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Abstract 

The correlations among individual exposures in the exposome, which refers to all exposures an individual encounters throughout 
life, are important for understanding the landscape of how exposures co-occur, and how this impacts health and disease. Exposome- 
wide association studies (ExWAS), which are analogous to genome-wide association studies (GWAS), are increasingly being used to 
elucidate links between the exposome and disease. Despite increased interest in the exposome, tools and publications that charac
terize exposure correlations and their relationships with human disease are limited, and there is a lack of data and results sharing in 
resources like the GWAS catalog. To address these gaps, we developed the PEGS Explorer web application to explore exposure corre
lations in data from the diverse North Carolina-based Personalized Environment and Genes Study (PEGS) that were rigorously calcu
lated to account for differing data types and previously published results from ExWAS. Through globe visualizations, PEGS Explorer 
allows users to explore correlations between exposures found to be associated with complex diseases. The exposome data used for 
analysis includes not only standard environmental exposures such as point source pollution and ozone levels but also exposures 
from diet, medication, lifestyle factors, stress, and occupation. The web application addresses the lack of accessible data and results 
sharing, a major challenge in the field, and enables users to put results in context, generate hypotheses, and, importantly, replicate 
findings in other cohorts. PEGS Explorer will be updated with additional results as they become available, ensuring it is an up-to-date 
resource in exposome science.

Keywords: exposome-wide association study (ExWAS); Personalized Environment and Genes Study (PEGS); occupational exposures; 
web application; data sharing; exposome data.

Introduction
The exposome, which represents all exposures over the course of 

an individual’s life, has substantial effects on human health and 

disease.1,2 As technology improves and the importance and com

plexity of the exposome are recognized, exposome-wide associa

tion studies (ExWAS) are increasingly being conducted to 

understand the associations between exposures and disease. 

ExWAS are analogous to genome-wide association studies 

(GWAS) and generate results that are similarly high dimensional. 

Accordingly, data-sharing efforts can magnify the impact of indi

vidual studies and maximize the return on investments 

in ExWAS.
ExWAS have been conducted for several important clinical 

phenotypes in data from the diverse, North Carolina-based 

Personalized Environment and Genes Study (PEGS).3-6 PEGS cap
tures extensive environmental data and broad information on 
multiple diseases and both internal and external exposures 
through multiple questionnaires, so data from the cohort is well- 
suited for ExWAS. Lee et al. recently conducted ExWAS for 
cardiovascular-related phenotypes in PEGS data, including car
diac arrhythmia, congestive heart failure, coronary artery dis
ease, heart attack, and stroke. Additionally, Akhtari and Lloyd 
et al. conducted ExWAS for type 2 diabetes, and Lloyd et al. (in 
this issue) conducted ExWAS for 11 high-prevalence diseases in 
PEGS: allergic rhinitis, asthma, bone loss, fibroids, high choles
terol, hypertension, iron-deficient anemia, lower GI polyps, 
migraines, ovarian cysts, and type 2 diabetes. While the study 
results and top findings for each disease are promising, 
comprehensive results, results stratified by biological variables 

Received: July 18, 2023. Revised: November 20, 2023. Accepted: January 1, 2024 
Published by Oxford University Press 2024.   
This work is written by (a) US Government employee(s) and is in the public domain in the US. 

Exposome, 2024, 4(1), osae003  

https://doi.org/10.1093/exposome/osae003 
Advance Access Publication Date: 12 February 2024 

Research Article   

https://orcid.org/0000-0002-8447-7871
https://orcid.org/0000-0002-3148-2263
https://orcid.org/0000-0003-1346-2493


such as sex and race/ethnicity, and results of sensitivity analyses 
conducted with epidemiological covariates have not 
been reported.

To address these limitations and support data transparency 
and scientific discovery, we built a public-facing web interface to 
disseminate results and expand the resources available for shar
ing existing exposome results.7,8 The PEGS Explorer web interface 
allows users to examine, visualize, and download ExWAS results 
and exposure correlations. Users can interrogate associations be
tween individual exposures and between exposures and disease 
traits and examine exposure correlations in a trait-specific or 
trait-agnostic manner. Users can also visualize correlations 
through globes9 that reflect the complex mixtures that comprise 
the exposome. PEGS Explorer allows users to view ExWAS results 
described in prior work as well as stratified results to understand 
how exposures and traits are associated with diseases and how 
these associations vary by strata such as age.

While seemingly straightforward, care must be taken when 
calculating correlation values across data types, especially het
erogeneous data such as that collected by PEGS through ques
tionnaires that generate multiple data types (eg, binary, ordinal). 
When analyzing big data, correlation methods are often chosen 
out of convenience, without considering the data types. 
Typically, a conservative non-parametric approach such as 
Spearman’s rank correlation coefficient is used, but this can lead 
to incorrect summarization and subsequent interpretation. For 
example, many of the survey questions have “yes” or “no” 
answers that, without careful consideration, would typically be 
treated as binary. While there are two answer categories, the 
answers represent summaries of continuous distributions. For 
example, answering “yes” or “no” to “Have you ever smoked?” 
represents a range of practical exposures. Answering “yes” does 
not represent necessarily equal exposures but rather an unmeas
ured continuous range of exposures. Accordingly, this type of 
variable should be treated differently than variables that are 
truly binary. To estimate the correlation between two continuous 
latent variables (such as self-reported exposure) from two ob
served ordinal variables, polychoric or tetrachoric correlation 
methods can be used.10-12 In the current study, we rigorously cal
culated correlations using appropriate methods to account for 
the data types evaluated.

Additionally, sample-size differences can dramatically affect 
the magnitude and interpretation of correlations. Small sample 
sizes can lead to unreliable and spurious correlations while large 
sample sizes can increase statistical power but do not guarantee 
the presence of significant correlations. While confidence inter
vals are often used to capture the uncertainty between a sample 
and the overall population, the correlations reported are highly 
significant, with very small confidence intervals. We addressed 
the variability in estimated correlations by developing suitable 
shrinkage factors that substantially reduced coefficients for cor
relations based on fewer observations. This approach improved 
the reliability of correlations and increased comparability across 
variable pairs.13

Methods
Completed ExWAS
Cardiovascular diseases
Results from Lee et al. from an ExWAS conducted in PEGS data 
for five cardiovascular outcomes, namely cardiac arrhythmia, 
congestive heart failure, coronary artery disease, heart attack, 
and stroke, are included in PEGS Explorer. Participants were 

assigned to the case group if they answered ‘YES’ when asked if 
they had been diagnosed with a particular cardiovascular out
come and the control group if they answered ‘NO’.

Highly prevalent diseases
Lloyd et al. (in this issue) examined 11 common, complex human 
diseases, namely allergic rhinitis, asthma, bone loss, fibroids, 
high cholesterol, hypertension, iron-deficient anemia, lower GI 
polyps, migraines, ovarian cysts, and type 2 diabetes.14 For each 
phenotype, we used the Health and Exposure Survey question 
that asked whether a participant has ever been diagnosed by a 
doctor or physician with the condition to define cases (response 
¼ “yes”) and controls (response ¼ “no”). We determined addi
tional inclusion/exclusion criteria for each phenotype from the 
results of a literature review.

Statistical analysis
Exposome-wide association studies (ExWAS)
The previously reported ExWAS examined the association of 
exposures and their combinations with each phenotype in two 
stages. We repeated this analysis for all phenotypes using the 
methods described below, adding additional exposures and 
strata to Lee et al.’s original for cardiovascular diseases. In the 
first stage, after study-specific quality control measures (as de
tailed in Lee et al.), we used logistic regression models to test the 
association of individual exposures with each phenotype, cor
recting for study-specific epidemiological covariates. We applied 
a Benjamini-Hochberg false discovery rate (FDR) of 0.10 to deter
mine the statistical significance of exposure associations for 
each phenotype. In the second stage, we used a deletion/substi
tution/addition (DSA) algorithm to build multi-exposure models 
for each disease. For each phenotype, we used all significant 
exposures (FDR� 0.10) from the first stage as input variables for 
the DSA analysis.15 Additional details of the analyses are found 
in the respective papers.

We conducted additional, updated analyses on the diseases 
analyzed in Lee et al. using the same covariates and stratification 
as the other diseases included in PEGS Explorer to maintain con
sistency within the results currently available.

Exposome correlations
We calculated correlations using data from PEGS survey 
responses comprising continuous, categorical, ordinal, and bi
nary data types. We chose appropriate correlation methods 
based on the data types in a variable pair (see Table 1) and fit a 
best linear unbiased prediction (BLUP) model to shrink the corre
lation coefficients based on the sample size of the variable pair. 
We calculated correlations for all 1,077 exposures in our analysis, 
including correlations between exposures in different surveys. 
Leveraging the diversity of the PEGS cohort, we repeated the 
analyses using the same methods for age, income, race, and 
sex strata.

To address the potential misinterpretation of correlations, we 
took two steps to ensure the accuracy of correlation values and 
avoid misinterpretation due to sample-size differences. First, we 

Table 1. Correlation methods used for variable pairs by data type

Correlation Type Binary Factor Numeric Ordered factor

Binary Tetrachoric
Factor Polychoric Cramer's V
Numeric Pearson Polychoric Spearman
Ordered Factor Polychoric Polychoric Polychoric Polychoric
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calculated correlation values using methods that are appropriate 
for the specific data types (eg, binomial, ordinal) comprising each 
variable pair. Second, we used linear models to develop suitable 
shrinkage factors to adjust correlations for sample size. These 
steps ensure the reliability of correlations and guarantee compa
rability across variable pairs.16 The supplement provides details 
of the methods used to calculate correlations.

Polyserial, polychoric, tetrachoric, and Cramer’s V correlation 
methods are appropriate when one or both observed variables 
are non-continuous. These methods assume that the observed 
binary, ordinal, and categorical survey responses result from 
polychotomous underlying real-world exposures, which are nor
mally distributed, continuous, latent variables. For ordered- 
factor, binary, and numeric variables, we calculated polychoric 
correlations using polychor in R. For two binary variables, we cal
culated tetrachoric correlation using the psych package. For two 
ordered-factor variables, we calculated Cramer’s V using the 
biserial rcompanion package. For two numeric variables, we used 
Spearman’s rank correlation coefficient, and for a binary and a 
numeric variable, we used Pearson’s correlation coefficient. We 
repeated the analyses using the same methods for age, income, 
race, and sex strata with the following categories: age–under 
20 years, 20-40 years, 41-60 years, and over 60 years; income– 
lower (under $20k/year), lower-middle ($20-$49k/year), upper- 
middle ($50-$79k/year), and upper (> $80k/year); race–Asian, 
Black, Hispanic, White, and other; and sex–male and female. We 
calculated correlations for 31 combinations of the five strata for 
each variable pair.

We subsequently calculated correlations for all variable pairs, 
separately adjusting for age, income, race, and sex. We calcu
lated Spearman’s correlation coefficients between the residuals 
of the linear models of each variable pair for both unadjusted 
and adjusted models. We calculated correlations for all 1,077 
exposures in our analysis, including correlations between expo
sures in different surveys, where there were drastic differences 
in sample sizes for individual exposures. To account for varied 
sample sizes, we fit a BLUP model to shrink the correlation coeffi
cients. For the ith chosen correlation type ri based on an observed 
(non-missing) sample size ni, the estimated sample variance is 
vi ¼ ð1 � r2

i Þ
2
=ni, where r and v are the vectors of these values 

across all variable pairs. The quantity s2 ¼

max 0;var rð Þ � mean vð Þ
� �

is the estimated underlying variance of 
true correlations q, and l ¼ mean rð Þ is the estimated true average 
q. For each pairwise correlation, the quantity rshrunk;i ¼

s2= s2þvi

� �� �
ri � lð Þþ l is the best linear predictor for the true 

correlation pi. We shrunk correlation coefficients based on the 
smallest sample size to enable the accurate comparison of 
correlations.

PEGS explorer web application
The ExWAS and correlation results are substantial and, in total
ity, too large for dissemination through publications and ad hoc 
data sharing. The PEGS Explorer web application facilitates shar
ing by hosting the complete results from the ExWAS and correla
tion analyses. The web application is located on the PEGS website 
hosted by the National Institute of Environmental Health 
Sciences. PEGS Explorer allows users to explore and download 
the ExWAS and correlation analysis results. The PEGS explorer 
website can be accessed at https://www.niehs.nih.gov/research/ 
clinical/studies/pegs/index.cfm under the About PEGS tab. A tu
torial for users is provided on the homepage, and Figure 1 dem
onstrates how PEGS Explorer can be used.

Briefly, we used Java, Spring Framework (https://spring.io/), 
Vaadin, MariaDB, Circos.js (https://github.com/nicgirault/ 
circosJS), JavaScript, and lit-element (https://lit.dev/) to create a 
production-grade solution to provide access to the analysis 
results. The Spring Framework provides key software infrastruc
ture to facilitate the development of various aspects of enterprise 
software in a Java environment. Vaadin is a modern web applica
tion platform for Java used in conjunction with Spring 
Framework for user-interface development and client-server 
communication. The PEGS data are stored in MariaDB, an open- 
source database consumed by the application through the Spring 
Data component of the Spring Framework. We used lit-element, 
a web component technology, to create custom JavaScript com
ponents for exploring and visualizing the data. We built a custom 
exposome-globe viewer by wrapping the Circos.js library in a 
lit-element web component and a robust forest plot viewer 
with JavaScript and lit-element in conjunction with the 
Vaadin framework.

Results
PEGS Explorer overview
By enabling users to explore the ExWAS and correlation analysis 
results, PEGS Explorer addresses the lack of data and results 
sharing that remains a challenge in exposomics. Users can simul
taneously view ExWAS results for multiple phenotypes, enabling 
the comparison of statistically significant exposures across phe
notypes in forest plots. Results can be viewed for each survey 
and filtered by topical survey section to group related exposures, 
exposure names, and significance level.

Exposome globes display stratified results with the top 1,000 
correlations shown for a given stratum. The results can be fil
tered to show correlations for particular strata or correlations af
ter adjusting for specific covariates. The exposome globes can 
also be filtered by exposure name, survey section, and correla
tion coefficient value. All the results can be downloaded for fur
ther analysis by the user.

Disease correlation globes show ExWAS-significant results 
(FDR-adjusted P< 0.10) after adjusting for age, income, race, and 
sex as well as correlations between ExWAS-significant exposures 
for each phenotype. The globes can be enlarged to show results 
retained in the DSA model for each survey. Users can download 
the results, including correlations between exposures not among 
the top 1,000 correlations. Multiple phenotype globes can be con
currently displayed to visualize differences in exposure correla
tions across phenotypes.

ExWAS results exploration
Results for traits with differing impacts on various populations 
can be assessed with the ExWAS results framework in PEGS 
Explorer. Figure 2A is an example of the PEGS Explorer interface 
for ExWAS results for generic exposures and phenotypes.  
Figure 2B is an example PEGS Explorer interface for disease- 
specific correlation and DSA results.

Deletion/substitution/addition (DSA) results
The web application provides DSA results for all phenotypes as 
tables that indicate the exposures retained in the particular DSA 
model. Figure 2B includes a table displaying sample DSA results.

Exposome correlations and globes
The exposome globes in PEGS Explorer, originally proposed by 
Patel and Manrai,9 enable users to explore the correlation 
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structure of exposures within and across surveys. The exposome 
globes display the shrinkage-corrected correlations and allow 
users to examine how exposures are associated with demo
graphic characteristics, diseases, and other exposures. Results 
are presented for the entire cohort regardless of phenotype, with 
options to view results stratified by sex, race, income, and age. 
Users can also view correlation globes for individual phenotypes 
that show only exposures that are significantly associated with 
the disease at an FDR<0.01. The variable names shown have 
been simplified so they are easily understood by users, with the 
full text of the questions on which the display names are based 
available online (https://www.niehs.nih.gov/research/atniehs/ 
labs/crb/studies/pegs/about/data/index.cfm). In addition, hover
ing the mouse over an exposure pair of interest brings up addi
tional information in a pop-up text box.

Figure 3A is an overall exposome globe for all surveys.  
Figure 3B shows how shrinkage affects the correlation coeffi
cients for all pair-wise correlations across all three surveys Many 
coefficients drastically changed after fitting a BLUP model to ac
count for sample size. Figure 3C shows the change in data- 
specific correlation coefficients and the structure of hierarchal 

clustering applied to the correlations. For example, using 
Spearman’s correlation coefficient, paternal and maternal edu
cation are not highly correlated, which is contrary to the 
expected results. When polychoric correlation is applied, the fac
tors are highly correlated as expected. Additionally, for expo
sures already found to be correlated, the magnitude of the 
correlation coefficient changed when we applied an appropriate 
correlation method. When we applied hierarchical clustering to 
the correlations, the clustering structure changed dramatically 
with the use of data-specific methods.

Discussion
PEGS Explorer is an easy-to-use interactive website that allows 
users to explore ExWAS and correlation results from multiple 
studies. The straightforward globe visualizations in PEGS 
Explorer can assist both scientists and the general public in un
derstanding correlations among exposures and allow for the ex
amination of which exposures are associated with multiple 
diseases. Stratifying correlation results by race, sex, and other 
demographic categories highlights how some groups experience 

Figure 1. PEGS Explorer functionality walkthrough. PEGS Explorer displays downloadable results from both ExWAS and correlation analyses. The tool 
includes built-in tutorials and query-generating functionality to help users quickly and easily retrieve detailed results.

Figure 2. (A) Example PEGS Explorer interface for ExWAS results for generic exposures and phenotypes. The results are presented in a forest plot, 
where black represents both sexes, orange represents females only, and blue represents males only. Solid boxes are statistically significant at a false 
discovery rate (FDR) of 10%. Users can choose the number of phenotypes that are displayed. (B) Example PEGS Explorer interface for disease-specific 
correlation and DSA results. The exposome globe displays only exposures that are statistically significant at an FDR of 10%. The table shows the DSA 
analysis results for each survey.
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and are affected differently by exposures. Stratified results also 
allow users to explore biological hypotheses based on biological 
factors such as sex, enabling deeper investigations into questions 
surrounding issues such as sex differences in environmental risk 
factors for a particular disease. Providing results and the tools to 
interpret them will expand understanding of the exposome and 
its effects on human health and demonstrate what data are 
available and how they can be analyzed.

Disseminating the ExWAS results through PEGS Explorer will 
advance the field of exposome science in several meaningful 
ways. First, sharing ExWAS results through the publicly accessi
ble web application will allow domain experts with knowledge of 
diseases and exposures to access and interpret the results and 
place them in the context of other work in their fields. Second, 
the findings can be used for hypothesis generation and further 
analyses, functional validation, and replication and could lead to 

the discovery of novel exposures involved in disease pathways. 
Third, transparently sharing ExWAS results and exposome corre
lations in a single online resource will facilitate the coordination 
and planning of future analyses and collaborations. Fourth, shar
ing the code used to build the PEGS Explorer visualizations and 
the underlying methods will enable researchers to recreate the 
results and incorporate them into their work. This commitment 
to data sharing and transparency is essential to advance the field 
of exposomics and is crucial to the field reaping the full benefits 
of substantial investments in ExWAS studies.

It is possible to apply principles used in genomics to charac
terize correlations in exposomics as well, such as HapMap17 and 
similar methods. HapMap characterizes human genetic variation 
and the different frequencies and correlations across 
race/ethnicity and ancestry similarity groups.18,19 Here, we apply 
these principles to present correlation results for exposures.20

Figure 3. (A) Overall exposome globe for all surveys. The colors around the edge of the globe indicate the survey from which the sections come. The 
lines represent pairwise positive (blue) and negative (orange) correlations. Interactive globes can be viewed on the PEGS Explorer website. (B) We 
calculated correlations using appropriate methods for the data types in each variable pair and then shrunk the correlations to control for sample size 
(small ¼ green; large ¼ blue) by fitting a best linear unbiased prediction (BLUP) model. Original correlations (x-axis) and shrunken correlations (y-axis) 
are plotted for roughly 3.6M pairwise correlations. (C) Differences correlations calculated using Spearman’s rank correlation coefficient (left) and 
appropriate methods for the specific variable types (right) are shown for exemplar exposures in the External Exposome Survey.
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Sharing references from multiple studies may be especially help
ful when considering additional aspects of the exposome such as 
biological and chemical measurements of pollutants, data from 
wearable technology, and individual biological samples. While 
PEGS Explorer currently displays results from analyses of survey 
data, the underlying methods for the ExWAS, correlations, and 
exposome globe visualizations could be applied to these addi
tional types of exposure data. For example, ongoing efforts in
clude conducting ExWAS in PEGS using recently linked geospatial 
estimates of exposure, and PEGS Explorer can be expanded to dis
seminate those results.

By providing tools to analyze exposome data from the diverse 
PEGS cohort and disseminating the ExWAS results through an ac
cessible platform, PEGS Explorer supports a collaborative ap
proach to in-depth analysis of the exposome and examination of 
the associations of exposures with multiple phenotypes. It allows 
researchers to evaluate associations and correlation statistics 
without the upfront investment needed to gain access to, down
load, and clean data and run analyses themselves.
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