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Introduction

People with type 1 diabetes (T1D) face a daily balance to 
keep their glucose levels within safe levels (ie, “in-range”). 
Severe complications are prevalent and arise from glycemic 
variability, low blood sugars (hypoglycemia), and high blood 
sugars (hyperglycemia).1 For hypoglycemic incidents alone, 
the requirement for emergency assistance may be as high as 
7.1% per year2 and could account for 6% to 10% of deaths 
for those with T1D.3,4 Long-term impacts of hypoglycemia 
include impacts on cognition and potential links with 

dementia.5 In addition, frequent hyperglycemia can lead to 
short-term risk such as diabetic ketoacidosis and long-term 
complications such as retinopathy, neuropathy, nephropathy, 
and cardiovascular disease.6-8 Effective glucose management 
for adolescents and young adults living with T1D is chal-
lenging,9,10 due to the multiple transitions taking place in 
their lives, including puberty, relationships, the move to 
more independent living, and diabetes self-care, and also the 
transfer from pediatric to adult clinical care teams. Parental 
fear of severe complications is prevalent throughout these 
transitional years.11-13
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Abstract
Background: The occurrences of acute complications arising from hypoglycemia and hyperglycemia peak as young adults 
with type 1 diabetes (T1D) take control of their own care. Continuous glucose monitoring (CGM) devices provide real-time 
glucose readings enabling users to manage their control proactively. Machine learning algorithms can use CGM data to make 
ahead-of-time risk predictions and provide insight into an individual’s longer term control.

Methods: We introduce explainable machine learning to make predictions of hypoglycemia (<70 mg/dL) and hyperglycemia 
(>270 mg/dL) up to 60 minutes ahead of time. We train our models using CGM data from 153 people living with T1D in 
the CITY (CGM Intervention in Teens and Young Adults With Type 1 Diabetes)survey totaling more than 28 000 days of 
usage, which we summarize into (short-term, medium-term, and long-term) glucose control features along with demographic 
information. We use machine learning explanations (SHAP [SHapley Additive exPlanations]) to identify which features have 
been most important in predicting risk per user.

Results: Machine learning models (XGBoost) show excellent performance at predicting hypoglycemia (area under the 
receiver operating curve [AUROC]: 0.998, average precision: 0.953) and hyperglycemia (AUROC: 0.989, average precision: 
0.931) in comparison with a baseline heuristic and logistic regression model.

Conclusions: Maximizing model performance for glucose risk prediction and management is crucial to reduce the burden 
of alarm fatigue on CGM users. Machine learning enables more precise and timely predictions in comparison with baseline 
models. SHAP helps identify what about a CGM user’s glucose control has led to predictions of risk which can be used to 
reduce their long-term risk of complications.
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Continuous glucose monitoring (CGM) enables regular 
automated readings of estimated glucose levels found in 
interstitial fluid, providing immediate insight into glucose 
control. Continuous glucose monitoring has been demon-
strated to reduce the risk of both hypoglycemia and hyper-
glycemia, along with reducing daily glycemic variability for 
users with T1D.14-16 In addition to mitigating short-term risk 
of severe hypoglycemia and hyperglycemia, compliance of 
wearing CGM devices has been shown to improve glycosyl-
ated hemoglobin (HbA1c) levels, which, if sustained, reduce 
long-term complication risks.17,18 The magnitude of reduc-
tion in HbA1c from CGM usage is dependent on the user’s 
original HbA1c value, ie, those at highest risk of complica-
tions from poorer control are likely to benefit the most.16 
Specific to young adults, Laffel et al19 demonstrate a clear 
improvement in HbA1c for those utilizing CGM.

Real-time CGM devices provide alerts for users when 
their interstitial fluid glucose falls above or below a desired 
range. Type 1 diabetes management can be aided further by 
having ahead-of-time predictions so individuals can identify 
risk early and better plan self-care activities, such as insulin 
dosages. Simple threshold-based algorithms have been able 
to successfully predict hypoglycemia 30 minutes in advance 
(eg, Medtronic-640 “SmartGuard”20). More complex statisti-
cal models and machine learning algorithms enable more 
accurate prediction and are able to extend this prediction 
horizon.21-28 Dave et al23 emphasize the importance of fea-
ture extraction when generating predictions of hypoglycemia 
in CGM data. Generating features that are both predictive in 
models and insightful for understanding a user’s glucose 
control is a difficult balance.

In this work, we make two novel contributions: algo-
rithms tailored to young adults and explanations. First, we 
introduce machine learning models to predict hypoglycemia 
(<70 mg/dL) and hyperglycemia (>270 mg/dL)29 with a 
trustworthy prediction horizon up to 60 minutes (44 minutes 
on average) for young adult users of CGM. While CGM risk 
prediction is a well-explored topic, more must be done to 
understand what led to increased risk for an individual so 
they can be proactive. We introduce using explainable 
machine learning, to not only predict risk, but to automati-
cally identify the most important factors in an individual’s 
CGM data that led to increased risk. Explanations have no 

detrimental impact on model performance. We provide a 
framework in which machine learning can be used to:

1. Provide real-time predictions of hypoglycemia and 
hyperglycemia (Results—Model Evaluation) using 
intuitive features (Methods—Features) generated 
from CGM data (Methods—Data).

2. Automatically identify the most important features that 
have led to predictions of risk for each CGM user over 
a given time period (Results—Model Explanation).

3. Provide personalized control recommendations for 
each CGM user to help with their T1D management 
(Results—User Interface).

Methods

Data

We make use of publicly available data from “A Randomized 
Clinical Trial to Assess the Efficacy and Safety of Continuous 
Glucose Monitoring in Young Adults 14-<25 with Type 1 
Diabetes” (CITY).19 By design, the study recruited adoles-
cents and young adults with T1D (duration >12 months) 
exhibiting poorer glycemic control (HbA1c 7.5-<11.0%), 
most likely to benefit from CGM usage.16 The study was 
conducted at 14 endocrinology practices in the United States, 
where participants were randomly assigned to either CGM 
(Dexcom G5) or regular finger-prick glucose meter monitor-
ing. The randomized trial aimed to determine the effect of 
CGM on glycemic control primarily measured through 
HbA1c. The CGM users were compared with the control 
group using HbA1c levels after six months of usage. After 
six months, all study participants were provided with CGM 
devices and HbA1c tracked for a further six months. The 
data were collected from January 2018 to November 2019, 
before being made publicly available in March 2020.

We make use of CGM data from 153 people living with 
T1D in the CITY study, where users were provided CGM 
devices for 6 to 12 months, totaling more than 28 000 days of 
usage data. In Figure 1, we show the breakdown of age (both at 
enrollment and at original diagnosis) for the 153 individuals. In 
addition to CGM data, basic screening information and the 
most recently recorded HbA1c test result were used to generate 
predictions. All participants had scheduled in-clinic visits 
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throughout the study with HbA1c being routinely collected 
every 13 weeks after the baseline taken at screening.

Features

To utilize CGM data for hypoglycemic and hyperglycemic 
predictions, we generate a total of 30 features which sum-
marize a young adult’s CGM data on different timescales. 
Glucose control is summarized on short-term (one hour), 
medium-term (one day), and long-term (one week) baselines 
prior to the current CGM reading. This is combined with six 
features that characterize basic information. A complete 
description of all generated features is given in Table 1. 
Features are generated at the point of each unique CGM 
reading. Features are only used in modeling if the CGM 
device has been used for ≥80% for the prior week.

Targets

To generate targets for our model predictions, we generate two 
binary variables referring to hypoglycemic (<70 mg/dL) and 
hyperglycemic (>270 mg/dL) events. A feature set is gener-
ated for each unique CGM reading, at which point we check if 
the CGM user’s glucose level falls within these regions (for 
readings ≥1) in the following 60 minutes (ie, positive predic-
tion). Our models therefore make predictions of hypoglycemia 
or hyperglycemia up to a maximum of 60 minutes ahead-of-
time. Our average prediction horizon is 44 minutes. Glucose 
readings already within the hypoglycemic or hyperglycemic 
regions are removed from the modeling data set to avoid artifi-
cially boosting model performance metrics. Figure 2 shows a 
schematic of interstitial fluid glucose levels through a given 
day, regions of hypoglycemia and hyperglycemia, and time-
stamps of model predictions prior (ie, target).

Modeling

To determine the added value of machine learning, we evalu-
ate a baseline heuristic model, a logistic regression model, 

and a gradient boosted tree–based model for both hypoglyce-
mia and hyperglycemia predictions. Our baseline heuristic 
model is equivalent to a glucose threshold alert (ie, predict-
ing hypoglycemia and hyperglycemia within the next 60 
minutes if interstitial fluid glucose levels fall below 110 mg/
dL or go above 240 mg/dL, respectively).

Our logistic regression model is aimed to emulate basic 
CGM alerts which extrapolate linear trends along with 
thresholds to make hypoglycemia or hyperglycemia pre-
dictions. Logistic regression, despite its name, is a linear 
model which aims to classify binary outcomes through 
probabilities estimated by the logistic function. We imple-
ment our logistic regression model using Scikit-learn, opti-
mized for ≤300 iterations using a L2 penalty with class 
weights inversely proportional to class frequencies.30 
Finally, we make use of the XGBoost framework to imple-
ment a tree-based machine learning algorithm.31 XGBoost 
makes use of an ensemble of weak learners (ie, small trees) 
that are trained stagewise through gradient boosting. This 
reduces overfitting while preserving or lowering variance 
in the prediction error,32 which frequently leads to gradient 
boosted trees outperforming other tree-based methods. In 
addition, XGBoost naturally deals with continuous, binary/
discrete, and missing data consistently, all of which are 
represented in our data set. Model hyperparameters for our 
XGBoost models were selected using fivefold cross-vali-
dation of the training set only using a sampler (Tree-
structured Parzen Estimator) implemented with the Optuna 
library.33 In Supplemental Table 1, we include the com-
plete set of tuned hyperparameters along with the corre-
sponding search ranges.

We separate our CGM data into a hold-out test set (25%) 
and a training set (75%). An individual’s complete set of 
CGM data is allocated to only of the training or test set so 
that there is no data leakage or overfitting when evaluating 
model performance. Regardless, we note that randomly sep-
arating data (so that an individual’s CGM data can be split 
between both train and test sets) only marginally improves 
model performance.

Figure 1. Distributions of age at enrollment (left) and age at original T1D diagnosis (right) for the 153 people with CGM data used 
in this study. Both distributions are stacked to show the breakdown of gender (left) and prior CGM usage (right) for the individuals. 
Abbreviations: CGM, continuous glucose monitoring; T1D, type 1 diabetes.
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Our supervised models (ie, logistic regression and 
XGBoost) learn from the training set, and all models are 
evaluated using the same test sample. Since we only filter 
data based on an individual’s average usage over the prior 
week (≥80% to be included in the feature set), there are 
rare occurrences where we have insufficient data to com-
pute trends (eg, mean, standard deviation [SD], consecutive 
changes) and have missing feature values for these entries. 
This most commonly occurs when an individual replaces 
their sensor, meaning that there is a significant gap in the 
prior hour’s readings. To compare model performance 
fairly, we remove data with missing values from the test 
samples. We note, however, including entries with missing 
values for the XGBoost models (which can natively deal 
with missing values, unlike the logistic regression models) 
does not result in a significant performance decrease. 
Overall, model performance was evaluated using the area 
under the receiver operating curve (AUROC) and average 
precision, along with fixed measures of specificity and 
sensitivity.

Figure 2. Schematic of interstitial fluid glucose levels (black 
line) for a young adult with T1D tracked by CGM. The gray-
shaded region shows the desired range to keep glucose levels 
between 70 mg/dL < G < 270 mg/dL. Our algorithm aims to 
predict (ahead-of-time) when a person with T1D will go below 
(hypoglycemia) and above (hyperglycemia) this range. Regions 
of low and high glucose are shaded blue and red, respectively, 
with the corresponding first prediction event horizon (ie, when 
our model first made a positive prediction of hypo/hyper) shown 
by the dashed line. Abbreviations: T1D, type 1 diabetes; CGM, 
continuous glucose monitoring.

Table 1. Summary of Input Features Used by the Models to Make Predictions. A Subset of Features Are Computed for Various Time 
Ranges (ie, One Hour, One Day, One Week) and Considered as Independent Features.

Feature Description Time period (s)

Current reading Most recent CGM glucose reading N/A
Time of day Hour (0-24) at which reading was reported N/A
Day of week Day on which reading was reported N/A
Gender N/A
Diagnosis age Age at initial diagnosis of T1D N/A
Prior use of CGM Whether person with T1D had previous 

experience of using CGM before the study
N/A

Age Age at study commencement N/A
Years since original diagnosis Year since initial diagnosis of T1D N/A
Most recent HbA1c Most recent recorded test result of HbA1c N/A
Device usage fraction Fraction of time (as specified by the time 

period) of which the CGM device was used
(One hour, one day, one week)

Fraction of time high Fraction of time (as specified by the time 
period) of which CGM readings were above 
270 mg/dL

(One hour, one day, one week)

Fraction of time low Fraction of time (as specified by the time 
period) of which CGM readings were 
below 70 mg/dL

(One hour, one day, one week)

Average Mean of glucose readings over specified time 
period

(One hour, one day, one week)

Standard deviation Standard deviation of glucose readings over 
specified time period

(One hour, one day, one week)

Largest increase between readings Largest increase in glucose level between 
consecutive readings within specified time period

(One hour, one day, one week)

Largest decrease between readings Largest decrease in glucose level between 
consecutive readings within specified time period

(One hour, one day, one week)

Maximum number of consecutive increases Most consecutive readings where glucose 
levels increase over defined time period

(One hour, one day, one week)

Maximum number of consecutive decreases Most consecutive readings where glucose 
levels decrease over defined time period

(One hour, one day, one week)

Abbreviations: CGM, continuous glucose monitoring; T1D, type 1 diabetes; HbA1c, glycosylated hemoglobin or hemoglobin A1c.
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Model Explanability

Historically, machine learning algorithms are considered 
“black boxes” with little understanding of how predictions 
have been made. However, recent advances in explanability 
have led to individual predictions of tree-based algorithms 
being readily explainable.34

To attribute the relative importance of each feature in pre-
dicting both hypoglycemia and hyperglycemia risks for our 
XGBoost model, we make use of the TreeExplainer algo-
rithm as implemented in the SHAP (SHapley Additive exPla-
nations) library.34-36 TreeExplainer efficiently calculates 
Shapley (SHAP) values,37 which aim to attribute payout (ie, 
the prize) between coalitional players of a game. In the con-
text of machine learning, SHAP values amount to the mar-
ginal contribution (ie, change to the model prediction) of a 
feature among all possible coalitions (ie, combinations of 
features). Practically, this means that for every individual 
prediction (negative or positive), the relative importance of 
every feature can be evaluated.

There is a rich history of global interpretation for machine 
learning models which summarize the average overall impor-
tance of features on predictions as a whole.38 In a medical 
setting, however, tailored explanations for individuals are 
paramount, maximizing the ability to understand their own 
data and ensure every person is evaluated fairly.39 Shapley 
values are locally accurate, meaning that they can explain 
which features were relatively most important for an indi-
vidual prediction (ie, a hypoglycemic or hyperglycemic 
event). In addition, Shapley values are consistent (the values 
add up to the actual prediction of the model) meaning they 
can also be used to check the global importance of a feature. 
Feature importance can therefore be checked periodically by 
averaging over a fixed time period. Practically, this means 
that for a CGM user over a given time period, the most 
important features leading to a prediction of hypoglycemia 
or hyperglycemia can be automatically evaluated. This gives 
immediate insight about an individual’s glucose control, and 
intuition about what may be increasing their risk. Presenting 
reliable predictions with intuitive explanations would enable 
users to be proactive in their control. Insightful control rec-
ommendations could empower users to feel closer to being 
on “autopilot” (ie, minimizing the cognitive load burden).

We choose to implement SHAP over other local explainer 
algorithms (eg, Lime)40 since SHAP offers mathematical 
guarantees of trustworthiness (local accuracy, missingness, 
and consistency) which adhere to strict medical governance 
guidelines,34 and offers consistency between local explana-
tions meaning global importance can be computed as well.

Results

Model Evaluation

In Figure 3, we compare the performance of our baseline 
heuristic model against the machine learning classifiers (ie, 

logistic regression and XGBoost). Performance is evaluated 
by the AUROC and average precision characteristics by 
comparing the model predictions of hypoglycemia (left) or 
hyperglycemia (right) up to 60 minutes ahead of time to the 
actual future readings. For hypoglycemia, the baseline model 
achieved an AUROC of 0.811, the logistic regression 0.930 
(95% confidence interval [CI]: 0.929-0.931), and the 
XGBoost 0.998 (95% CI: 0.998-0.998) evaluated on our 
hold-out test set. In terms of average precision, the baseline 
model achieved 0.121, the logistic regression 0.244 (95% CI: 
0.240-0.247), and XGBoost 0.953 (95% CI: 0.951-0.954). 
All CIs are estimated from bootstrapping (sampling with 
replacement) for 500 resamples per model.

We find a clear advantage in using XGBoost; however, 
the logistic regression model also performs reasonably. We 
note that despite its crudeness, our baseline heuristic model 
is still predictive, demonstrating the use of threshold-based 
alerts on CGM devices in forward planning. Regardless, a 
more powerful predictive model means a lower false-alarm 
rate can be achieved, while maintaining the safety of the pre-
dictions. Reducing alarm fatigue for CGM users is an impor-
tant goal, and more skillful models help enable this. In Table 
2, measures of model skill are given, including AUROC, 
average precision, sensitivity, and specificity. Sensitivity and 
specificity are evaluated from dichotomizing model predic-
tions at probability P = .5. Again, we find a clear perfor-
mance increase for our XGBoost model, in keeping with the 
high performance of decision tree–based methods41 and 
commercial hybrid loop systems.42

High performance is also seen for hyperglycemia, with 
the baseline model achieving an AUROC of 0.734, the logis-
tic regression 0.862 (95% CI: 0.861-0.862), and XGBoost 
0.989 (95% CI: 0.989-0.990). Average precision, sensitivity, 
and specificity demonstrate similar trends with XGBoost 
being the most skillful. For each modeling approach, we note 
that the model skill is lower for hyperglycemia prediction in 
comparison with hypoglycemia, suggesting prediction of 
lower glucose events is better suited to our modeling choices.

Model Explanation
In addition to increased predictive power, the added value of 
machine learning models can be demonstrated through 
explanations. Using SHAP we can evaluate the relative 
importance of features for a given positive prediction of 
hypoglycemia or hyperglycemia. SHAP is applied post 
model construction and therefore has no negative implica-
tions for performance. Figure 4 shows the overall relative 
importance of every input feature for predicting hypoglyce-
mic (left panel) and hyperglycemic (right panel) events. The 
relative importance of a feature is quantified by the absolute 
average SHAP value. Since SHAP values are consistent 
across predictions, they can be averaged for individual CGM 
users, across any time range, to provide immediate insight.

Here, we provide the average relative importance for all 
CGM users in the study, but this diagram is trivially made for 
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individual users. Unsurprisingly, the user’s current glucose 
reading is most important for the model to make predictions 
of both hypoglycemia and hyperglycemia. Time of day is 
also important, providing insight into the sleep and eating, 

physical activity and stress level, and habits of the CGM user 
and their relationship with glycemic control. Sudden drops 
(or increases) in glucose are important for predicting hypo-
glycemia (hyperglycemia) as shown by the short-term largest 

Figure 3. ROC (left) and average precision (right) for our models of hypoglycemia (blue; top row) and hyperglycemia (red; bottom 
row) predictions. In each panel, a XGBoost model (solid line) and a logistic regression model (dashed line) are given, and for ROC 
only are compared with a baseline heuristic (dotted line). A zero skill model is represented by the solid gray line also for the ROC 
panels. The total area under each curve (ie, AUROC score or average precision) is given in the brackets. Abbreviations: ROC, receiver 
operating curve; AUROC, area under the receiver operating curve.

Table 2. Summary of Model Performance Metrics for Both Hypoglycemia and Hyperglycemia Predictions. A Baseline Heuristic, Logistic 
Regression, and an XGBoost Model Are Evaluated for Each Target. Summary Statistics (AUROC and Average Precision) Are Shown 
With 95% CI in Square Brackets. Sensitivity and Specificity Are Evaluated From Dichotomizing Model Predictions at Probability P = .5.

Model AUROC Average precision
Specificity
(Pthres = .5)

Sensitivity
(Pthres = .5)

Hypoglycemia
Heuristic 0.811 0.121 .906 .716
Logistic regression 0.930 [0.929-0.931] 0.244 [0.240-0.247] .827 .905
XGBoost 0.998 [0.998-0.998] 0.953 [0.951-0.954] .994 .945
Hyperglycemia
Heuristic 0.733 0.258 .872 .595
Logistic regression 0.862 [0.861-0.862] 0.453 [0.450-0.456] .752 .817
XGBoost 0.989 [0.989-0.990] 0.931 [0.930-0.932] .931 .970

Abbreviations: AUROC, area under the receiver operating curve; CI, confidence interval.
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decrease (increase) between readings. Interestingly, the long-
term fraction of time low is found to be reasonably predictive 
of hypoglycemic events, providing immediate insight into 
certain user’s control habits.

User Interface
Despite CGM providing a wealth of information to both 
users and clinicians, the sheer volume of data makes it hard 
to quickly draw conclusions about glycemic control. Quick 

Figure 4. Overall importance ranking of input features for predicting hypo (left panel) and hyper (right panel) risk. Average (absolute) 
SHAP value for predictive features over all study participants. A higher value corresponds to a more important feature in decision-
making. Features are grouped into categories (device information, demographics, short term [one hour], medium term [one day], long 
term [one week]). The fractional contribution (ie, sum over all features in that category) of a given category is given in the square 
brackets. Abbreviations: CGM, continuous glucose monitoring; SHAP, SHapley Additive exPlanations; HbA1c, glycosylated hemoglobin 
or hemoglobin A1c.
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summary metrics such as the fraction of time-in-range (eg, 
70 mg/dL < G < 270 mg/dL) are the baseline for assessing 
control. By considering the most predictive model features 
that led to predictions of hypoglycemic or hyperglycemic 
events, we can draw further personalized insights into an 
individual’s glycemic control. In Figure 5, we present a pro-
totype dashboard which summarizes a randomly selected 
user’s CGM data over a given month, along with potential 
insights derived from explainable machine learning. In 
addition to metrics such as time above or below range, we 
provide the user’s average glucose through the day, along 
with the most likely times for our model to predict hypogly-
cemia (red, above green line) or hyperglycemia (blue, below 
green line) for the individual. We select the top features for 
predicting both hypoglycemia and hyperglycemia for the 
user and summarize this information as control recommen-
dations in the gray box. This provides a quick glance into 
the specifics of the user’s glycemic control, enabling the 
user to be better informed to avoid potential events in the 
future. One Artificial Intelligence (AI) insight (gray box) for 
this user is that they tend to go high at specific times of day. 
Looking at the fraction of time spent high on the dashboard 
through the day (red box and histogram), this peaks around 
21:00 pm, hence the user should consider insulin dosages 
around their evening meal.

Discussion

The key contributions of our work are as follows:

1. Machine learning models with state-of-the-art perfor-
mance for predicting hypoglycemia (AUROC: 0.998) 
and hyperglycemia (AUROC: 0.989) up to 60 minutes 
in advance (44 minutes average event horizon). This 
performance is high relative to simple algorithms43-45 
and comparable machine learning approaches.23,46

2. With careful feature engineering, we have demon-
strated how machine learning explanations (SHAP) 
can be utilized to understand specifics about an indi-
vidual’s control. SHAP also adds transparency to 
model predictions, aiding assurance that all individu-
als are evaluated fairly.

3. Provided a prototype dashboard to help young adults 
with T1D and clinicians make use of CGM data and 
the insight from machine learning explanations.

Technological advances represent a significant opportunity 
to help reduce self-care burden on an individual with T1D, 
and reduce the risk of health complications arising from poor 
glycemic control. In particular, for young adults, automated 
feedback from CGM may be an important tool for reducing 
risk, at times of transition (from pediatric to adult care units) 
and where glycemic control can be at a minimum.

Figure 5. Prototype dashboard which summarizes the prior month of user’s CGM data and provides insights from explainable machine 
learning. (Upper left) Hourly average of glucose levels (solid green line) through the month. Upper and lower quartiles for each hour 
is shown by the green-shaded region. The hourly average for the fraction of time spent with high glucose (red, above axis) and low 
glucose (blue, below axis) is shown. (Upper right) Summary information about user’s CGM usage and glycemic control. (Bottom) Panel 
summarizing the AI control recommendations for the user over the past month. This was found by considering the most important 
features in the user’s CGM data for predicting hypoglycemia or hyperglycemia. Abbreviation: CGM, continuous glucose monitoring; AI, 
Artificial Intelligence.
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Ahead-of-time machine learning predictions are of per-
sonal and clinical value as they give the CGM user more time 
to adjust self-care and reduce risk. Our tree-based model 
demonstrated a significant performance increase relative to 
threshold-based and linear models. This performance 
increase is vital for reducing alert burden on the user, since 
more certain predictions require less total alerts while main-
taining safety of the device.

Despite the wealth of information provided by CGM 
devices, part of the problem is deriving quick insight that is 
useful for people with T1D, their family carers, and clini-
cians.47,48 Machine learning explanations can help summa-
rize what specifics in an individual’s glycemic control led to 
increased risk of either hypoglycemia or hyperglycemia. 
Used in combination with directly derived metrics (eg, time-
in-range), their utility can be in providing quick-glance–spe-
cific recommendations about how to reduce risk.

Limitations

Limitations of this work include the reliance on the user to com-
ply in using the CGM device. For our results, we only generate 
predictions when the user has used the device for 80% of the 
prior week. While predictions can still be generated with a lower 
usage compliance, this will inevitably decrease prediction per-
formance, and care must be taken about when machine learning 
enhancement can be implemented safely. Furthermore, while 
current CGM devices are generally accurate, they are not infal-
lible and considerations must be made for the safety of systems 
reliant on their accuracy.49

Another limitation of this study is the lack of insulin and 
carbohydrate data. Including this information could enable 
specific recommendations about insulin and carbohydrate 
dosages through the day. Including information tracked by 
smart watches, such as physical activity and stress levels, 
would not only improve predictions, but provide far more 
powerful intuitive recommendations. Having contextual 
information (eg, high stress levels or even self-reported event 
markers such as drinking, sickness, or exercise) would be 
critical for empathetic recommendations and reducing bur-
den for the user.

Another limitation is the simplicity of our selected fea-
tures to represent glycemic variability. Including additional 
metrics such as average daily risk range,50 %coefficient of 
variation,51 level 2 hypoglycemia (% of readings or time 
<54 mg/dL), level 2 hyperglycemia (% of readings or time 
>250 mg/dL),52 and low/high blood glucose index53,54 along 
with our baseline of standard deviation is likely to improve 
model performance. For example, reevaluating our XGBoost 
hypoglycemia model with the inclusion of %coefficient of 
variation (SD expressed as a percentage of the mean) and % 
of readings <54 mg/dL (over one hour, one day, and one 
week) we find an increase in average precision to 0.959 (up 
from 0.953) with AUROC remaining the same. However, 
including multiple measures of glycemic variability would 
confound our ability to clearly evaluate relative importance 

between feature types, and hence limit our ability to provide 
basic explanations. To maximize the utility of further predic-
tive models, it will be important to include more complex 
features while preserving the ability to feedback specifics 
about an individual’s glycemic control.

In this work, we chose to train and test hypoglycemia and 
hyperglycemia models using data from all CGM users in our 
cohort. In practice, it may be more suitable to train individual 
models per CGM user, which may be better tailored to the 
individual. However, it would be more complex to make direct 
comparisons between relative feature importance for different 
CGM users, and hence left outside the scope of this article.

Conclusion

We introduced a framework for high-performance prediction 
and explanation of hypoglycemia and hyperglycemia for 
young adults. Careful feature selection enables both accurate 
short-term risk prediction and intuitive feedback about an 
individual’s glucose control. The key benefit of adopting a 
machine learning framework lies in the ability to provide 
more accurate ahead-of-time predictions (in comparison 
with more simplistic-derived alerts), potentially reducing 
burden on the young adult potentially going through transi-
tion with their care practices. Combining these models with 
explanations enables both users and clinicians to gain imme-
diate insight into an individual’s glycemic control, automati-
cally highlighting what specific trends lead to increased risk.
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