sotiropoulos, 2016), Gibbs ringing removal (Kellner et al., 2016), and

bias field correction (Tustison et al., 2010). The dMRI data were spa-

tially upsampled to a 2.0-mm isotropic voxel grid (Raffelt et al., 2012).

Following these initial preprocessing steps, a fully automated unsuper-

vised method to obtain 3-tissue response functions (representing

single-fiber WM, GM, and CSF) from the data themselves was used

(Dhollander et al., 2017). WM fiber orientation distributions (FODs),
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as well as GM and CSF compartments, were then computed using

SS3T-CSD based on the group-averaged response functions for WM,

GM, and CSF. Global intensity normalization and bias field correction

in the log-domain across subjects were also performed (Dhollander

et al., 2021).

Spatial alignment of the dMRI and T1w data was performed for

each participant by first registering each participant's average b = 0

image on participant's own T1w image. We applied a rigid-affine

transformation, estimated via a mutual information cost function opti-

mization using the FMRIB's linear image registration tool (FLIRT)

(Jenkinson et al., 2002; Jenkinson & Smith, 2001). The WM, GM, and

CSF tissue compartment maps were then warped to T1w images

using the warp obtained from this registration.

2.5 | Segmentation of white matter signal
abnormalities

Segmentation of white matter signal abnormalities (WMSA) was per-

formed with FreeSurfer 6.0.0 (https://surfer.nmr.mgh.harvard.edu/).

The details of the procedure are described in prior publications

(Brands et al., 2006) (Fischer et al., 2007). Briefly, the pipeline includes

motion correction, averaging of T1w images, removal of non-brain tis-

sue, automated Talairach transformation, and segmentation of the

subcortical WM and GM volumetric structures. FreeSurfer detects

hypointensities on T1w images and automatically labels them as

WMSA using a probabilistic procedure (Fischl et al., 2002). This proce-

dure has shown high sensitivity in measuring WM damage (Salat

et al., 2010). In addition, these WMSA are strongly correlated with

hyperintensity volumes measured on T2/FLAIR (Cedres et al., 2020).

We randomly selected 20 subjects to qualitatively compare the

WMSA mask from the T1w images (hypointensities) and the WMSA

mask from FLAIR images (hyperintensities) available from the same

participants. We observed very similar segmentation, and therefore,

the WMSA mask output from T1w images was used for statistical

analysis. The WMSA masks were also binarized, and a normal-

appearing white matter mask was also computed by subtracting the

WMSA mask from the entire WM mask. Finally, we also extracted

the total intracranial volume estimated by FreeSurfer for analysis. All

image processing was done through The HiveDB system (Muehlboeck

et al., 2014).

2.6 | Representing the composition of white
matter signal abnormalities and normal-appearing
white matter as 3-tissue diffusion signal fractions

For each subject, we extracted the total WM-, GM-, and CSF-like

signals as obtained from SS3T-CSD within both WMSA and

normal-appearing white matter. We used the same terminology as

previously (Khan et al., 2020; Mito et al., 2020), that is, WM-like,

GM-like, and CSF-like tissue signals (Tw, TG, and TC), to refer to the

general properties of the diffusion signal without necessarily

implying specific biological properties of tissues used to calibrate

the model. An important step was to normalize the tissue compart-

ment signals to sum to unity as done previously (Dhollander

et al., 2019; Khan et al., 2020; Mito et al., 2020), in order to obtain

the respective 3-tissue signal fractions TW, TG, and TC (the WM-

like, GM-like, and CSF-like tissue signal fractions, respectively) and

allow for their relative interpretation. For example, a combined

decrease of TW and increase of TC might indicate a loss of WM

(by means of loss of axonal matter), which might be replaced by

increased free water volume.

A flow chart diagram shown in Figure 1 highlights the main fea-

tures of our processing workflow. We established a highly rigorous

sanity check protocol to ensure the feasibility of implementing the

SS3T-CSD methodology in our dataset. Initially, this involved initially

evaluating the tissue response function for all 189 participants, as

detailed in the Figure S1. Once the FreeSurfer pipeline was done and

the tissue fractions (WM, GM, and CSF) warped to T1w, we inspected

for each subject: (i) the native T1w image, (ii) the WMSA mask, and

(iii) the WM, GM, and CSF tissue compartments in T1 space to care-

fully assess both the WMSA segmentation and the accuracy of our

registration.

2.7 | Statistical analysis

All statistical analyses were carried out using the R software environ-

ment (version 3.5.2) (Team, 2018). The histograms of WMSA volume

and all 3-tissue signal fractions were assessed to identify eventual

outliers prior to manual visual sanity check.

To approach our two specific study questions or aims, the age

variable was used in its continuous form. Additionally, since previous

studies have shown that the age-related brain changes seem to accel-

erate after the age of 60 (Abe et al., 2008; Davis et al., 2009; Madden

et al., 2017; Marstaller et al., 2015), we also stratified the cohort into

two groups of participants below and above 60 years old. This stratifi-

cation had two purposes: (i) initial description and characterization of

the cohort, and (ii) to have a control group (i.e., individuals below

60 years) for correction of the WMSA volume measure: prior to statis-

tical analysis, the WMSA volume was residualized for sex and the total

intracranial volume estimated by FreeSurfer as done previously (Badji

et al., 2021; Falahati et al., 2016; Voevodskaya et al., 2014). In brief,

the algorithm fits a generalized linear model (GLM) to the WMSA vol-

ume variable in the control group (individuals below 60 years old) to

assess the effects of the predictors (sex and intracranial volume) on

the outcome in the absence of the group effect. This allows us to

model the covariates-related effects as linear drift. Then, the regres-

sion coefficient of the resulting GLM model is used to remove the

covariates-related effects from all participants and obtain adjusted

values.

Differences in demographics and clinical variables between par-

ticipants below and above 60 years old were assessed with the Wil-

coxon test for continuous variables or the chi-squared test for binary

variables.
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The association of age with WMSA volume and all 3-tissue signal

fractions (Tw, TG, and TC) computed within WMSA and normal-

appearing white matter was assessed through Spearman's correla-

tions. Similarly, the association between WMSA volume and all

3-tissue signal fractions (Tw, TG, and TC) computed within WMSA and

normal-appearing white matter with neuropsychological variables

(PC Vienna RT, MMSE) was also assessed through Spearman's correla-

tions. In addition, to compare the 3-tissue signal fractions with the

established WMSA marker, we compared the correlation coefficients

between age and WMSA volume versus age and the 3-tissue signal

fractions (Tw, TG, and TC) using a bootstrap approach. For a given

3-tissue signal fraction, from our initial sample of n participants, we

resampled n individuals with replacement and computed the differ-

ence between the correlation coefficient of the 3-tissue signal frac-

tion and age minus the correlation coefficient of WMSA volume and

age. We repeated that process 10,000 times and used the empirical

distribution of the 10,000 differences to compute a 90% confidence

interval for the difference between the two correlation coefficients. If

the interval contained the value 0, we could affirm that the correlation

coefficients were statistically equivalent. A similar bootstrap approach

was performed to compare the correlation coefficients between cog-

nitive performance (assessed by PCv RT or MMSE) and WMSA vol-

ume vs. cognitive performance and the 3-tissue signal fractions (Tw,

TG, and TC). Finally, we report a correlation matrix representing the

Spearman correlation coefficient among all clinical, neuropsychologi-

cal, and MRI variables of interest in this study to summarize all find-

ings as well as shed light onto the associations between these

variables and vascular risk factors.

Adjustment for multiple testing was performed using the false

discovery rate (FDR) procedure (Benjamini & Hochberg, 1995). Since

the p-threshold adjustment for significance under the Benjamini–

Hochberg procedure not only depends on the number of tests but

also on the calculated p-value for each test, original/uncorrected p-

values were reported and only the significant ones after correction

were highlighted in bold. The adjusted threshold under which a p-

value is declared significant after the FDR correction is reported in

the legend of each table/figure.

3 | RESULTS

3.1 | Participants' characteristics

Table 1 shows the demographic and clinical characteristics of the

whole sample as well as the comparison between individuals below

and above 60 years old. As expected, there were significant age-

related differences in global cognitive performance (p < .001 for

MMSE) and processing speed (p < .001 for PCv RT), with older

F IGURE 1 Flow chart summarizing the key processing steps of the single-shell 3-tissue constrained spherical deconvolution (SS3T-CSD) and
T1-weighted (T1w) pipelines. T1w: Segmentation of white matter signal abnormalities (WMSA) was performed with FreeSurfer. Once segmented,
the WMSA masks were binarized. A normal-appearing white matter mask was also computed by subtracting the WMSA mask from the entire
white matter (WM) mask. DWI: Single-shell, b = 1000, 31 gradient directions diffusion data were processed using a combination of commands in
the MRtrix3 package as well as the FMRIB Software Library. Basic processing included points 1–5. A fully automated unsupervised method to
obtain 3-tissue response function estimation for tissue compartments WM-GM-CSF was used. WM fiber orientation distributions (FODs), as well
as gray matter (GM) and cerebrospinal fluid (CSF) compartments, were then computed using a SS3T-CSD. Spatial alignment of the diffusion and

T1w data was performed for each participant. Finally, we normalized the tissue fractions to sum to unity to extract the 3-tissue signal fractions
Tw, TG, and TC within WMSA and normal-appearing white matter (NAWM).
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participants showing worse performance. Relative to participants

younger than 60, participants older than 60 years more frequently

had vascular risk factors present.

Table 2 shows the MRI characteristics of the cohort. As expected,

there were significant age-related differences in WMSA volume

(p < .001) and in Tw in NAWM (p < .001). Participants older than

60 years also had significantly higher TG in both NAWM and WMSA,

compared to participants younger than 60 years.

3.2 | Association of age with 3-tissue
compositions of WMSA and normal-appearing white
matter and WMSA volume

Age was negatively associated with Tw in normal-appearing white

matter and positively associated with TG in both WMSA and normal-

appearing white matter (Table 2, Figure 2). In addition, age was signifi-

cantly associated with WMSA volume (r = 0.504, p < .001). The 90%

bootstrap empirical confidence interval on the difference between the

correlation of TG in normal-appearing white matter and age and

the correlation of WMSA volume and age is [�0.165, 0.075]. We can

therefore affirm that the correlations are statistically comparable. The

other five confidence intervals do not contain the value 0, and hence,

we cannot conclude on statistical equivalence.

3.3 | Association of 3-tissue compositions of
WMSA and normal-appearing white matter and
WMSA volume with cognitive function

Figure 3 shows that higher PcV RT is associated with lower Tw in

normal-appearing white matter (r = �0.201, p = .006, Figure 3) as

TABLE 1 Demographics and basic clinical characteristics of the cohort.

Whole sample (n = 184)

Individuals under the

age of 60 (n = 132)

Individuals above the

age of 60 (n = 52) p-value

Age [35–76] 53.80 ± 9.63 48.89 ± 5.89 66.29 ± 4.72 /

Sex (N of woman) 101 73 [55.3%] 28 [53.8%] .99

Information (WAIS-III) 16.99 ± 5.78 16.89 ± 5.68 17.23 ± 6.08 .64

BDRS 0.54 ± 0.89 0.49 ± 0.83 0.66 ± 1.02 .29

FAQ 0.25 ± 0.59 0.28 ± 0.63 0.19 ± 0.44 .57

MMSE 28.94 ± 1.12 29.15 ± 0.98 28.40 ± 1.27 <.001

PcVRT 473.05 ± 80.22 456.46 ± 60.82 515.15 ± 105.22 <.001

Vascular risk factors

History of stroke 1 [0.54%] 0 [0%] 1 [0.1%] /

History of cholesterol 38 [20.6%] 21 [15.9%] 17 [32.7%] <.05

History of hypertension 38 [20.6%] 15 [11.3%] 23 [44.2%] <.001

History of diabetes 4 [2.17%] 0 [0%] 4 [0.7%] /

Note: Values correspond to the mean ± standard deviation except for sex and vascular risk factors (count [percentage] is reported instead). p-value

corresponds to results of group comparisons between individuals below and above 60 years old. No statistical analysis was done on the variables, history

of stroke, and history of diabetes due to the low number of cases with a positive history in these variables. Results with uncorrected p < .05 are shown.

Significant results after FDR are highlighted in bold. The adjusted threshold with FDR is p = .025.

Abbreviations: BDRS, blessed dementia rating scale; FDR, false discovery rate; FAQ, functional activities questionnaire; MMSE, mini-mental state

examination; PcV RT, personal computer Vienna reaction time; WAIS-III, Wechsler adult intelligence scale (WAIS-III).

TABLE 2 MRI characteristics of the cohort.

Whole sample (n = 184) Individuals under the age of 60 (n = 132) Individuals above the age of 60 (n = 52) p-value

WMSA volume 1740.10 ± 1427.20 1377.41 ± 1047.14 2660.71 ± 1813.21 <.001

Tw in WMSA 0.63 ± 0.07 0.64 ± 0.07 0.62 ± 0.07 .23

TG in WMSA 0.12 ± 0.04 0.12 ± 0.04 0.14 ± 0.05 <.01

TC in WMSA 0.24 ± 0.07 0.24 ± 0.07 0.24 ± 0.07 .45

Tw in NAWM 0.91 ± 0.02 0.92 ± 0.02 0.89 ± 0.02 <.001

TG in NAWM 0.06 ± 0.02 0.06 ± 0.02 0.08 ± 0.02 <.001

TC in NAWM 0.02 ± 0.004 0.02 ± 0.004 0.02 ± 0.006 .83

Note: Values correspond to the mean ± standard deviation. p-value corresponds to results from group comparisons between individuals below and above

60 years old. WMSA refers to white matter signal abnormalities; NAWM refers to normal-appearing white matter; Tw, TG, and TC refer to the tissue signal

fractions of the white matter-like, gray matter-like, and cerebrospinal fluid (CSF)-like diffusion signals, respectively. Results with uncorrected p < .05 are

shown. Significant results after false discovery rate (FDR) are in bold. Adjusted threshold with FDR is p = .029 for all MRI variables.
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well as higher TG in normal-appearing white matter (r = 0.239,

p = .001, Figure 3). Higher PcV RT is also associated with increased

WMSA volume (r = 0.251, p < .001). A similar trend can be seen

regarding MMSE in relation to Tw in normal-appearing white matter

and TG in normal-appearing white matter (Figure 4). A lower MMSE

score appears to be correlated with lower Tw in normal-appearing

white matter (r = 0.149, p = .042, Figure 4), along with a higher TG in

normal-appearing white matter (r = �0.176, p = .016, Figure 4), but

these results did not maintain statistical significance following FDR

correction.

The 90% bootstrap empirical confidence interval on the differ-

ence between the correlation of TC, or TG, or TW in normal-appearing

white matter and PcV and the correlation of WMSA volume and PcV

is [�0.371, 0.008; �0.290, 0.021; �0.284, 0.047], respectively. These

correlations are hence statistically equivalent. A similar result was

found between the correlation of TG in WMSA and PcV and the cor-

relation of WMSA volume and PcV is [�0,115, 0,131].

The 90% bootstrap empirical confidence interval on the differ-

ence between the correlation of TC, or TG, in normal-appearing white

matter and MMSE and the correlation of WMSA volume and MMSE

is [�0.056, 0.306; �0.190, 0.079], respectively, which means that

these correlations are statistically equivalent. Similar results were

found between the correlation of TC, or TG, in WMSA and MMSE and

the correlation of WMSA volume and MMSE [�0.149, 0.246;

�0.128, 0.183].

Figure S1 shows that both high cholesterol and hypertension

were also associated with WMSA volume in our participants, and as

such, that participants with a higher WMSA volume more often

reported to have high cholesterol and hypertension. High cholesterol

was also found to be associated with TG in normal-appearing white

matter Figure S1.

4 | DISCUSSION

4.1 | The association of age with 3-tissue metrics
is in contrast to the association of age with WMSA
volume

This study provides evidence on the statistically significant associa-

tion between age and WMSA volume, which is an established find-

ing (Zhuang et al., 2018). Indeed, WMSA are frequent in the brains

of elderly individuals but are also seen in middle-aged individuals

(Ferreira et al., 2017; Williams et al., 2010). In addition, WMSA have

F IGURE 2 Scatter plots for Spearman correlation analysis of age with the relative 3-tissue signal fractions (Tw, TG, and TC) within white
matter signal abnormalities (WMSA) and normal-appearing white matter as well as WMSA volume. WMSA refers to white matter signal

abnormalities; NAWM refers to normal-appearing white matter; Tw, TG, and TC mean tissue fractions of the white matter, gray matter, and
cerebrospinal fluid (CSF), respectively. Results with uncorrected p < .05 are shown. Significant results after FDR are in bold red. Adjusted
thresholds with FDR are p = .028.
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been consistently associated with a broad spectrum of outcomes

such as subtle functional impairment, variability in cognitive perfor-

mance, cognitive decline and dementia, and even with a high preva-

lence of neuropsychiatric disorders such as major depressive

disorder and schizophrenia (Benedictus et al., 2015; Chang

et al., 2015; Grangeon et al., 2010; Smith et al., 2016; Yoon

et al., 2014; Zhuang et al., 2018). However, the clinical manifesta-

tions of WMSA that arise solely with age are still a matter of debate.

In this regard, our current cohort was cognitively unimpaired and

has no clinical manifestations suggestive of neurological or psychiat-

ric disorders.

In this study, we moved beyond the WMSA volume measure to

further understand age-related changes behind WMSA and cognitive

performance. We did so by investigating the complete 3-tissue diffu-

sion signal composition (Tw, TG, and TC) to characterize the micro-

structural properties of normal-appearing white matter and WMSA,

for the first time in cognitively unimpaired individuals. This allowed

us to interpret the results based on how alike the diffusion signal

properties were to those derived from normal white matter, grey

matter, and CSF (or free water). Using these metrics have advantages

over WMSA volume measure in revealing additional information

about abnormalities or changes in WM that otherwise looks normal

(not captured or represented in the WMSA volume measure). As

expected, age was negatively associated with normal-appearing

white matter Tw, the fraction that has microstructural characteristics

of average WM that is reflecting healthy WM. More specifically, par-

ticipants older than 60 years old had a lower Tw in NAWM than

younger individuals. This finding provides good support for the valid-

ity of the imaging method and suggests an older/more degenerated

WM tissue with increasing age. Interestingly, age was positively

associated with an increase in TG in both WMSA and normal-

appearing white matter. These results for WMSA and normal-

appearing white matter are likely due to different underlying mecha-

nisms. The increase in TG seen in WMSA should be interpreted as a

tissue shift toward diffusion characteristics like that of the gray mat-

ter tissue, deviating from the white matter-like signal. We previously

suggested that an increase in TG could be compatible with astroglio-

sis (Mito et al., 2020), as the proliferation of glial cells is known to be

F IGURE 3 Scatter plots for Spearman correlation analysis of Pc Vienna System Reaction time (PCv RT) with the relative 3-tissue signal

fractions (Tw, TG, and TC) within white matter signal abnormalities (WMSA) and normal-appearing white matter as well as WMSA volume. PcV RT,
Personal computer Vienna Reaction time; WMSA refers to white matter signal abnormalities; NAWM refers to normal-appearing white matter;
Tw, TG, and TC mean tissue fractions of the white matter, gray matter, and cerebrospinal fluid (CSF), respectively. Results with uncorrected p < .05
are shown. Significant results after false discovery rate (FDR) are in bold red. The adjusted threshold with FDR is p = .01. Color code: red circle
refers to participants under 60 years old, and blue triangle refers to participants older than 60. WMSA volume is in mm3.
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a characteristic of WMSA (Fazekas et al., 1998). Proliferation of glial

cells has a similar profile as grey matter cells on the diffusion data,

that is, increased diffusivity and reduced anisotropy relative to

healthy normal-appearing white matter. However, several histopath-

ological studies have shown that WMSA exhibit a broad range of

neuropathological features beyond proliferation of glial cells,

F IGURE 4 Scatter plots for Spearman correlation analysis of MMSE with the relative 3-tissue signal fractions (Tw, TG, and TC) within white
matter signal abnormalities (WMSA) and normal-appearing white matter as well as WMSA volume. Mini-mental state examination (MMSE);
WMSA refers to white matter signal abnormalities; NAWM refers to normal-appearing white matter; Tw, TG, and TC mean tissue fractions of the
white matter, gray matter, and cerebrospinal fluid (CSF), respectively. Results with uncorrected p < .05 are shown. Significant results after false
discovery rate (FDR) are in bold red. The adjusted threshold with FDR is p = .01. Color code: red circle refers to participants under 60 years old,
and blue triangle refers to participants older than 60.
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reflecting the heterogeneity of WMSA. Some alternative explana-

tions are related to diffuse myelin rarefaction (Román, 1991), pro-

gressive subcortical gliosis (Brun & Englund, 1986), dilatation of

perivascular spaces (Marín-Padilla & Knopman, 2011), and varying

degrees of demyelination (Fazekas et al., 1998). Dilatation of peri-

vascular spaces and myelin or axonal loss would in contrast likely be

accompanied by increases in interstitial fluid and reflected by an

increase in the TC fraction (representing free water), as previously

shown in periventricular white matter lesions in Alzheimer's disease

(Mito et al., 2020). Interestingly, Khan et al. also previously reported

increases not only in TG but also in TC in periventricular WMSA in

stroke patients (Khan et al., 2020). This study suggested that thin

rims of periventricular tissue are characterized by subependymal

gliosis associated with the loss of the ependymal lining, whereas

periventricular caps and irregular patches exhibit myelin pallor that

may be linked to secondary changes from the transependymal move-

ment of fluid into the periventricular region (Chimowitz et al., 1992;

Kertesz et al., 1988; Khan et al., 2020). Since we did not find any

association of TC with age in our current study, it is possible that

increases in TG reflect a very early event of glial proliferation in cog-

nitively unimpaired individuals, which extends to increases in inter-

stitial fluid and myelin or axonal loss reflected by the TC metric in

pathological populations such as stroke.

It is worth noting that vascular risk factors are known to be

important contributors to the development and progression of WMSA

(Fu et al., 2005; Khan et al., 2020; Pantoni & Garcia, 1997). Our study

confirms this affirmation and even shows that WMSA is more influ-

enced by vascular risk factors than any 3-tissue metrics. The 3-tissue

metrics can therefore be of great value for future studies looking at

white matter degeneration that is not primarily related to cardiovascu-

lar diseases and risk factors. Nevertheless, our study highlights that

hypercholesterolemia may be associated with increased gliosis as

reflected by an increase in TG.

In addition to the age-related differences behind WMSA, we

also found an age-related increase in TG in normal-appearing white

matter. Although the correlation between age and WMSA volume is

stronger than age and TG in normal-appearing white matter, similar

correlations were detected and the later gives more detailed infor-

mation about the underlying relationship between age and white

matter microstructure. We speculate that such an increase could

explain an early process of white matter tissue degeneration

(e.g., relatively less axonal matter, with the “freed up space” being

filled partially with other (glial) cells). However, it is also possible

that preceding pathological alterations may be present in normal-

appearing white matter adjacent to WMSA. Indeed, previous studies

have suggested that WMSA may only represent an extreme end of

pathophysiological changes in white matter (O'Sullivan et al., 2001).

Our results suggest that it may be possible to detect very early

microstructural changes in normal-appearing white matter that pre-

cede the development of WMSA on conventional MRI. This should

be tested on longitudinal studies, consistent with previous DTI

reports showing that white matter microstructural changes precede

the development of WMSA visible on FLAIR imaging (Maillard

et al., 2014).

4.2 | The association of cognitive measures with
3-tissue metrics in contrast to the association of
cognitive measures with WMSA volume

The brain can be seen as a network of neurons connected by white mat-

ter bundles that are able to transfer information (Mesulam, 1990). There-

fore, white matter changes play an important role in age-related cognitive

decline. By measuring water self-diffusion in white matter tracts, diffusion

MRI is particularly useful for the investigation of microstructural changes

related to aging. In particular, DTI studies have highlighted that altered

white matter microstructure contributes to a disconnection among dis-

tributed neural systems, with a consistent effect on processing speed and

executive function (Badji et al., 2019; Charlton et al., 2006; Madden

et al., 2009; Tarumi et al., 2015; Vernooij et al., 2009). In addition, the lit-

erature suggests that the relationship between white matter microstruc-

ture and cognition exhibits an anterior–posterior gradient (Madden

et al., 2009). However, as mentioned previously, DTI metrics (e.g., FA) are

not specific and, therefore, the underlying mechanisms behind age-related

differences in cognition are still poorly understood.

White matter signal abnormalities are common among older adults

and have been correlated with lower cognitive performance (DeCarli

et al., 1995; Gunning-Dixon et al., 2009; Madden et al., 2009), which is

in line with our current finding for WMSA volume and PcV RT. The pre-

sent study is to the best of our knowledge the first study to further

investigate age-related differences in cognition using SS3T-CSD-derived

3-tissue signal fractions and map the corresponding distinct 3-tissue

profile in cognitively unimpaired individuals. We found that the age-

related differences in processing speed were associated with a lower Tw

(i.e., more degenerated white matter) as well as a higher TG in normal-

appearing white matter. Similar trends were found with general cogni-

tion (assessed by MMSE). However, the results were not significant

after correction for multiple comparisons. This result is in line with the

hypothesis that astrogliosis, as captured by increases in TG in normal-

appearing white matter, reflects early microstructural changes before

the likely appearance of irreversible WMSA.

It is worth noting that the 3-tissue metrics were able to capture

associations with both cognitive tests (PcV RT and MMSE), while

WMSA volume only captured a significant association with PcV RT. This

is relevant since MMSE is known to not be very sensitive to detect sub-

tle cognitive changes in healthy individuals. Perhaps, the 3-tissue metrics

can capture different pathological changes in the brain with a subclinical

cognitive correlate in individuals who are still within the normal range of

cognitive performance. In addition, the correlation coefficient of the

association between MMSE and TG in normal-appearing white matter

was found higher than the one for WMSA volume, which means that

TG in normal-appearing white matter as a significantly greater correla-

tion with MMSE than WMSA volume. This is very important and pro-

moting the importance of the 3-tissue signal fractions.

4.3 | Probing microstructure with diffusion MRI

An important result of the present study was to confirm the feasibility

of SS3T-CSD in assessing the microstructural heterogeneity of the

10 of 15 BADJI ET AL.



white matter in vivo in cognitively healthy individuals who do not have

prominent WMSA or WM changes, in contrast to previously studied

cohorts of patients with Alzheimer's disease and Stroke (Khan

et al., 2020; Mito et al., 2020). The limited understanding of the contri-

bution of WMSA to aging or neurodegenerative diseases including

Alzheimer's disease could be due to the simplistic way in which these

lesions are usually investigated in vivo (e.g., volume of hyperintense or

hypointense WMSA), despite post-mortem evidence indicating that

they are pathologically complex (Braffman et al., 1988; Fazekas

et al., 1993; Gouw et al., 2008). To the best of our knowledge, this is

only the third study in the literature, showing that diffusion MRI could

function as an in vivo probe to assess the heterogeneity of white mat-

ter microstructure within WMSA and normal-appearing white matter. It

is also the first study using SS3T-CSD in the field of normal aging (cog-

nitively unimpaired individuals). The other two previous studies using

SS3T-CSD were successfully conducted in stroke and Alzheimer's dis-

ease patients using high-resolution diffusion data (Khan et al., 2020;

Mito et al., 2020) On the contrary, our study is the first one showing

the feasibility of SS3T-CSD using standard-resolution “real-world” dif-

fusion MRI (i.e., single-shell, low b-value (b = 1000) and non-isotropic

resolution), for the purpose of analyzing 3-tissue signal fractions.

Previous diffusion MRI studies have attempted to investigate

changes in the white matter microstructure using DTI through metrics

such as fractional anisotropy and/or mean diffusivity (Altamura

et al., 2016; de Groot et al., 2000; Poulakis et al., 2021; Taylor

et al., 2007). However, the diffusion tensor is a limited model that

cannot properly describe the white matter microstructure in voxels

containing more than one fibre population (a.k.a. most white matter

voxels) (Jeurissen et al., 2013; Jones et al., 2013; Mito et al., 2020). In

addition, despite their sensitivity to the white matter microstructure,

DTI metrics lack specificity, which hampers our ability to interpret

them reliably and can in many cases be misleading (Badji &

Westman, 2020). For instance, a reduction in FA may be due to a

reduction in neurite density or an increase in the dispersion of neurite

orientation distribution (Beaulieu, 2009). Furthermore, fiber-specific

damage to axons can even result in increases of FA when a crossing-

fiber geometry is present. In contrast, the SS3T-CSD methodology

used in our current study allowed us to investigate the white matter

microstructure by means of tissue signal fractions (Dhollander &

Connelly, 2016a, 2016b; Dhollander et al., 2017). One of the main

advantages of this method is its ability to fit the white matter signal in

voxels that also contain other tissue types, by incorporating different

tissue compartments in addition to white matter in the signal. This is

done using single-shell data alone, enabling both a shorter acquisition

time and the ability to distinguish between different processes behind

homogeneous appearance on conventional MRI (Mito et al., 2020).

4.4 | Limitations and future directions

This work represents the initial exploration of the age-related

changes in the WM microstructure using SS3T-CSD-derived 3-tissue

signal fractions, which provided valuable information on WM micro-

structural changes underlying age-related differences in processing

speed and global cognition, and independent of vascular risk factors.

However, several limitations should be highlighted. Firstly, we should

mention that diffusion MRI is known to have geometrical distortion,

we thoroughly assessed for the co-registration of T1 and b0, and

then, the registration of our tissue fractions with T1 to ensure reli-

able alignment (see Figure S2). Data can be provided upon request

for verification. We also created an FOD template using population

template in MRtrix by manually selecting a subgroup of 30 partici-

pants. All metrics of interest were registered to this template, and

we rigorously checked that all tissue fractions were aligned with this

template. Afterward, we looked at the relationship between age and

the tissue fractions computed in both T1 space and template space

and confirmed that the results were similar despite different registra-

tion procedure (Figures S3 and S4). Secondly, the accurate quantifi-

cation of 3-tissue metrics using SS3T-CSD in regions with crossing-

fiber tracts or low SNR can be challenging. Specialized diffusion

imaging techniques, like multi-shell or multi-tissue approaches, may

provide more suitable metrics than single-shell diffusion protocols

and should be considered in future studies using our pipeline.

Thirdly, although we interpret our results based on how alike the dif-

fusion signal properties derived from normal white matter, gray mat-

ter, and CSF are, we cannot directly infer an interpretation of the

results in terms of their pathological basis. As such, future work that

correlates the tissue fractions metrics with post-mortem histology is

needed to validate their interpretation within this specific context.

The major advantage of characterizing the white matter microstruc-

ture using this 3-tissue signal representation is that we were able to

identify the heterogeneity within WMSA that could not be identified

with the well-stablished measure of WMSA volume or other com-

mon in vivo imaging techniques. However, distinguishing between

different (types of) white matter lesions would have been interesting

given that some lesions are believed to be more closely associated

with neurodegeneration, whereas others are thought to be less dele-

terious (Fazekas et al., 1987). Future work that characterizes lesions

based on their location (e.g., periventricular vs. deep or based on

their distance from the ventricular surface) may provide additional

insight into age-related changes in the white matter microstructure.

Finally, while this work is a proof of concept for the feasibility of

SS3T-CSD to probe the microstructural heterogeneity of the white

matter in vivo using standard-resolution diffusion MRI, we did not

compare our findings with diffusion MRI acquired at higher b-values

or with resolutions below a 2-mm isotropic voxel. Higher b-values

give better fiber orientation estimations by means of increased signal

contrast, particularly in regions with crossing-fiber populations. In

addition, higher b-values imply an increased contrast-to-noise ratio,

which is beneficial for any CSD method to properly resolve the WM

fiber orientation distributions. Future work using SS3T-CSD on

standard-resolution “real-world” diffusion MRI could consider com-

paring their results with diffusion data acquired with data with higher

b-values.
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5 | CONCLUSION

Using SS3T-CSD, we demonstrate that microstructural heterogeneity

within normal-appearing white matter and WMSA is associated with

increasing age and cognitive decline, in cognitively unimpaired individ-

uals. Furthermore, the 3-tissue signal fractions were more specific to

potential underlying white matter alterations than conventional MRI

measures such as WMSA volume. These findings also support the

view that the WMSA volumes are heterogeneous and may be more

influenced by vascular risk factors than the 3-tissue metrics. Finally,

the 3-tissue metrics were able to capture associations with cognitive

tests (PcV RT and MMSE) and therefore capable of capturing subtle

pathological changes in the brain in individuals who are still within the

normal range of cognitive performance.
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