Skip to main content
. 2024 Feb 13;26:e47739. doi: 10.2196/47739

Table 3.

Instrumental activities of daily living classifier performance. Italic values represent the optimal performance in each data set.

Model AUROCa (95% CI) AUPRCb (95% CI)
Filtered cohort
Training set
Deep learning 0.948 (0.931-0.964) 0.677 (0.617-0.736)
Bio+Clinical BERTc 0.860 (0.797-0.918) 0.730 (0.625-0.826)
Logistic regression 0.970 (0.958-0.980) 0.714 (0.656-0.766)
LASSOd 0.961 (0.945-0.975) 0.704 (0.644-0.758)
Random forest 0.966 (0.951-0.979) 0.722 (0.668-0.774)
SVMe 0.968 (0.955-0.980) 0.735 (0.679-0.786)
XGBoost 0.970 (0.956-0.981) 0.703 (0.644-0.765)
Validation set
Deep learning 0.806 (0.243-1.00) 0.551 (0.003-1.00)
Bio+Clinical BERT 0.830 (0.777-0.876) 0.758 (0.679-0.818)
Logistic regression 0.952 (0.901-0.998) 0.396 (0.067-0.803)
LASSO 0.978 (0.935-0.999) 0.414 (0.155-0.869)
Random forest 0.941 (0.863-0.998) 0.309 (0.062-0.744)
SVM 0.934 (0.792-0.998) 0.430 (0.125-0.831)
XGBoost 0.995 (0.988-0.999) 0.528 (0.255-0.925)
Unfiltered validation cohort
Deep learning 0.794 (0.191-1.00) 0.568 (0.002-1.00)
Bio+Clinical BERT 0.750 (0.499-1.00) 0.584 (0.001-1.00)
Logistic regression 0.960 (0.869-1.00) 0.538 (0.014-1.00)
LASSO 0.986 (0.972-0.999) 0.271 (0.042-0.833)
Random forest 0.945 (0.828-1.00) 0.521 (0.011-1.00)
SVM 0.959 (0.867-1.00) 0.456 (0.022-1.00)
XGBoost 0.991 (0.972-1.00) 0.552 (0.050-1.00)

aAUROC: area under the receiver operating characteristic curve.

bAUPRC: area under the precision-recall curve.

cBERT: bidirectional encoder representations from transformers.

dLASSO: least absolute shrinkage and selection operator.

eSVM: support vector machine.