Skip to main content
. 2024 Feb 13;26:e47739. doi: 10.2196/47739

Table 2.

Activities of daily living classifier performance. Italic values represent the optimal performance in each data set.

Model AUROCa (95% CI) AUPRCb (95% CI)
Filtered cohort
Training set
Deep learning 0.952 (0.945-0.960) 0.864 (0.844-0.881)
Bio+Clinical BERTc 0.870 (0.842-0.897) 0.826 (0.789-0.862)
Logistic regression 0.955 (0.949-0.962) 0.855 (0.837-0.872)
LASSOd 0.958 (0.952-0.965) 0.865 (0.846-0.883)
Random forest 0.953 (0.946-0.960) 0.857 (0.838-0.875)
SVMe 0.954 (0.946-0.960) 0.854 (0.835-0.872)
XGBoost 0.955 (0.948-0.962) 0.848 (0.826-0.869)
Validation set
Deep learning 0.961 (0.951-0.971) 0.880 (0.852-0.906)
Bio+Clinical BERT 0.873 (0.852-0.891) 0.847 (0.823-0.869)
Logistic regression 0.963 (0.954-0.971) 0.871 (0.841-0.896)
LASSO 0.962 (0.954-0.970) 0.870 (0.841-0.896)
Random forest 0.971 (0.964-0.977) 0.887 (0.859-0.913)
SVM 0.963 (0.954-0.971) 0.877 (0.849-0.902)
XGBoost 0.961 (0.951-0.969) 0.873 (0.846-0.898)
Unfiltered validation cohort
Deep learning 0.991 (0.986-0.994) 0.817 (0.746-0.882)
Bio+Clinical BERT 0.785 (0.582-0.999) 0.621 (0.227-0.901)
Logistic regression 0.981 (0.971-0.990) 0.737 (0.644-0.817)
LASSO 0.969 (0.954-0.983) 0.675 (0.573-0.769)
Random forest 0.990 (0.984-0.995) 0.806 (0.723-0.880)
SVM 0.986 (0.975-0.994) 0.822 (0.748-0.887)
XGBoost 0.978 (0.959-0.992) 0.771 (0.680-0.846)

aAUROC: area under the receiver operating characteristic curve.

bAUPRC: area under the precision-recall curve.

cBERT: bidirectional encoder representations from transformers.

dLASSO: least absolute shrinkage and selection operator.

eSVM: support vector machine.