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ABSTRACT
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with poor prognosis. This is due 
to the fact that most cases are only diagnosed at an advanced and palliative disease stage, and 
there is a high incidence of therapy resistance. Despite ongoing efforts, to date, the mechanisms 
underlying PDAC oncogenesis and its poor responses to treatment are still largely unclear. As the 
study of the microbiome in cancer progresses, growing evidence suggests that bacteria or fungi 
might be key players both in PDAC oncogenesis as well as in its resistance to chemo- and 
immunotherapy, for instance through modulation of the tumor microenvironment and reshaping 
of the host immune response. Here, we review how the microbiota exerts these effects directly or 
indirectly via microbial-derived metabolites. Finally, we further discuss the potential of modulating 
the microbiota composition as a therapy in PDAC.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) repre-
sents the third leading cause of cancer-related deaths 
worldwide and is the most common form of pancrea-
tic cancer.1 It is associated with a 5-year survival rate 
as low as 11% due to its late diagnosis and limited 
responses to therapy.1,2 Surgical resection followed by 
adjuvant chemotherapy represents the best treatment 
approach in PDAC.3 However, most patients present 
with unresectable or metastatic disease at diagnosis or 
experience disease relapse after successful surgery.4 

Chemotherapy is often administered to locally 
advanced4–6 or metastatic7–9 patients in combinator-
ial regimens, including gemcitabine combined with 
nab-paclitaxel or FOLFIRINOX (5-fluorouracil, leu-
covorin, oxaliplatin and irinotecan). However, most 
patients either already exhibit chemotherapy resis-
tance when treatment starts, or develop it over 
time.10 In addition, novel immune checkpoint block-
ade therapies that have been revolutionizing the can-
cer paradigm in several tumor entities do not work in 
PDAC.11 Likewise, the therapeutic approaches target-
ing the tumor stroma, which is recognized as one 
main factor compromising chemotherapy efficacy, 
have been equally disappointing.12

In the past decades, efforts have been made toward 
trying to understand how PDAC is initiated and 
progresses while acquiring such aggressive features. 
PDAC comprises very heterogeneous tumor pheno-
types that differ not only in the tumor cell-intrinsic 
transcriptional and epigenetic profiles but also in the 
composition of the stroma and immune cells infiltrat-
ing the tumor microenvironment (TME).13 PDAC 
may originate from either acinar or ductal cells in 
the exocrine pancreas, giving rise to these different 
disease subtypes.14–16 In vivo experiments have sug-
gested that Kirsten rat sarcoma virus (KRAS) activa-
tion and Tumor protein 53 (TP53) mutations in 
pancreatic acinar cells activate a process of metaplasia 
to ductal-like cells, leading to the onset of pancreatic 
intraepithelial neoplastic (PanIN) lesions that may 
progress to malignant disease.16,17 However, ductal 
cells bearing both KRAS and TP53 genetic events 
may also give rise to the more aggressive basal-like 
PDAC subtype in an alternative and accelerated pro-
cess of oncogenesis.15,16 In human disease, it has been 
reported that more than 90% of PDAC tumors bear 
KRAS mutations, suggesting that this may represent 
the initiating event that unleashes malignancy.18 As 
the disease progresses, tumor cells may collect other 
genetic mutations, mainly in TP53, mothers against 
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decapentaplegic homolog 4 (SMAD4) and cyclin- 
dependent kinase inhibitor 2A (CDNK2A) genes.18 

However, targeted therapies based on the presence 
of each one of these mutations have so far been 
unsuccessful in improving patient care.18

Currently, there is an urgent need to understand 
which cues dictate treatment efficacy and to improve 
clinical outcomes of PDAC patients. While the pre-
sence of strong homogeneity in key driver mutations 
in PDAC has long been acknowledged, it is now 
being recognized that external factors contribute 
significantly to the heterogeneity of tumor pheno-
types observed during disease development. Among 
these external factors, recent research has put for-
ward the concept that the gut microbiota – 
a collection of microorganisms residing in the 
gut – can play a pivotal role in tumor progression 
and responses to treatment. Indeed, the concept of 
the microbiota’s central role in maintaining health 
and homeostasis is not novel, and there has been an 
increasing association between the microbiota and 
the development of various diseases throughout the 
body, extending beyond the gastrointestinal tract.19 

Gut dysbiosis has also emerged as a notable pheno-
typic feature of human PDAC patients over the past 
decades.20 Sequencing and immunofluorescence 
studies have contributed toward characterizing the 
microbiota of PDAC patients, and these associations 
are being increasingly explored in preclinical models 
of PDAC. Overall, research suggests that microbes 
play a role in PDAC carcinogenesis via the promo-
tion of inflammation21–23 and can modulate the 
response to therapies directly24 or indirectly via the 
production of microbiota-derived metabolites.25

In this review, we discuss and summarize what is 
currently known on how PDAC development and 
treatment are affected by the microbiota. We pro-
vide insights on the current limitations of this field 
and speculate about promising microbiota-based 
approaches that may arise to improve the future 
outcomes of PDAC patients.

Main

The microbiota of PDAC patients differs from 
healthy controls

The first clues that the microbiota could explain 
PDAC development arose from observational 

studies comparing its composition between 
PDAC patients and healthy controls. By using 
a combination of 16S rRNA sequencing and shot-
gun metagenomics, several studies reported that 
the microbiota signatures of treatment-naïve 
PDAC patients differ from those of healthy con-
trols across different locations within the human 
body, id est (i.e.), the oral cavity, the gut and the 
healthy or diseased pancreas, as reviewed in the 
following sections.

Composition of the oral microbiota in PDAC 
patients

Several studies have investigated the oral micro-
biota of treatment-naïve pancreatic cancer patients 
compared to healthy controls based on analysis of 
saliva,26–31 tongue coat32 or oral wash33,34 samples. 
Most studies observed no differences in the alpha 
diversity of patient oral microbiota compared with 
controls,27,28,34 except for one where diversity 
increased in patients with PDAC.30 In general, 
reports across these cohorts are inconsistent 
regarding the enrichment of certain bacteria taxa. 
Despite this, oral samples from PDAC patients 
were shown to exhibit higher relative abundance 
of the phylum Firmicutes27,30,32 and Neisseria and 
Haemophilus genera were consistently less abun-
dant in the saliva of PDAC patients.27–29 In addi-
tion to Firmicutes, Fusobacteria and 
Actinobacteria phyla were also found to be 
enriched in the tongue coat of pancreatic carci-
noma patients,32 although others reported that 
lower abundance of Fusobacteria in pre- 
diagnostic mouthwash samples was associated 
with increased risk of pancreatic cancer.33 

Contrasting results have also been observed for 
the Leptotrichia genus, which belongs to the 
Fusobacteria phylum and whose abundance was 
associated with either higher29 or lower33 risk of 
pancreatic cancer. Notably, there are few other 
studies that did not find any differential taxa abun-
dance in the oral cavity when comparing PDAC 
patients and controls31,34 or between cases of 
PDAC and intraductal papillary mucinous neo-
plasms (IPMN), a potential precursor for pancrea-
tic cancer.27

Although it has been challenging to systemati-
cally connect specific pathogens to PDAC across 
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different patient cohorts, the bacterium 
Porphyromonas gingivalis (P. gingivalis) seems to 
be closely linked to pancreatic cancer. P. gingivalis 
is an oral pathogen driving periodontitis and epi-
demiological studies have indeed suggested 
a correlation between periodontal disease and pan-
creatic cancer.35,36 The relative abundance of the 
Porphyromonas taxa in oral samples of PDAC 
patients was inconsistently observed to be 
similar28 or lower29,32 compared with non-cancer 
subjects. Even so, Fan et al. identified that the 
presence of P. gingivalis was associated with 
increased risk of pancreatic cancer in 
a prospective study with 361 patients.33 In accor-
dance with this, others have reported that higher 
levels of circulating antibodies against P. gingivalis 
in blood samples collected up to 10 years before 
diagnosis represented a two-fold higher risk of 
developing pancreatic cancer.37 Besides 
P. gingivalis, Aggregatibacter actinomycetemcomi-
tans was also linked to a higher risk of developing 
PDAC33 and Farret et al. demonstrated that two 
other species – Neisseria elongata and Streptococcus 
mitis – are less present in the saliva of PDAC 
patients compared to healthy controls.26

Fewer studies have focused on the composition 
of the fungal community, also referred to as myco-
biota, in the oral cavity of PDAC patients. Some of 
the first observation studies reported that presence 
of Candida-related oral lesions38 and confirmed 
Candida infection39 correlated with higher PDAC 
risk in two independent cohorts. More recently, 
Wei et al. took advantage of Internal Transcribed 
Spacer (ITS) rRNA sequencing to further charac-
terize the mycobiota in saliva samples from PDAC 
patients.40 Decreased alpha diversity was found in 
PDAC patients compared to healthy controls. The 
taxa Aspergillus and Cladosporium were not only 
less abundant in PDAC but also presented high 
classification power to discriminate between both 
groups.40 However, the study of the mycobiota in 
PDAC is still in its early stages, and further 
research is required to solidify this link.

In short, the oral microbiota of PDAC patients is 
suggested to be distinguishable from healthy 
patients, but consistent identification and valida-
tion of a unique profile of keystone microbes has 
been difficult. In addition, whether the reported 
oral dysbiosis precedes or arises after PDAC 

development remains to be clarified. Notably, it is 
known that each subregion of the oral cavity hosts 
a unique microbiota41 and thus direct comparison 
between the microbiota signatures of different 
types of oral samples across PDAC patient cohorts 
should be avoided. In addition, composition of rare 
microorganisms varies over time,41 so time of sam-
pling is another factor that may influence these 
results. Oral microbiota is also highly dependent 
on lifestyle-related determinants, such as tobacco 
use,42 which itself represents a risk factor for pan-
creatic cancer and may thereby act as 
a confounding factor.1 Considering these chal-
lenges, oral-associated microbiota profiles specifi-
cally linked to PDAC should be carefully identified. 
This could be of use in the clinical setting, provid-
ing potential biomarkers for noninvasive screening 
of the disease.

Composition of the intestinal microbiota in PDAC 
patients

Growing evidence suggests that treatment-naïve 
PDAC patients also have a unique bacterial signature 
in the intestinal content. By using a combination of 
16S rRNA sequencing and shotgun metagenomics, 
the fecal microbiota has been characterized in several 
independent patient cohorts from China,43,44 Japan,30 

Israel,45 Spain and Germany.31 Alpha diversity analy-
sis yielded contrasting findings across cohorts, with 
microbial diversity within PDAC cases being reported 
to be lower,30,43 higher21 or similar44,45 in comparison 
with the control group. Despite this, beta-diversity 
analysis revealed that the composition of the gut 
microbiota in PDAC was indeed distinguishable 
from that of healthy subjects.30,31,43–45

When comparing microbial abundance between 
PDAC patients and healthy controls, different taxa 
were found to be differentially present in both 
groups. Overall, lipopolysaccharide-producing 
bacteria were enriched in the gut of PDAC 
patients,43 whereas there was a reduction in buty-
rate-producing bacteria.43,44 Specifically, the 
Veillonellaceae family45 and its genus Veillonella ,-
21,30,31,43,44 as well as the genera Klebsiella ,21,43 

Streptococcus 30,31,43 and Akkermansia 31,45 were 
consistently identified to be enriched in fecal sam-
ples from PDAC patients. In contrast, 
Bifidobacterium ,31,43 Eubacterium 30,44 and 
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Faecalibacterium 31,44,45 taxa were more abundant 
in the gut microbiota of healthy subjects than in 
PDAC patients. However, contrasting results were 
reported for other bacteria strains. Prevotella, for 
instance, was reported to be enriched in PDAC 
patients compared to healthy subjects in two inde-
pendent studies,30,43 whereas the opposite was 
observed in a third cohort.21 Other genera, includ-
ing Odoribacter ,45 Selenomonas, Hallella, 
Enterobacter and Cronobacter ,43 were found to be 
highly abundant in the gut microbiota of PDAC 
patients in individual studies, but this was not 
reproduced in the remaining populations.

When comparing the fecal microbiota of PDAC 
patients with that of patients with pre-malignant 
lesions, a clear microbial pattern could not be 
observed between earlier stages and advanced 
PDAC.45 In a similar trend, the gut microbiota of 
PDAC was also found to be similar to chronic pan-
creatitis, a risk factor in pancreatic cancer,30,31 reflect-
ing that microbiota-based early detection of cancer 
may be challenging. Although most studies carried 
out so far have not investigated how the intestinal 
microbiota signature may correlate to responses to 
treatment, we have recently observed that the pre- 
treatment microbiota of PDAC patients responding 
to chemotherapy differs from the microbiota of non- 
responders.25 In summary, the gut microbiota of 
PDAC patients is suggested to be distinguishable 
from healthy patients and to vary according to treat-
ment responses. Hence, it may serve as a diagnostic 
tool or prognostic marker in the future.

Composition of the intratumoral microbiota in 
PDAC

The concept of intratumoral microbiota arose from 
evidence across several cancers suggesting that bac-
teria could be detected within the tumor microenvir-
onment (TME).46 In the specific case of the pancreas, 
although it was long considered sterile, a considerable 
number of studies has now established that bacteria 
may colonize this organ even under steady state 
conditions.21–23,31,47

Possible routes for bacteria translocation into the 
pancreas
Due to the anatomical proximity between the pan-
creas and intestine, it has been hypothesized that 

bacteria detected in the pancreas originate in the 
gastrointestinal tract and translocate via the pan-
creatic duct. By orally gavaging mice with fluores-
cently-labeled bacteria, Pushalkar et al. showed that 
fluorescent bacteria could be detected in the pan-
creas, possibly through retrograde migration from 
the duodenum.21 This oral-pancreas migration was 
further supported by two other studies upon 
gavage with the green fluorescent protein-labeled 
fungus S. cerevisiae 48 or with the oral pathogen 
P. gingivalis .49 Indeed, the pancreatic microbiota 
profile of PDAC patients resembled that of the 
duodenum, further supporting this hypothesis.47 

Proteobacteria, for instance, was shown to be 
highly abundant in both the duodenum and the 
pancreas.24,47 In addition, tumors from patients 
undergoing endoscopic retrograde cholangiopan-
creatography – a procedure that examines bile duct 
and pancreatic duct abnormalities, exempli gratia 
(e.g.), an obstruction – before surgery were shown 
to have significantly more bacteria in the pancreas 
than those that were not subjected to this 
procedure.24 Alternatively, bacteria could also 
translocate to the pancreas as a result of inflamma-
tion-driven increased intestinal permeability.50

However, others have described that no bacteria 
could be detected in vivo in pancreatic cancer 
xenografts regardless of antibiotic treatment.22 In 
addition, bacteria infiltration could not be 
observed in the pancreas from germ-free mice 
that had been transferred back to specific patho-
gen-free (SPF) conditions, nor from interleukin 
(IL) 10 (IL-10) knockout (KO) mice where the 
barrier function of the intestinal mucosa is 
compromised.22 This data suggests that coloniza-
tion of the pancreas with intestinal bacteria does 
not happen under physiological conditions, but 
depends on certain predisposing factors that 
remain to be identified.

It has also been suggested that microbes may 
reach the pancreas via other routes, including the 
lymphatic system. Bacteria may translocate from 
the intestine to mesenteric lymph nodes indepen-
dently or via CX3CR1hi mononuclear 
phagocytes.51,52 From there, they can reach the 
pancreas as lymphatic drainage takes place.52

Researchers have started to explore how bacteria 
translocate to the pancreas, but the triggers that 
unleash this translocation and the mechanisms 
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that enable them to remain there under tumori-
genic conditions still need to be elucidated. In 
addition, the reported antimicrobial properties of 
the pancreatic fluids and their ability to shape the 
composition of the intestinal microbiota53 should 
be taken into account while investigating this intra-
pancreatic colonization. Whether bacteria or fungi 
reach the pancreas as a consequence or as 
a mediator of carcinogenesis is also largely 
unknown. The relationship between the microbiota 
and PDAC is still unclear, and further research is 
needed to establish causality between the presence 
of bacteria and tumor progression. Indeed, even 
though microbiota sequencing has also been 
employed in prospective clinical studies, the pre-
sence of certain bacterial strains could solely act as 
a marker of cancer-associated inflammatory 
processes.

Composition of the intratumoral microbiota in PDAC
Using a combination of qPCR and fluorescence 
in situ hybridization (FISH) against the bacterial 
16S rRNA region, Geller et al. first demonstrated 
that bacterial DNA was present in 76% of 
a collection of PDAC tumors, as opposed to only 
15% of normal pancreas from control donors.24 

Supporting these findings, a study conducted by 
Nejman et al. detected bacterial DNA in 68% of 
PDAC tumors and showed that the most abundant 
species in PDAC were members of the 
Proteobacteria phylum.46 Interestingly, bacterial 
DNA was mainly detected in the cytoplasm of 
both cancer cells and immune cells.46 Members of 
the Gammaproteobacteria were consistently 
detected in PDAC tissues across studies.24,46,49 

Furthermore, high relative abundance of 
Proteobacteria and Firmicutes phyla in PDAC 
tumors has also been consistently 
reported.21,22,46,47,54 Fusobacterium species, which 
are increasingly being implicated in different gas-
trointestinal cancers, were detected in 8.8% of the 
tested PDAC samples and its presence correlated 
with worse survival rates.55 Fusobacterium nuclea-
tum (F. nucleatum) has also been found in cyst 
fluid from high-grade IPMN.56 Other studies also 
compared the microbial abundance in PDAC 
tumor tissue and adjacent healthy pancreatic tissue. 
Lactobacillus species (spp.), Akkermansia mucini-
phila (A. muciniphila) and Bacteroides spp. were 

found to be enriched in PDAC tumor tissue com-
pared with healthy tissue.31 Despite this, the pro-
files between both tissues shared some similarities 
at several taxonomic levels.49

Recent evidence also highlighted a clear differ-
ence in the intratumoral microbiota of short-term 
and long-term survival PDAC patients.54,57 Long- 
term survival patients from two geographically 
separated cohorts exhibited a higher microbial 
alpha-diversity and a unique intratumoral micro-
biota signature characterized by Saccharopolyspora, 
Pseudoxanthomonas, Streptomyces and Bacillus 
clausii .57 Huang et al., however, did not observe 
differences in alpha-diversity between these 
groups, but beta-diversity analysis unveiled an 
enrichment of Sphingomonas, Megasphaera, 
Bradyrhizobium, Desulfovibrio, Flavobacterium, 
Enhydrobacter and Megamonas .54 It should be 
noted that the threshold to define short-term and 
long-term survivors and the geographic location of 
each cohort differed between the two studies, 
which may be the reason for those inconsistencies. 
Whereas Riquelme et al. considered those surviv-
ing more than 5 years after surgery to be long-term 
survivors,57 the long-term group in the study by 
Huang et al. included patients with a survival time 
of longer than 600 days (less than 2 years) after 
surgery.54

The microbiota of different molecular subtypes 
of PDAC was also suggested to be different in 
a study by Guo et al .58 Basal-like (BL) PDAC 
tumors are poorly differentiated and typically exhi-
bit a more aggressive phenotype accompanied by 
chemoresistance, whereas the classical subtype is 
characterized by better therapy responses and over-
all survival. In this study, the authors carried out 
FISH against 16S rRNA sequences, demonstrating 
that BL tumors had an increased bacterial DNA 
load compared to classical or hybrid subtypes. In 
addition, Acinetobacter, Pseudomonas and 
Sphingopyxis genera were highly abundant in the 
BL subtype and were strongly associated with 
inflammatory and carcinogenic pathways.58

Fungal DNA was detected in the tumors of 
PDAC patients in two separate studies48,59 and 
was significantly increased in PDAC in comparison 
with healthy donors.48 The pancreatic mycobiome 
of patients clustered separately from that of healthy 
subjects and Malassezia spp. were particularly 
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enriched in the tumor samples.48 By using 18S 
rRNA sequencing and FISH for fungal DNA, 
Alam et al further confirmed higher presence of 
fungal DNA in tumors of KrasG12D Trp53R172H 

Pdx-Cre (KPC) mice, a mouse model of PDAC, 
compared with healthy mouse pancreata.60

Other studies reported low amounts of micro-
bial biomass (median of 3682 copies of bacterial 
DNA/ng of DNA, versus a median of 2766 in the 
negative control) in pancreatic tissue that were 
relatively conserved across healthy pancreas, 
IPMN or PDAC tissues, and therefore unlikely to 
contribute to malignant transformation.61 Recent 
reanalysis of previously published microbiota62 

and mycobiota48 sequencing datasets did not iden-
tify the differences reported for PDAC intratumor 
microbial composition in the original 
publications.63,64 This highlights the importance 
of using complementary techniques, such as fluor-
escent in situ hybridization, in addition to sequen-
cing, to validate the presence of specific bacteria or 
fungi within PDAC tumors.

Nevertheless, taken together, sequencing data 
from the different regions throughout the body 
underlines that patients suffering from PDAC 
seem to exhibit unique microbial signatures across 
tissues of the gastrointestinal tract which could 
serve as diagnostic and prognostic markers. 
However, there is marked inter-individual variabil-
ity within each cohort and across different studies, 
making it more complicated to identify and vali-
date oral, fecal and pancreatic microbiota predic-
tors with potential for PDAC detection. These 
inconsistencies may be justified by different fac-
tors, including: (a) differences in geographic loca-
tions and personal lifestyles, which are known to 
affect the microbiota; (b) small patient sample size 
and reduced statistical power; (c) challenges in the 
analysis of microbiota sequencing data from low 
biomass samples; (d) missing correction for other 
confounding factors and co-morbidities; (e) differ-
ences in sample collection and processing, as well 
as in methods used for extraction and sequencing 
of microbial DNA and (f) redundancy of different 
microbiota taxa. Therefore, larger studies analyzing 
ethnically and geographically different cohorts of 
PDAC patients and healthy controls are needed to 
establish microbiota signatures that might be used 
as diagnostic markers. Finally, and most 

importantly, since it is still unclear whether this is 
the cause or consequence of PDAC development 
and progression, further mechanistic and func-
tional studies should be performed to evaluate the 
potential causal role for the microbiota in this 
disease.

The microbiota promotes pancreatic tumor 
development in preclinical models

Sequencing studies have contributed greatly to 
characterizing the unique microbiota signatures of 
PDAC patients and propose that microbes poten-
tially support PDAC progression. To investigate 
this putative causative effect, in vivo experiments 
have been carried out in several animal models of 
PDAC.

One of the first studies was carried out by 
Pushalkar et al .21 Here, the authors took advantage 
of two mouse models: Ptf1aCre LSL-KrasG12D (KC) 
mice, which spontaneously develop slowly- 
progressing pancreatic tumors; and the orthotopic 
model, where tumor cells isolated from the KPC 
mouse model of PDAC are injected into the pan-
creas of WT mice. Germ-free KC mice exhibited 
delayed oncogenesis in the pancreas and, similarly, 
tumor growth was dramatically reduced in the 
orthotopic model upon microbial depletion by 
a cocktail of oral antibiotics composed of vanco-
mycin, neomycin, metronidazole, amphotericin, 
ampicillin and amphotericin B. Protection from 
tumor progression in the absence of the microbiota 
was accompanied by increased tumor infiltration 
of Th1 CD4+ T cells and cytotoxic CD8+ T cells, 
reprogramming of tumor-associated macrophages 
(TAMs) toward higher expression of MHC II, 
CD86, TNFα, IL-12 and IL-6 and reduced frequen-
cies of myeloid-derived suppressor cells 
(MDSCs).21 Complementary experiments either 
depleting CD4+ and CD8+ T cells with neutralizing 
antibodies or reactivating their function using PD1 
antibodies suggested that the beneficial effect of 
microbiota depletion depends on the induced 
T cell-mediated immune responses.21

In a similar approach of antibiotic-mediated 
bacterial ablation in KrasG12DPTENlox/+ mice, 
Thomas et al. also reported a central role for the 
gut microbiota in PDAC development.22 Here, the 
authors used a different antibiotic cocktail 
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administered ad libitum in the drinking water and 
containing streptomycin, gentamicin, bacitracin 
and ciprofloxacin. At 3 months of age, antibiotic- 
treated mice showed lower numbers of malignant 
lobules than microbiota-intact mice, indicating 
delayed progression.

In accordance with the data reported by these 
studies, Sethi et al. observed that microbial 
depletion by antibiotics also reduced tumor 
growth in a third model of PDAC consisting of 
subcutaneous injection of KPC tumor cells.23 

Upon ablation of bacteria, there was increased 
infiltration of interferon-γ (IFN-γ)-producing 
CD4+ and CD8+ T cells and decreased numbers 
of IL-17a and IL-10-secreting T cells. Indeed, the 
protective effect on tumor growth was not pre-
sent in Rag1 KO mice lacking mature T cells 
(and B cells) nor after treatment with an IL-17a- 
neutralizing antibody, underlining that this effect 
is dependent on a functional adaptive immune 
system.23

Whereas most studies so far have analyzed the 
role of the microbiota as a whole in PDAC onco-
genesis, others are starting to explore whether 
this process may be dependent on specific 
microbes. In fact, considering the classical exam-
ples of Fusobacterium nucleatum 65,66 and 
Helicobacter pylori 67 being implicated in color-
ectal and gastric cancer, respectively, it appears 
plausible that specific bacteria may also have 
drastic outcomes on tumor development in 
PDAC. A recent preclinical study solidified the 
association between P. gingivalis-induced period-
ontitis and pancreatic cancer observed in human 
PDAC. P. gingivalis was able to colonize the 
tumor both in patients and upon oral gavage in 
an orthotopic model of PDAC.49 Strikingly, 
orthotopic tumors grew faster in the presence of 
this bacterium, highlighting for the first time that 
P. gingivalis can promote PDAC tumorigenesis. 
This pro-tumor function was mechanistically 
linked to a CXCR2-mediated infiltration of neu-
trophils and decreased frequencies of tumor- 
infiltrating CD8+ T cells and relied on neutro-
phil-derived elastase.49 In addition, the potential 
roles of F. nucleatum in PDAC progression have 
also been addressed.68 F. nucleatum was shown to 
invade human PDAC cell lines and 3D spheroids, 
increasing their proliferation and migration 

capacity. Infection also stimulated secretion of 
GM-CSF, CXCL1, IL-8 and MIP-3α by both nor-
mal and tumor pancreatic cells.68

Within the fungal community, Aykut et al. 
showed that mycobiome depletion through oral 
administration of amphotericin B or fluconazole 
prevented tumor growth in KC mice and in the 
orthotopic model.48 In addition, Malassezia spe-
cies were found to be particularly enriched in 
murine and human PDAC tumors,48 similar to 
what has been observed in colorectal cancer 
(CRC).69 Repopulation of antifungal-treated 
mice with Malassezia globosa but not with 
other commensal fungi restored carcinogenesis, 
confirming an active role for Malassezia spp. in 
PDAC etiology. According to the findings, this 
effect was dependent on activation of the man-
nose-binding lectin signaling pathway and of the 
C3 complement cascade.48 Notably, the antifun-
gal amphotericin B was also included in the 
experiments performed by Pushalkar et al 
along with the remaining antibiotics,21 indicat-
ing that depletion of both bacteria and fungi 
might potentially be responsible for the 
observed effect.

Recently, another study suggested a role of fungi 
in the pathogenicity of PDAC.60 Alam et al. showed 
that cancer cell-derived IL-33 triggered recruit-
ment and activation of Th2 and innate lymphoid 
cells 2 (ILC2) cells to stimulate tumor progression 
in KPC mice. Importantly, IL-33 secretion, infiltra-
tion of Th2 and ILC2 cells and overall tumor bur-
den were highly reduced after amphotericin 
B treatment. In contrast, repopulation with 
M. globosa or A. alternata had the opposite effect, 
suggesting that fungi can promote tumor growth 
via IL-33-mediated remodeling of the TME.60

Altogether, it is becoming increasingly clear that 
gut microbes may directly control PDAC onset and 
progression, but the specific molecular mechan-
isms underlying these effects are still being eluci-
dated. Considering that bacteria and fungi highly 
depend on each other,70 it would be relevant to 
explore whether these pathogenic roles require 
interactions between both communities. In addi-
tion, whether general dysbiosis is the main factor 
contributing to tumorigenesis or whether specific 
microbes act as carcinogens in PDAC still needs to 
be clarified.
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Microbiota plays a role in PDAC therapy efficacy 
and resistance

Besides contributing to pancreatic tumor develop-
ment, growing evidence suggests that the micro-
biota may also modulate therapy efficacy and 
toxicity by affecting drug pharmacokinetics, influ-
encing the host metabolic environment or modu-
lating the composition of the tumor milieu.71,72 

Considering that FOLFIRINOX and gemcitabine/ 
nab-paclitaxel are the main therapy regimens 
applied in PDAC patients, we will focus on these 
therapies in the following sections.

Influence of the microbiota on chemotherapy 
efficacy

Taking advantage of the Caenorhabditis elegans 
(C. elegans) model and the fact that it uses bacteria 
as a natural food source, it has been shown that 
distinct bacteria have differential effects on the host 
response to chemotherapeutic agents.73,74 In fact, 
specific gut microbes have been described to 
orchestrate resistance of cancer cells to different 
chemotherapeutic agents, including oxaliplatin, 
5-fluorouracil (5-FU) and gemcitabine. In the con-
text of CRC, for instance, F. nucleatum promotes 
resistance to oxaliplatin and/or 5-FU regimens, 
either by activating autophagy in tumor cells75 or 
by upregulating BIRC3 expression to prevent 
apoptosis.76 Retrospective studies in CRC patients 
also showed that antibiotic treatment improves the 
efficacy of oxaliplatin but not irinotecan, although 
the causes behind this specificity are unclear.77

In contrast, others have proposed that the intest-
inal microbiota mediates treatment efficacy. In 
a CRC mouse model, the gut microbiota was 
demonstrated to ensure responses to 5-FU78 or oxa-
liplatin via induction of anti-tumor immune 
responses.79 Research conducted by Geller et al. 
has also demonstrated that Gammaproteobacteria 
expressing the long isoform of the enzyme cytidine 
deaminase metabolize gemcitabine to its inactive 
form, thereby promoting resistance in CRC.24 In 
a mouse model of CRC, intratumoral presence of 
Gammaproteobacteria induced resistance to gemci-
tabine, which was reverted by antibiotic treatment.24

Although the roles of the microbiota in treat-
ment outcomes have not been studied extensively 

in PDAC yet, it can be speculated that some of the 
aforementioned CRC-related mechanisms may 
also apply to PDAC, considering that (a) the same 
chemotherapy regimens are also used for PDAC 
treatment; and (b) F. nucleatum and 
Gammaproteobacteria have also been identified to 
be present in PDAC patients.24,46 However, Fulop 
et al. found no association between perichemother-
apeutic administration of antibiotics and survival 
in PDAC patients treated with 5-FU. In contrast, 
antibiotic treatment correlated with improved sur-
vival among patients receiving first-line gemcita-
bine, suggesting that microbiota-mediated 
resistance to gemcitabine may also occur in 
PDAC.80 Similar observations were also reported 
in an independent retrospective study highlighting 
that survival rates during gemcitabine-containing 
regimens were higher when patients were treated 
with antibiotics.81 Besides bacteria, the fungal com-
munity was also reported to orchestrate efficacy of 
gemcitabine-based chemotherapy, since in vivo 
depletion of the mycobiome with antifungals was 
shown to potentiate responses of orthotopic PDAC 
tumors to chemotherapy.48

Altogether, these findings support that the micro-
biota can affect the outcomes of patients treated with 
chemotherapy regimens. However, there is high 
interindividual variability and redundancy of micro-
biota taxa and the interplay between the host and the 
microbiota is remarkably dynamic and complex, 
involving not only direct microbiota-tumor interac-
tions, but also indirect interactions via the immune 
system. Due to this, more research is needed to 
better characterize the mechanisms employed by 
the microbiota to control chemotherapy responses 
in PDAC and identify microbiota-based biomarkers 
that may define better therapy outcomes.

Influence of the microbiota on chemotherapy 
toxicity

Microbes may also play a role in chemotherapy 
side effects. Irinotecan is a prodrug that needs 
to be metabolized by hepatic and intestinal car-
boxylesterases to form its bioactive metabolite 
SN-38, responsible for the potent anti-tumor 
activity.82 SN-38 is subsequently detoxified in 
the liver by glucuronyltransferases, resulting in 
the inactive glucuronide SN-38 metabolite (SN- 
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38 G). However, SN-38 G is excreted into the 
gut via the bile, where bacterial β- 
glucuronidases can hydrolyze SN-38 G back to 
the toxic form SN-38. β-glucuronidase- 
producing bacteria essentially belong to the 
Bacteroidetes, Firmicutes, Verrucomicrobia and 
Proteobacteria phyla, which were reported to be 
enriched in PDAC patients, as previously 
described.21,22,24,27,30,32,45–47,54 Accumulation of 
SN-38 in the gut results in delayed severe diar-
rhea which may even influence continuation of 
treatment.82 Different strategies have been tested 
to prevent reactivation of this compound. The 
use of β-glucuronidase inhibitors, for instance, 
has been shown to attenuate irinotecan-induced 
diarrhea without harming the host cells.83,84 

Lower intestinal toxicity has also been reported 
upon use of broad-spectrum antibiotics or 
under germ-free conditions.85 However, the 
prophylactic use of antibiotics, for example 
neomycin86–88 and clarithromycin,89 to prevent 
diarrhea incidence is controversial.

In addition, the microbiota may also mediate 
irinotecan toxicity via other β-glucuronidase- 
independent mechanisms. Streptomycin treat-
ment was shown to be efficient in reducing diar-
rhea in rats by inhibiting intestinal absorption of 
irinotecan.90 Importantly, gastrointestinal muco-
sitis and diarrhea are not exclusive to irinotecan 
and have also been reported upon 5-FU treat-
ment with active participation of the gut 
microbiota.91

Hyperalgesia, defined by extreme sensitivity to 
pain, is a common adverse reaction in oxaliplatin- 
treated patients that was shown to be induced by 
the gut microbiota.92 It has been shown that germ- 
free or SPF mice treated with antibiotics did not 
develop mechanical hyperalgesia in contrast with 
controls in a mechanism partly dependent on the 
LPS-TLR4 axis. Conventionalization of GF mice to 
SPF conditions restored hyperalgesia, further sup-
porting that the gut microbiota contributes to this 
oxaliplatin-induced effect.92

Chemotherapy-induced dysbiosis

Dysbiosis of the gut microbiota is often observed 
following chemotherapy and may paradoxically 
affect the anti-tumor properties of the treatment. 

In a pancreatic cancer xenograft mouse model, 
gemcitabine was shown to decrease the proportion 
of Firmicutes and Bacteroidetes while increasing 
the relative abundance of Proteobacteria and 
Verrucomicrobia.93 Other studies have also 
reported gut dysbiosis after 5-FU treatment. In 
a CRC model, Yuan et al. described decreased 
alpha diversity and Actinobacteria abundance in 
the 5-FU-treated group, whereas no differences 
were observed in the Firmicutes and Bacteroidetes 
proportion.78 In contrast, there was decreased 
Firmicutes and increased Bacteroidetes and 
Verrucomicrobia abundances in a model of 5-FU- 
driven intestinal mucositis.94

Although most of these studies focused on the 
gut microbiota, chemotherapy may also affect the 
composition of the biliary microbiome. 
A retrospective study has shown that PDAC 
patients receiving neoadjuvant therapy (NT) 
including gemcitabine-based or FOLFIRINOX 
regimes prior to surgical resection had a distinct 
bile microbiota compared to primary surgery 
alone.95,96 However, although marked resistance 
to cephalosporins was observed in the NT-treated 
group and in patients undergoing surgery with 
a biliary stent,95 the opposite was later described 
by Nadeem et al .97

Overall, the current state of the art suggests that 
chemotherapy modulates the composition of the 
microbial communities within the gastrointestinal 
tract. Considering how the microbiota itself may 
also determine chemotherapy efficacy, as described 
earlier, this therapy-induced dysbiosis may para-
doxically be a factor that explains their limited 
therapeutic success and the inevitable chemoresis-
tance observed in PDAC.

Influence of the microbiota on immunotherapy

Immunotherapies, including immune checkpoint 
blockade with anti-PD-1, anti-PD-L1 and anti- 
CTLA-4, have been revolutionizing cancer thera-
pies. However, these have not shown promising 
results in PDAC so far.11 The relationship between 
the microbiota and the immune system was among 
the earliest to be investigated. It is now widely 
acknowledged that the microbiota plays 
a significant role in modulating immune responses 
and, as a result, it has been recognized as a potent 
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influencer of the effectiveness of immunotherapies. 
Efficacy of CTLA-4 blockade with ipilimumab was 
shown to be compromised under germ-free condi-
tions or after administration of a cocktail of broad- 
spectrum antibiotics in mouse models of MCA205 
sarcoma, melanoma and colon cancer.98 

Remarkably, oral administration of Bacteroides 
species was sufficient to restore the anti-tumor 
properties of anti-CTLA-4 treatment in an 
immune-activating process that involved induction 
of Th1 responses and maturation of dendritic cells 
within the tumor. It has also been shown that the 
microbiota modulates the anti-tumor immune 
responses of PD-1/PD-L1-based immunotherapy 
in subcutaneous or spontaneous melanoma and 
MCA205 sarcoma.99,100 Specifically, 
Bifidobacterium ,99 A. muciniphila and 
Enterococcus hirae (E. hirae) 100 increased the effi-
cacy of anti-PD-1 treatment in vivo. These effects 
were associated with dendritic cell maturation and 
IL-12 secretion, enhanced priming and intratu-
moral infiltration of CD8+ T cells and recruitment 
of CCR9+CXCR3+CD4+ T cells to the tumor, 
underlining that the microbiota affects treatment 
responses via the immune system. A similar effect 
was also reported for Lactobacillus rhamnosus GG, 
which improved the responses to anti-PD-1 in 
melanoma and colon cancer mouse models via 
CD8+ T cell activation and enhanced IL-6 and 
IFN-γ production.101 Colonization of germ-free 
MC38 tumor-bearing mice with a mixture of 
IFN-γ-producing bacteria further corroborated 
a better efficacy of anti-PD-1 treatment induced 
by the microbiota.102 Recently, two studies high-
lighted a causal role for the microbiota in mediat-
ing immunotherapy efficacy in melanoma 
patients.103,104 Here, transplantation of gut micro-
biota isolated from responder patients combined 
with anti-PD-1 treatment induced responses in 
patients that were previously anti-PD-1--
refractory.103,104 Further corroborating the bidirec-
tional interaction between the microbiota and 
therapies, immunotherapy with anti-CTLA-498 or 
anti-PD-1100 were shown to trigger changes in the 
gut microbiota composition both in vivo and in 
independent cohorts of cancer patients.

Although all this data suggests that modulation 
of the gut microbiota may represent a novel immu-
notherapeutic option in combination with immune 

checkpoint inhibitors, this area is still understudied 
in PDAC due to the lack of efficacy of immu-
notherapies. However, what is known so far also 
seems to support this notion, since in vivo bacterial 
ablation reprogrammed the microenvironment of 
PDAC subcutaneous tumors toward a more pro- 
tumorigenic phenotype.23 Indeed, as mentioned 
above, in an orthotopic model of PDAC, tumors 
did not normally respond to anti-PD-1 treatment 
but were rendered sensitive to it upon microbiota 
depletion with oral antibiotics.21 This effect was 
accompanied by increased activation of CD4+ and 
CD8+ T cells within the TME.21 Accordingly, acti-
vation of CD8+ T cells and lower infiltration of 
CD4+ Foxp3+ cells were observed in another 
study following human-into-mice transplantation 
of microbiota from long-term survival PDAC 
patients, further supporting that the gut microbiota 
alters the host immune composition.57 Even so, 
more studies are needed to confirm these effects 
and evaluate whether microbiota signatures of 
PDAC patients may be used to predict clinical 
responses to future immunotherapy approaches.

Overall, this data reinforces that each indivi-
dual’s gut microbiota composition should be con-
sidered as a factor while addressing the therapeutic 
benefits of immune checkpoint blockade. In the 
future, an enhanced comprehension of the micro-
biota in PDAC patients and potential modifica-
tions based on the microbiota composition may 
contribute to increased responsiveness to 
immunotherapies.

Microbiota-derived metabolites may affect 
PDAC development and treatment

Other than translocating to the pancreatic tumor 
microenvironment to directly interact with 
PDAC cells and thereby affect tumor develop-
ment locally, it has been proposed that pancreatic 
carcinogenesis may also be mediated by microbes 
indirectly and even from a distance via the host 
immune system or through microbial-derived 
metabolites. These remote functions are sup-
ported by observations of lower tumor burden 
upon microbial depletion even in subcutaneous 
PDAC xenograft models lacking intratumoral 
bacteria.22 This phenotype was also accompanied 
by increased infiltration of immune cells in the 
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tumor xenografts even in the absence of local 
bacteria.22 Thus, it is plausible that these extra- 
pancreatic effects arise through immune path-
ways. In fact, the Bifidobacterium-driven anti- 
tumor functions described by Sivan et al. were 
also suggested to occur without the need for 
translocation, since the bacterium was not 
detected in the mesenteric lymph nodes, spleen 
or tumors.99

Considering this, researchers started to hypothe-
size that, besides microbes themselves, microbiota- 
derived metabolites could also play a role in cancer. 
To date, the microbiota-derived factors that have 
been most studied in PDAC lie within five main 
metabolite groups of metabolites widely known for 
their immunomodulatory properties,105 compris-
ing short-chain fatty acids (SCFAs), indole deriva-
tives, bile acids (BAs), polyamines and purines. 
Among SCFAs, in vitro studies have reported anti- 
proliferative, anti-fibrogenic and pro-apoptotic 
effects of butyrate (a SCFA) against PDAC 
cells.106–108 In vivo oral administration of sodium 
butyrate alone or in combination with gemcitabine 
to mice bearing subcutaneous PDAC xenografts 
induced stroma remodeling and was suggested to 
decrease tumor growth, although without statistical 
significance.108 In accordance with this, treatment 
of the colorectal cancer cell line HCT116 with 
sodium butyrate also inhibited tumor cell growth 
in vitro and promoted epigenetic methylation 
reprogramming.109 A recent study demonstrated 
a synergistic effect of butyrate with oxaliplatin in 
preventing proliferation, invasion and metastasis of 
CRC cells in vitro and in vivo .109 A protective role 
for butyrate and the other two main SCFAs (pro-
pionate and acetate) was also reported in 5-FU- 
induced gastrointestinal mucositis by dampening 
excessive inflammation.110 In PDAC patients, the 
relative abundance of butyrate-producing bacteria 
in the gut was found to be decreased43,44 and lower 
concentrations of butyrate in fecal samples of 
PDAC patients were also reported.44 Overall, this 
data suggests that the lower levels of butyrate in 
PDAC patients may contribute to the high tumor 
proliferation rates and high rates of therapy resis-
tance, although this has to be thoroughly validated 
in future studies. If this link can be confirmed, 
using butyrate or butyrate-producing bacteria as 
an adjuvant therapy to improve chemotherapy 

efficacy while also controlling its toxicity might be 
a future application.

Indoles are also increasingly being linked to 
PDAC. In the gut, metabolism of dietary trypto-
phan by the microbiota generates indole deriva-
tives, including indole-3-acetic acid (3-IAA) and 
indole-3-propionic acid (3-IPA). Several studies 
have explored how the tryptophan metabolism 
influences the composition of the gut microbiota 
and intestinal immunity.111 Recently, a pro- 
tumorigenic role for tryptophan-derived metabo-
lites in PDAC was highlighted by Hezaveh et al .112 

In this study, indoles produced by Lactobacillus- 
mediated catabolism of tryptophan activated the 
aryl hydrocarbon receptor (AhR) in macrophages. 
This promoted reprogramming of tumor- 
associated macrophages into a tumor-supporting 
phenotype and inhibited IFN-γ expression in 
CD8+ T cells. Importantly, deleting Ahr in macro-
phages or removing tryptophan from the diet pre-
vented tumor growth.112 More recently, we have 
shown that 3-IAA increases the efficacy of 
FIRINOX (5-FU, irinotecan and oxaliplatin) and 
gemcitabine+nab-paclitaxel in murine models of 
PDAC, leading to decreased tumor weight.25 

Serum metabolomics unveiled a positive associa-
tion between 3-IAA and progression-free and over-
all survival in two human PDAC cohorts. In 
supplemental murine studies, PDAC tumors were 
rendered susceptible to chemotherapy upon colo-
nization of germ-free mice with microbiota from 
responders and oral supplementation of 3-IAA. 
Mechanistically, this 3-IAA-mediated effect 
required immune cell-derived myeloperoxidase, 
which metabolized 3-IAA into toxic products, 
including 3-methylene-2-oxindole (MOI), that 
promoted accumulation of reactive oxygen species 
and autophagy downregulation in the tumor cells, 
boosting the effect of chemotherapy.25

Besides SCFAs and indole derivatives, BAs have 
also been explored in the context of PDAC. 
Primary BAs, including glycocholic acid (GCA), 
glycochenodeoxycholic acid (GCDCA), tauro-
cholic acid (TCA) and taurochenodeoxycholic 
acid (TCDCA) are metabolized by gut bacteria 
upon secretion into the duodenum, giving rise to 
secondary BAs which include deoxycholic acid 
(DCA), lithocholic acid (LCA) and ursodeoxy-
cholic acid (UDCA).113 Levels of primary BAs 
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were reported to be higher in PDAC patients,114 

especially in those with obstructive jaundice.115 In 
vitro treatment of Capan-1 and BxPC-3 PDAC cell 
lines with BAs induced their proliferation, adhe-
sion to collagen 1, migration, invasion and colony- 
forming ability.115 BAs also upregulated the 
expression of mucin 4 in a dose-dependent manner 
and a siRNA-mediated knockdown of mucin 4 
prevented these carcinogenic processes.115 

Upregulation of cyclooxygenase-2 expression, 
which is suggested to be linked to cancer develop-
ment, was also induced in PDAC cell lines upon 
exposure to DCA and chenodeoxycholic acid.116 In 
the specific case of DCA, it has also been reported 
to have oncogenic functions in PDAC via activa-
tion of epidermal growth factor receptor (EGFR), 
Signal transducer and activator of transcription 3 
(STAT3) and mitogen-activated protein kinase 
(MAPK) signaling pathways, promoting cell cycle 
progression.117 Moreover, the effects of bile itself 
(which is mainly composed of BAs) in PDAC peri-
toneal metastasis have also been investigated. Bile 
samples isolated from PDAC patients reduced peri-
toneal tumor growth upon co-injection of Panc02 
tumor cells and bile into the peritoneum.118 

However, since analyses of the roles of specific 
BAs in PDAC oncogenesis have mainly relied on 
in vitro studies so far, in vivo functional assessment 
is still required. Besides carcinogenesis, whether 
BAs modulate treatment responses in PDAC has 
not been fully addressed, except for a study by Yang 
et al., which demonstrated that extracellular TCA 
decreases the sensitivity of Panc-1 and CFPAC-1 
cells to gemcitabine via the S1PR2-ERK 
pathway.114

The metabolism of polyamines such as 
putrescine, spermidine and spermine is com-
monly dysregulated across different tumor enti-
ties and has also been implicated in PDAC. 
Levels of polyamines were found to be enriched 
in serum of PDAC patients and in KPC mice 
during disease progression from early stages to 
PDAC.119 Moreover, expression of polyamine- 
related genes was inversely associated with sur-
vival in a PDAC patient cohort,120 further sug-
gesting a role for polyamines in pancreatic 
cancer. Indeed, a recent study further explored 
how PDAC cells synthesize polyamines to 
ensure tumor growth.121 The authors revealed 

that glutamine was used in tumor cells as 
a substrate for ornithine production, which sub-
sequently contributed to polyamine synthesis in 
a process dependent on ornithine aminotrans-
ferase (OAT). Notably, PDAC cells also relied 
on mutated KRAS to upregulate the expression 
of proteins required for polyamine synthesis, 
including OAT.121 Pharmacological targeting of 
OAT, thus compromising polyamine synthesis, 
suppressed PDAC growth both in vitro and 
in vivo.121 Although this study did not specifi-
cally investigate bacteria as a source of polya-
mines, these compounds may also be produced 
by the gut microbiota.122 Mendez et al., for 
instance, reported that Lactobacillus reuteri, 
which was detected in later stages of PDAC 
development, was associated with polyamine 
metabolism.119 Overall, this data opens the pos-
sibility to target polyamine metabolism in 
PDAC. However, more research is needed to 
elucidate to what extent the microbiota contri-
butes to polyamine availability within the TME.

Finally, since purine synthesis is essential for 
cell proliferation, a dysregulated purine metabo-
lism is often linked to cancer progression.123 

Indeed, in PDAC cells, oncogenic KRAS is able 
to enhance the synthesis of purines and pyrimi-
dines to support proliferation.124 In particular, 
inosine, xanthine and hypoxanthine, which are 
degradation products of adenine nucleotides 
during purine synthesis, were found to be 
decreased in gemcitabine-treated PDAC- 
xenografted mice.93 Importantly, the microbiota 
may also produce these purine-related 
metabolites125 and microbial-derived inosine 
was shown to promote Th1 activation and opti-
mize responses to anti-CTLA-4 treatment in 
intestinal, bladder cancer and melanoma mouse 
models.126 However, further research is needed 
to provide mechanistic insights into the poten-
tial roles of microbial-derived nucleosides in 
PDAC.

Altogether, the biological activity of microbiota- 
derived metabolites in PDAC still remains largely 
unknown. However, this is a growing field of inter-
est, and high-throughput metabolomic screens are 
currently being used to help identify metabolites 
participating in PDAC development and determin-
ing responses to chemo- and immunotherapy.
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Microbiota modulation has therapeutic 
potential in PDAC

Currently, treatment of advanced PDAC patients 
relies mainly on chemotherapy-based regimens, 
although resistance to chemotherapy is often 
observed in the clinics.127 Therefore, PDAC treat-
ment remains a challenge, and there is an urgent 
need to sensitize PDAC tumors to available thera-
pies or develop novel strategies with better 
efficacy.128 Considering this scenario and the 
described roles for microbes in PDAC onset, pro-
gression and resolution, modulation of the micro-
biota may represent a novel therapeutic target to 
optimize the clinical outcomes in PDAC. So far, 
there are several approaches to modulate the 
microbiota which rely on diet, administration of 
pro- or antibiotics, fecal microbial transplanta-
tion, use of bacteriophages and substitution of 
specific bacteria isolates, among others.

Diet is a key factor influencing the composition 
of the microbiota in the gut and the availability of 
bioactive microbial-derived metabolites,129 making 
dietary interventions an appealing option in micro-
biota-associated diseases. The association between 
diet and pancreatic cancer risk is, however, still 
poorly explored. High-fat diets negatively imbal-
ance the gut microbiota while favoring pathogenic 
taxa, impairing gut barrier integrity and even driv-
ing colorectal carcinogenesis in a microbiota- 
dependent manner.130 High-fiber diets, in contrast, 
seem to have anti-tumor properties in CRC as 
a result of the metabolism of fibers into SCFAs 
such as butyrate.131 Accordingly, high intake of 
dietary fibers correlates negatively with pancreatic 
cancer risk.132 In line with this, in a xenograft 
mouse model of PDAC, an engineered resistant- 
starch (ERS) diet, which is fermented into SCFAs 
by colon bacteria, was shown to delay tumor 
growth.133 These types of high-fiber non- 
digestible foods that promote the growth and func-
tions of probiotic bacteria in the gut are often 
referred to as prebiotics.129

The diet could also be considered an interesting 
option to improve treatment outcomes in PDAC. 

Caloric restriction through fasting was described 
to improve responses to gemcitabine both in vitro 
and in vivo .134 In addition, we have recently 
shown that efficacy of chemotherapy in vivo was 
enhanced by 3-IAA resulting from a short-term 
tryptophan-high diet, as opposed to a more pro-
longed administration of dietary tryptophan 
which promotes tumor growth.25 It seems that 
dietary changes may even impact therapy toxicity, 
since dietary fibers were shown to reduce irinote-
can-induced toxicity in a rat model of colon 
carcinoma.135 Even so, despite the promising 
effects of diet-based interventions in PDAC treat-
ment, we are still lacking solid results from 
human-based trials. However, dietary clinical 
trials and clinical implementation of nutritional 
interventions involve several challenges that 
should be carefully considered, including difficul-
ties in ensuring patient compliance, absence of 
standardized protocols and timing and duration 
of the interventions.136

Probiotics, defined as living microbes associated 
with a health benefit to the host, are also being 
considered to ameliorate clinical outcomes in can-
cer. Research on probiotics in PDAC is still in its 
early stages, and the available data is scarce. 
Nevertheless, the most attractive candidates at the 
moment are butyrate-producing bacteria, such as 
Faecalibacterium prausnitzii (F. prausnitzii), 
Eubacterium rectale (E. rectale) and Roseburia 
intestinalis, given the reported anti-tumor roles of 
butyrate.137 Interestingly, these three species were 
shown to be less present in PDAC patients,44 as 
further confirmed in another study for 
F. prausnitzii and E. rectale.30 It has also been 
suggested that the administration of a probiotic 
mixture (composed mainly of Bifidobacterium 
spp. and Lactobacterium spp.) to PDAC- 
xenografted mice may retard epithelial-to- 
mesenchymal transition in the pancreas.138 In 
addition to probiotics, the use of postbiotics, con-
sisting of inanimate microorganisms and/or bioac-
tive compounds secreted by the intestinal 
microbiota (such as SCFAs), may also represent 
an interesting therapeutic strategy in PDAC, as 
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discussed earlier in section 4. However, research on 
postbiotics in PDAC is still evolving and their 
clinical use still faces several challenges, including 
the limited understanding of their mechanisms of 
action, as well as the need for standardization 
within the clinical setting.139

In the case of antibiotics, antibiotic therapy is 
often used in cancer patients prior to surgery or 
during treatment as a measure against opportunis-
tic infections.140 The beneficial roles of antibiotics 
and antifungals in PDAC have been thoroughly 
analyzed in preclinical models21–23,48 and retro-
spective cohort studies.77,80,141 However, broad 

spectrum antibiotics may not only eliminate patho-
genic bacteria which have been shown to mediate 
carcinogenesis or resistance to chemo- or immu-
notherapeutic drugs, but also commensal bacteria 
that may suppress tumor progression. Therefore, 
its use as an anti-tumor strategy should be carefully 
considered. Considering this, bacteriophage ther-
apy is emerging as an alternative to precisely target 
specific bacteria associated with progression and 
poor prognosis in cancer,30,142,143 but it has not 
been formally explored in PDAC yet.

Another possible strategy to modulate the gut 
microbiota is fecal microbial transplantation 

Figure 1. Roles of the microbiota in PDAC. The microbiota plays a role in PDAC carcinogenesis via the modulation of the immune 
compartment composition in the tumor microenvironment or via the production of microbiota-derived metabolites. PDAC patients 
have unique oral, intestinal and intratumoral microbiota signatures and its characterization may be useful as clinical biomarkers of 
PDAC diagnosis and prognosis. Considering this, strategies modulating the composition of the microbiota have therapeutic potential 
in PDAC. MDSCs: myeloid-derived suppressor cells. TAMs: tumor-associated macrophages. SCFAs: short-chain fatty acids. BAs: bile 
acids. Created with BioRender.com.
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(FMT), in which a mixture of gut microbes isolated 
from a healthy donor is used to colonize the gut of 
a recipient. Evidence supporting this approach in 
PDAC has been provided by Riquelme et al., who 
showed that FMT from patients with long-term 
survival into mice elicited anti-tumor immune acti-
vation characterized by higher numbers of acti-
vated CD8+ T cells and reduced infiltration of 
CD4+Foxp3+ cells and MDSCs.57 To evaluate 
whether these findings translate into the clinical 
setting, a phase I trial is ongoing with resectable 
PDAC patients receiving FMT delivered through 
colonoscopy or oral capsules, estimated to end in 
December 2023.144

Concluding remarks and future perspectives

In conclusion, research over the last decade has 
clearly shown that PDAC is associated with 
unique oral, gut and pancreatic microbiota sig-
natures (Figure 1). However, these signatures 
were not consistent across different cohorts 
and high inter-individual variability within 
each cohort was often reported. This poor 
reproducibility may be due to differential envir-
onmental and lifestyle-related factors, including 
geographical location, smoking and dietary 
habits, as well as lack of adjustment for poten-
tial existing confounding factors and differences 
in sampling and sequencing methods used. 
Recently, increasing concerns in the scientific 
community63,64 have also reinforced the impor-
tance of appropriate and careful sampling and 
analysis of microbial sequencing datasets, which 
should include control for sample contamina-
tion and correct separation of bacteria or fungi 
and human genomic reads to minimize false 
positive findings. Accordingly, despite the vast 
availability of literature on this topic, identifying 
a clearly consistent and transversal gut and 
intratumoral microbial composition still 
remains a challenge in PDAC. In addition, 
although experiments conducted in preclinical 
models of PDAC have been defining several 
organisms as causative agents of PDAC, more 
functional experiments are still needed to prove 

the role of microbe-mediated pathogenicity and 
thus provide mechanistic evidence of this inter-
play, especially in the case of fungi.

In addition to the direct roles of microbes them-
selves, microbial-derived metabolites are also 
increasingly being explored in this field. In the 
future, these metabolites may not only become 
useful as diagnostic biomarkers but also as media-
tors of therapy efficacy. Importantly, the profile of 
microbiota-derived metabolites arises from the 
diverse activities of various bacterial strains, poten-
tially serving as a comprehensive representation of 
complex bacterial communities. Consequently, 
investigating these metabolites could aid in miti-
gating the substantial variability observed when 
considering the composition of bacteria across dif-
ferent cohorts. Overall, in this review, we have 
highlighted and summarized the microbial-related 
functions reported thus far in PDAC (Figure 1) and 
discussed how these may pave the way for the 
development of novel diagnostic therapeutic 
options aiming at improving PDAC prognosis.
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