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ABSTRACT: Drug-induced cardiotoxicity (DICT) is a major concern in
drug development, accounting for 10−14% of postmarket withdrawals. In this
study, we explored the capabilities of chemical and biological data to predict
cardiotoxicity, using the recently released DICTrank data set from the United
States FDA. We found that such data, including protein targets, especially
those related to ion channels (e.g., hERG), physicochemical properties (e.g.,
electrotopological state), and peak concentration in plasma offer strong
predictive ability for DICT. Compounds annotated with mechanisms of
action such as cyclooxygenase inhibition could distinguish between most-
concern and no-concern DICT. Cell Painting features for ER stress discerned
most-concern cardiotoxic from nontoxic compounds. Models based on
physicochemical properties provided substantial predictive accuracy (AUCPR
= 0.93). With the availability of omics data in the future, using biological data
promises enhanced predictability and deeper mechanistic insights, paving the way for safer drug development. All models from this
study are available at https://broad.io/DICTrank_Predictor.

■ INTRODUCTION
Drug-induced cardiotoxicity (DICT) is a leading cause of drug
withdrawals during postmarket surveillance. One study showed
that 10% of withdrawals in the last 4 decades were due to
cardiovascular safety concerns, including previously successful
therapeutics such as rofecoxib, tegaserod, sibutramine, and
rosiglitazone.1 Another study found that cardiotoxicity was the
third most common reason for adverse drug reactions and
accounted for 14% of withdrawals.2 Worryingly, the rate of
DICT-related withdrawals may even be increasing, accounting
for 17 out of 38 cases among drugs approved between 1994
and 2006.1,3

DICT is associated with both functional damage such as
arrhythmia, which alters mechanical function, and structural
damage such as morphological damage in cardiomyocytes;
functional damage and structural damage in the heart can be
interrelated, where one may precipitate the other.4 DICT can
be attributed to several underlying mechanisms affecting
myocardial functions and viabilities.5 Some drugs, such as
anthracyclines, inflict direct myocyte injury via reactive oxygen
species production and compromising DNA replication.6

Electrophysiological disruptions, for example, measured in
the hERG potassium channel blockers, can lead to arrhythmias
by causing QT interval prolongation.7 Cardiac energy demands
can be affected by drugs that interfere with mitochondrial
functionality.1 Drugs may also adversely influence vascular

supply, inducing ischemic conditions.8 Intracellular calcium
regulation for cardiomyocyte activity can also disrupt its
homeostasis, resulting in contractile and rhythm abnormal-
ities.9 Furthermore, alterations in growth factors and cytokine
balances can induce cardiac conditions like fibrosis, and
immunologic drug reactions can also cause cardiotoxicity.10,11

Several neurohormonal pathways also offer indirect routes for
drug-induced cardiac stress.12 Notably, a single drug might
induce cardiotoxicity via multiple mechanisms, and individual
patients’ responses (which can often manifest as side effects)
can be modulated by genetics, concurrent health conditions,
and other medications.13

To move beyond a limited focus on specific adverse
reactions or related proxy assays for cardiotoxicity, the FDA
recently released the drug-induced cardiotoxicity rank
(DICTrank) that categorizes drugs based on their risk of
causing cardiotoxicity.14 Similar to the DILIrank data for liver
injury,15,16 the DICTrank system uses FDA drug labeling to
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comprehensively categorize 1318 human drugs into four DICT
Concern categories based on their potential risk for
cardiotoxicity: (1) most-DICT-concern, (2) less-DICT-con-
cern, (3) no-DICT-concern, and (4) ambiguous-DICT-
concern. The DICTrank data set was generated with an expert
review from the FDA, keyword searches, and manual curation
of FDA labeling documents as well as data from clinical trials,
postmarketing, and literature surveys.
Predictive models for DICT could save considerable time,

resources, and human suffering, with the ultimate goal of
preventing adverse events in clinical trials and the postmarket
stage. However, predicting any in vivo effect is not a trivial
classification task, and most predictive models are built on
proxy end points (which are often reduced to binary end
points) without taking into account in vivo parameters such as
pharmacokinetic parameters.17,18 While no models for
DICTrank have been publicly available yet to the best of our
knowledge, various studies have predicted proxy in vitro assays
or side effect data from side effects resource (SIDER), some of
which are related to cardiotoxicity.19 Studies focusing on side
effects and proxy targets (such as hERG) are reasonable given
that compounds that have cardiac-related indications are more
likely to show related side effects as well or activity on ion
channels.7

Previously it was shown that adverse events data and
biological data can be used for identifying mechanism
hypotheses leading to cardiotoxicity.20 Wang et al. used
LINCS L1000 gene expression features to predict a wide range
of drug-induced adverse events from the SIDER data set.21

Particularly for acute myocardial infarction, the models
developed achieved an AUC-ROC of 0.84 when using
chemical structural data and 0.76 when using Gene Ontology
annotations (compared to 0.5 for random models). Galeano et
al. used a matrix decomposition algorithm to predict side effect
frequencies for drugs and provide biologically interpretable
insights.22 MoleculeNet predictions for SIDER side effects,
trained on chemical structure data, range from 0.65 to 0.70
AUC-ROC when using a bypass network, a modified version of
a multitask network.23

Most predictive models mentioned above were built on
chemical structure data as input features. Although certain
structural motifs or patterns in a molecule can be indicative of
toxic properties and analyzing the chemical structure can flag
potential cardiotoxic compounds, such models are often
limited in their applicability domain; that is, their accuracy is
limited to the chemical space of the training data, and they fail
to generalize to markedly different chemical structures. Novel
chemical and biological data have been previously used to
evaluate side effects in general from the SIDER data set.24

Previous studies have shown that Random Forest models
trained on a combination of biological, chemical, and
phenotypic features achieved an AUCPR of 0.76 for cardiac
disorders.25

With the availability of the new DICTrank data set, we used
a novel multifaceted approach using both chemical and
biological data (that considers a multitude of possible
mechanisms that can lead to DICT) intending to better
understand and make mechanistic insights into a drug’s cardiac
safety profile. We evaluated a wide range of chemical and
biological information, as shown in Figure 1, to determine
which feature space is most predictive of DICTrank and
evaluated these feature spaces to build the first predictive
models of DICTrank using machine learning. Biological data
sources included Cell Painting, gene expression, and Gene
Ontology,26−30 as well as bioactivity, and annotated mecha-
nisms of action (MOA)31 and pharmacokinetic parameters for
the peak unbound and total concentration of a drug molecule
in plasma;32 these offer an alternate feature space to chemical
space.33 We aimed to glean insights into which chemical and
biological data best capture the carefully curated manual
annotations in the DICTrank data. Incorporating data from all
these sources as feature spaces for predictive models allows for
a multifaceted assessment of a drug’s potential cardiotoxicity,
potentially enhancing the model’s accuracy and reliability.
Overall, the use of biological data sources along with chemical
data improved the detection and offered mechanistic insights
into the cardiotoxicity of compounds. The models based on
chemical structures and physicochemical characteristics are

Figure 1. Chemical and biological data sources were used in this study to perform exploratory data analysis on DICTrank and training predictive
models.
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readily accessible for direct use on https://broad.io/
DICTrank_Predictor (the other models are not implemted
on the server due to the lack of public data for other feature
types). All code and data for all models can be found on
GitHub (https://github.com/srijitseal/DICTrank) for local
implementation with further details on https://broad.io/
DICTrank_Predictor.

■ METHODS
Data Sources. We obtained the DICTrank data set, as

released by Qu et al. which includes comprehensive
DICTConcern categories for a diverse set of over 1300
drugs.14 The SIDER database, a pharmacovigilance resource,
contained associations for drugs with side effects.23,34 We used
data from cardiac disorders from the SIDER data set to
compare concordance with DICTrank and enrich the data set
as described later. To gain insights into the MOA of various
drugs, we assessed relevant data from the Drug Repurposing
Hub,35 which contained information on 6777 drugs for 1130
MOAs and 2183 known targets. To explore the potential
targets of drugs, we incorporated the CELLSCAPE target
predictions on inhibition/antagonism for 2094 targets at four
concentrations (0.1, 1, 10, and 100 μM).36 We used
morphological profiles from the Cell Painting assay26 which
considers the impact of drugs on cellular morphology and
function. This data set contained a range of ca. 1700
morphological features for over 15,000 compound perturba-
tions. We obtained gene expression data from LINCS L1000
data which contains over 19,000 drugs as described in Wang et
al.21 This study utilized gene expression features derived from
LINCS L100027 transcriptomic data, capturing changes in 978
landmark genes across diverse human cell lines in response to
compound perturbations. Gene Ontology-transformed expres-
sion features,28 which encode biological processes involved
with gene expressions affected by the compound perturbations,
were extracted from a data set containing 4438 annotated
features linked to these compounds in the study.21 The
analysis by Wang et al. prioritized the strongest signatures
across cell line, concentration, and time point for each
compound using characteristic direction and evaluated the
enrichment across various gene set libraries via principal angle
enrichment analysis.37 Finally, we used pharmacokinetic data,
specifically the maximum unbound and total concentrations
(Cmax) of 758 drugs in the bloodstream, as compiled by
Smith et al.32 This data set contains Cmax (unbound) for 534
compounds and Cmax (total) for 749 compounds.
Standardization of the SMILES. For each data set, we

standardized chemical SMILES iteratively using RDKit38 and
MolVS39 functionalities. This includes steps for the InChI
transformation, molecular cleanup, charge neutralization,
tautomer normalization, and final standardization. We carried
out up to five iterations of the standardization until a

standardized SMILES was finalized; otherwise, we chose the
most common SMILES from the counter. Finally, the molecule
was protonated at pH 7.4 using DimorphiteDL to reflect its
likely state at physiological pH.40 Hence, we obtained
standardized SMILES and standardized InChI.
Preprocessing Data. For the DICTrank data set, we

binarized the data set considering DICT no-concern as 0 and
less- and most-concern as one as DICTrank labels for machine
learning classifiers. We removed compounds that were
ambiguous and treated a compound as toxic if there was at
least one record of toxicity among duplicates. For the SIDER
data set, we removed duplicate standardized smiles and, similar
to the above, labeled a compound as toxic if there was at least
one evidence of toxicity among the duplicates. Labels from
both SIDER and DICTrank are described in Table 1.
For the Cell Painting, gene expression, and Gene Ontology

data sets, we use median cell profiles over standardized
SMILES obtaining two data sets: 1783 Cell Painting features
for 15,406 compounds, and gene expression features for 978
landmark genes and 4428 Gene Ontology annotations for 9132
compounds. For the MOA data set, we used one hot encoding
of given annotations for compounds, which effectively gives us
data for evidence of the presence of MOA/known targets and
the absence of evidence. We used a variance threshold of 0.001
to identify and remove low-variance features, reducing the
dimensionality to 264 MOA and 551 known target features
with significant variability. All data sets are released publicly at
figshare (10.6084/m9.figshare.24312274) and https://broad.
io/DICTrank_Predictor.
Analyzing Chemical Space Overlap Between SIDER

and DICTrank. We used standardized InChI to calculate the
overlap between SIDER and DICTrank data sets. We assessed
the physicochemical space using a t-distributed stochastic
neighbor embedding (TSNE; as implemented in scikit-learn41)
for six physicochemical properties, namely, molecular weight,
topological polar surface area, number of rotatable bonds,
hydrogen bond donors and acceptor, and the computed
logarithm of the partition coefficient. To analyze the chemical
space, we used a principal component analysis (PCA) of the
FragFP fingerprints from DataWarrior,42 which in our
experience works better with a higher explained variance in
the plot of the PCA compared to Morgan fingerprints.
Structural and Physicochemical Features. For struc-

tural features, we used 2048 bit Morgan Fingerprints as
implemented in RDKIT.38 For chemical compounds, we
computed 1579 descriptors using Mordred.43 These phys-
icochemical descriptors are derived from 2D representations of
compounds; that is, we did not consider 3D descriptors. We
removed the descriptors that failed to compute and finally
obtained 1038 2-D physicochemical descriptors, and these
were used for the machine learning models. For the analysis of
feature distributions, we used the full set of 208 RDKit

Table 1. Distribution of Compound Toxicity Labels Related to Cardiotoxicity/Cardiac Disorders for All Unique Compounds
from Each of the Datasets Used in This Study

data set label
number of toxic
compounds

number of non-toxic
compounds description

SIDER cardiac disorders (binary) 829 360 (absence of
evidence)

recorded adverse drug reactions from marketed medicines

DICTrank DICT concern category
(categorical)

most: 299, less: 443 no: 278 (evidence of
absence)

ranking system from DICTrank that categorizes drugs according to
risk for cardiotoxicity

DICTrank label (binary) 742 278 (evidence of
absence)

binarized labels obtained from DICT concern categories used in
this study
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descriptors, (which are better interpretable compared to
Mordred descriptors) as defined in the descriptors module.38

Predicted Targets from CELLSCAPE. To derive
predicted molecular targets for compounds, we utilized the
commercially available CELLSCAPE target prediction package
(Ignota Labs, 2023).36 This package applies models trained on
a mixture of publicly available and proprietary bioactivity data
(primarily inhibitory/antagonistic mechanisms) at 0.1, 1, 10,
and 100 μM with chemical structural features to output a
probability score (between 0 and 1) of predicted activity for
2094 distinct human targets. Although not used in this study,
publicly available target prediction alternatives are also
available such as PIDGINv444,45 and SwissTargetPred.46 We
provide the computed CELLSCAPE features for compounds
in the DICTrank data set publicly via figshare (10.6084/
m9.figshare.24312274) and https://broad.io/DICTrank_
Predictor.
Substructure Analysis and Retrospective Analysis of

DrugBank. For substructure analysis, we used SARpy47 on the
DICTrank data set, in a method similar to the one applied by
Hemmrich et al.48 SARpy uses a recursive algorithm for
fragmentation. We used two distinct settings for analysis: (1)
using both toxic and nontoxic compounds and (2) using only
toxic compounds to yield the desired substructures. For both
settings, we confined the fragment size within a range of two-
18 atoms, with a minimum occurrence of five times.
Furthermore, the positive predictive value (PPV) was adjusted
to minimize false negatives. We combined structural alerts
from both settings and quantified the frequency of these
fragments within the entirety of the DICTrank data set. We
eliminated fragments with a PPV of below 0.5. We then
manually assessed the remaining fragments, for example,
removing those having four or fewer atoms, removing
substructures like benzene to obtain 58 structural alerts.
We analyzed all compounds in DrugBank49 for the presence

of structural alerts from the above to evaluate the risk of the
chemical space of drugs for cardiotoxicity. We only used the
compounds that did not overlap with the DICTrank data set
for this retrospective analysis to avoid information leaks. We
annotated these compounds with labels for cardiac disorders
from SIDER and disease area labels from the MOA data set.
We then checked for the presence of structural alerts among
the subset of compounds that are currently approved,
investigational, experimental, or withdrawn drugs.
Analysis of Chemical and Biological Data for Differ-

ences in Feature Distribution for DICTrank Com-
pounds. We detected features that are predictive of highly
cardiotoxic compounds. In order to do this, we detected
features for each chemical and biological data set that had a
significant difference in the distribution for the DICT concern
categories. For categorical features (SIDER, MOA annotations,
and some of the 208 RDKit descriptors), we employed the chi-
squared test (as implemented in SciPy50) to evaluate the
association between categorical variables. We used a
contingency table, delineating the frequency distribution for
each combination of category values. The chi-squared test
yielded a statistical value alongside a corresponding p-value.
For continuous features (as in the Cell Painting, Gene
Expression, Gene Ontology data sets, and some of the 208
RDKit descriptors), we chose the Kruskal−Wallis test (as
implemented in SciPy50) for evaluating the DICT-Concern
labels since it is suited for comparisons involving three or more
independent groups. Conversely, when comparing two classes,

pairwise, the Mann−Whitney U test (as implemented in
SciPy50) was used which is adept at discerning differences in
distributions between two independent samples. Both tests
yield a statistic value alongside its corresponding p-value. For
both total unbound/plasma concentrations, as in the Cmax
data set, we used the Mann−Whitney U test to compare the
distribution of Cmax among each DICT concern class and the
DICTrank label.
Enriching DICTrank Compounds with SIDER Com-

pounds. We next determined the overlap of compounds (and
the concordance in their labels) in the DICTrank data set with
the compounds in SIDER labeled with “cardiac disorders”
using the standardized InChI yielding 776 compounds in
common. We next enriched DICTrank with SIDER giving a
preference to the DICTrank label in the case of a conflict. In
this manner, we obtained three data sets besides the DICTrank
data set with the distribution of toxic/nontoxic compounds
given in Supporting Information Table S1. These are (1)
DICTrank, (2) DICTrank enriched with cardiotoxic com-
pounds from SIDER, (3) DICTrank enriched with non-
cardiotoxic compounds from SIDER, and (4) DICTrank
enriched with all compounds from SIDER.
Training Predictive Models for DICTrank. We trained

11 Random Forest models, each using the following features
(as listed in Table 2): (1) Structural fingerprints, (2) Mordred
descriptors, (3) MOA labels, (4) MOA labels along with total
Cmax, (5) MOA labels along with unbound Cmax, (6)
CELLSCAPE predicted protein targets, (7) CELLSCAPE
predicted protein targets along with total Cmax, (8) CELL-
SCAPE predicted protein targets along with unbound Cmax,
(9) Cell Painting features, (10) Gene Expression features, and
(11) Gene Ontology features.
The training data available for these models depended on

the number of compounds for which data was available and
varied, as given in Supporting Information Table S1. As the
external test set, we aimed to keep that fixed for a fair
evaluation depending on available data, as shown in
Supporting Information Table S2. For models not using
Cmax data (where overlaps were larger and hence more data
was available), we randomly selected 90 compounds (8.8% of
the data set, 65 cardiotoxic and 21 nontoxic) for which all
annotations of feature spaces were available (as described in
Supporting Information Table S1). These 90 compounds
struck a similar balance of DICT concern categories (most: 39,
less: 26, and no: 25) as the original DICTrank data set. For
models using total Cmax data, we used the same external test
set comprising 90 compounds since total Cmax data were
available for these compounds. However, for models using
unbound Cmax data (which had smaller overlaps compared to
the above), we used a subset of 78 compounds (57 cardiotoxic
and 21 nontoxic) as the external test set as shown in
Supporting Information Table S2.
Among the models that relied on omics data (Cell Painting,

Gene Expression, and Gene Ontology), we checked for each
training compound whether a profile (feature set) was
available. If there was no profile available in the respective
data sets, we calculated the median profile of all compounds in
the original data set using a v-NN approach, which is different
from a fixed k-nn approach; v-nn selects the neighbors based
on a condition for each query compound. We used the median
profile on the v training compounds that had a Tanimoto
similarity greater than 0.70. We ignored any similar compound
that appeared in the external test set to avoid information
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leaks. Subsequently, we further discarded any compounds for
which no feature profile was found directly or using the above
v-nn approach. Thus, while the test sets for the DICTrank and
DICTrank enriched data sets are the same, it is important to
note that the training data for them vary for the models (as
described in Supporting Information Table S1) since we
dropped compounds where no feature data could be found or
matched.
For each of the 11 models, we used a Random Forest

classifier, with hyperparameter optimization on the training
data using a halving random search with a 5-fold stratified
cross-validation with a random oversampling to account for
class imbalance (as implemented in scikit-learn41). We used
the best hyperparameter-optimized estimator and obtained
out-of-fold predictions with a 5-fold stratified cross-validation.
We used the out-of-fold predictions and the true labels to
optimize the decision threshold for binary classification using
the J statistic, calculated as the difference between the true
positive rate and the false positive rate. This determines the
threshold from ROC curve values, where the J statistic is
maximized. The model was finally refitted on the entire
training data set, and we used the optimized threshold to make
final predictions based on the predicted probabilities of the
external test set.
We trained two ensemble models to combine the models

from the 11 feature spaces above. These were based on soft
voting, which considered the mean of the scaled predicted
probabilities of each mode (scaled according to the best
threshold of each model). The first model considered only the
six best-performing models (structural, physicochemical,
MOA, CELLSCAPE, MOA with Cmax total, and CELL-
SCAPE with Cmax total) in the cross-validation (AUC >
0.65). The second ensemble model considers all 11 models
and thus is evaluated on the reduced external test set of 78
compounds where data from all feature spaces were available.
Model Evaluation and Applicability Domain. We

evaluated the classifiers using the balanced accuracy, sensitivity
(or recall), specificity, F1 score, Matthews Correlation
Coefficient (MCC), AUC-ROC, and the AUCPR, or
precision−recall curve, which focuses on the positive class.
To evaluate the applicability domain of the models, for each

compound in the external test set, we calculated the Tanimoto
similarity of the nearest neighbor of the same DICTrank label
(toxic/nontoxic) in the training data set. We grouped
compounds in five equal bins from Tanimoto similarity of
0.0 to 1.0 and evaluated the balanced accuracy and AUCPR in
this range for the models used in this study.
Statistics and Reproducibility.We have released the data

sets used in this study which are publicly available at 10.6084/
m9.figshare.24312274. We released the Python code for the
models which are publicly available at https://github.com/
srijitseal/DICTrank and further details are available on
https://broad.io/DICTrank_Predictor.

■ RESULTS AND DISCUSSION
In this study, we used various biological and chemical data sets
to discern among the DICT concern categories, deriving
insights into the carefully annotated FDA DICTrank data set.
We also trained predictive models using these feature spaces.
In particular, we used the Cell Painting data from Bray et al.,
which captures a wide array of cellular phenotypes after
perturbation, e.g., drug treatment, and has been shown to have
a signal for various in vitro toxicity.26,51 We also usedT
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experimental (from the Repurposing Hub31) and predicted
bioactivity data derived from models trained on a mixture of
publicly available and proprietary data sets (Ignota Labs
CELLSCAPE36), mostly relating to inhibitory/antagonist
mechanisms. For structure-derived feature spaces, we used
Morgan fingerprints derived from chemical structures as well as
physicochemical Mordred descriptors which are often related

to pharmacokinetic properties (such as logD, molecular
weight, solubility, permeability, and so forth) and implicitly
encode the bias between bioactivity classes and chemical
structures.52 Finally, we looked at pharmacokinetic parameters
for the peak unbound and total concentration of a drug
molecule in plasma (Cmax).53 We organized and standardized

Figure 2. Comparison of the SIDER data set with DICTrank: (a) the overlap and concordance (percentage of the total compounds with the same
annotation, among the 776 compounds present in both sets) of DICTrank labels with SIDER cardiac disorder labels, (b) the overlay of SIDER and
DICTrank chemical space in a TSNE of physicochemical properties, and (c) the postivie predictive value (PPV) of other side effects in SIDER for
DICTrank labels (toxic/nontoxic).
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various chemical and biological data, as shown in Table 2, to
analyze their ability to predict DICTrank labels.
DICTrank Labels are Highly Concordant with SIDER

Labels. Among the 776 compounds present in both
DICTrank and SIDER cardiac disorders data sets (Figure
2a), we found an 87.24% concordance rate in the annotations
(labels) between the two data sets (Supporting Information
Table S3; SIDER labels have an F1 score of 0.91 when
compared against DICTrank labels). This suggests that SIDER
labels, which ascertain cardiac disorder events reported as
associated with each drug and are often dependent on
aggregated dispersed public information and package inserts,
agree with DICTrank labels, which ascertain if a compound is
classified as cardiotoxic by the FDA.
The physicochemical space of SIDER and DICTrank

generally overlap (Figure 2b), defined as a TSNE space for
six physicochemical properties, namely, molecular weight,
topological polar surface area, number of rotatable bonds,
hydrogen bond donors and acceptors, and the computed
logarithm of the partition coefficient. Still, compounds
exclusively available in the SIDER data set could help enrich
nontoxic compounds in areas of the chemical space where
DICTrank only covers toxic compounds. We see a similar
trend for a chemical space defined in fragment fingerprints
space from DataWarrior42 (Supporting Information Figure
S1). Therefore, we chose to assess whether adding SIDER
compounds to DICTrank compounds improved the predictive
ability. Interestingly, other categories of SIDER adverse effects
were highly correlated to DICTrank (Figure 2c); the
interrelationships of vascular disorders and nervous system
disorders are well-known.5,56 Overall, drug adverse events, as
recorded in SIDER, have a high concordance with DICTrank
labels from the FDA and there is a strong rationale to rely on
both resources.
Maximum Total and Unbound Compound Concen-

tration in Plasma Predict Cardiotoxicity. We next
determined if a high Cmax indicated compounds more likely
to be cardiotoxic as seen in the case of doxorubicin where
cardiotoxicity was found to be Cmax dependent.57 As a single

parameter, Cmax was not sufficiently discerning to differentiate
between compounds that fall under the ‘most-concern’ and
‘less-concern’ categories as per the DICT concern classification
(Figure 3). However, for both peak total plasma levels and
peak unbound (active) plasma levels’ Cmax, the median
distributions were significantly distinguishable between car-
diotoxic and nontoxic compounds (Figure 3) suggesting that
Cmax can be a useful parameter in determining cardiotoxicity.
Cyclooxygenase Inhibition is Predictive of Cardiotox-

icity Concern. Turning to manual annotations of compound
MOA and/or targets, we found that cyclooxygenase inhib-
itors58 along with tyrosine kinase receptor inhibitors were the
most significant annotations differentiating the various DICT
concern categories (Table 3); this is plausible given cyclo-
oxygenase inhibition, besides reducing inflammation, can also
lead to increased blood pressure59 while tyrosine kinase
receptor inhibition can induce endoplasmic reticulum stress
and inflammation in cardiomyocytes.60 In agreement with this,
known targets of prostaglandin endoperoxide synthases
(PTGS1 and PTGS2 genes, which encode cyclooxygenases
COX-1 and COX-2) could significantly distinguish among
most-, less-, and no-DICT concern categories (Table 3).
CELLSCAPE-Predicted Protein Targets Such as hERG

are Predictive of Cardiotoxicity. Among CELLSCAPE-
predicted protein targets, the predicted activity of compounds
against KCNH2 best differentiates among the three DICT
concern categories. The KCNH2 gene, also known as the
human ether-a-̀go-go-related gene (hERG), is well-known for
its significance in the cardiac electrical cycle and hERG
inhibition can lead to cardiac arrhythmias.61 We also found
that the top three features to distinguish the two DICTrank
labels (cardiotoxic versus nontoxic) were α-l-fucosidase I, P-
selectin, and carbonic anhydrase IX. The activity of plasma α-l-
fucosidase has been pinpointed as a potential biomarker for
cardiac hypertrophy and complements the currently used
marker, atrial natriuretic peptide.62 Elevated amounts of
soluble P-selectin in the blood are evident in various heart-
related conditions, like coronary artery disease, hypertension,
and atrial fibrillation.63 Carbonic anhydrase IX plays a role in

Figure 3. Distribution of (a) peak total concentration in plasma and (b) peak unbound (active) concentration in plasma for each drug in the
DICTrank data set across the three DICT concern categories.
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managing the intracellular pH in the heart muscle, which is
vital for the heart’s functionality.64

Hypothesis-free Omics Data for Cardiotoxicity are
Related to MOA. Omics data sources such as Cell Painting
(imaging), gene expression, and Gene Ontology features cover
a broad swath of biology, not specifically targeted to cardiac
function. For Cell Painting, the fine-grained smoothness of the
ER in the cytoplasm and RNA in the nucleus were the top
features that differed significantly among toxicity classes. This
is plausible given disruptions in ER function can lead to ER
stress, which is associated with various cardiovascular
diseases.67 For the gene expression feature space, activating
transcription factor 1 (ATF1), which is essential for
cardiomyocyte function, was the top feature. The other two
gene expression features that could distinguish DICT concern
categories were phosphatidylinositol-5-phosphate 4-kinase type
2 beta (PIP4K2B) and glyoxalase domain containing 4
(GLOD4); both have indirect links to heart disease and
other fibrotic conditions (Table 3). Among Gene Ontology
annotations, we found that biological processes related to
vesicle transport, potassium ion transmembrane transport, and
response to methylmercury could best differentiate signals for
the concern categories. This is plausible given that
cardiomyocytes rely on vesicular transport for various
functions, including the delivery of membrane proteins and
lipids. The potassium ion channels play crucial roles in cardiac
cell electrical activity and dysregulation can lead to arrhythmias
and other heart complications.72,73 Exposure to mercury (Hg)
is also considered a risk for ischemic heart disease.74

Physicochemical Properties can Differ Among DICT
Concern Categories. Among the various molecular descrip-
tors evaluated in our study, VSA_EState6 could significantly
distinguish among the DICT-concern categories. This electro-
topological state descriptor aggregates the differences in
electronegativity between an atom and its neighboring atoms
in a molecule, adjusted by their relative distances while
focusing on atoms with specific van der Waals surface area.75

This suggests that specific electronic and spatial properties are
captured by the VSA_EState6 descriptor, although it is difficult
to interpret directly. The second predictive feature, Qed,
captures a quantitative estimation of the drug-likeness score
that encapsulates the underlying distribution data for a range of
drug properties.76 The third predictive feature, NumHAccep-
tors refers to the number of hydrogen bond acceptors in the
compound. Munawar et al. showed that the most potent hERG
inhibitors typically possess two aromatic groups, one hydro-
phobic group, and one hydrogen bond acceptor, at specific
relative distances from each other.77

Structural Alerts from DICTrank can Detect Com-
pounds Causing Cardiac Disorders from a Retrospec-
tive Analysis of DrugBank. We determined 59 structural
alerts that distinguish cardiotoxic and nontoxic compounds in
the DICTrank data set (Figure 4). Two structural alerts had a
high PPV for the DICT most-concern category, including one
with aromatic rings. Aromatic rings can lead to π-stacking or
hydrophobic interactions with aromatic rings of amino acids
within the hERG channel cavity increasing the potential for
blocking and subsequent cardiotoxic effects.78 Six structural
alerts distinguished toxic versus nontoxic compounds with a
PPV of one and more than ten occurrences in the data set (the
PPV was used to filter the structural alerts, hence is not an
evaluation metric here). Structural alerts with tertiary amines
were consistently protonated at physiological pH in the

DICTrank data set, suggesting their importance in biological
activity and hERG channel binding.79,80 It is also known that
compounds with secondary amine (more hydrogen bond
donor number) are likely to be less potent hERG inhibitors
compared to tertiary amine (less hydrogen bond donor
number).80

We next analyzed compounds in DrugBank49 for the
presence of at least one of the two structural alerts above for
the most-concern category. We annotated these hits with
heart-related side effects from SIDER34 and their current status
(approved, withdrawn, and so forth) as indicated in DrugBank.
We found six approved drugs, some experimental and some
investigation, with reported cardiac disorders from SIDER
(Table 4). These compounds spanned different classes of
compounds, with the presence of a tertiary amine that remains
protonated or aminopyridine rings as defined by the structural
alerts. We found evidence in the literature for the risk of
cardiovascular disorders for three of the six compounds,
namely, ipratropium, tiotropium, and mivacurium.81−83 Over-
all, our analysis shows that the DICTrank data set is a rich
source of cardiotoxicity-causing compounds, with the potential
to be used to build pharmacophore models and evaluate
compounds with reported adverse events for their potential
mechanisms of toxicity. Overall, we could detect multiple
approved drugs that match the structural alerts for both the
DICT most-concern category (as shown in Table 4) and
DICTrank labels for cardiotoxicity (further details in
Supporting Information Figure S2).
Predictive Models for DICTrank Labels. Finally, given

the promising signals seen in each data type, as described
above, we evaluated whether cardiotoxicity might be predicted
using the data sources currently publicly available. Several data
sources contained sufficient information to successfully train

Figure 4. Structural alerts for (top) the most-concern DICT category
and (bottom) DICTrank labels with more than ten occurrences and a
PPV > 0.6 for compounds in the DICTrank data set.
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models to predict DICTrank labels (Table 2). We trained 11
models on four types of training data: the DICTrank
compounds alone and DICTrank compounds enriched with
cardiotoxic/nontoxic/all compounds in the SIDER data set (as
shown in Supporting Information Table S1). A direct
comparison of the predictive value of data sources is not
possible due to the incomplete intersection of compounds with
available data of each type. Still, we fixed the held-out test set
of compounds to be those where data were available for all
feature spaces such that only the training set of compounds
varied among data sources. We trained two ensemble models,
one using six models (structural, physicochemical, MOA,
CELLSCAPE, MOA with Cmax total, and CELLSCAPE with
Cmax total) that performed relatively well on the internal
cross-validation (evaluation metrics from cross-validation for
all feature space and data set combinations, are given in
Supporting Information Table S4). This ensemble model was
evaluated on an external test set of 90 compounds. Another
ensemble model was built on all 11 models, which required
testing on a smaller held-out test set due to the limited overlap
of data. Evaluation metrics for all models are given in84

Supporting Information Table S5.
Looking at each data source independently, we found that

models using Mordred descriptors evaluated on the 90
compounds held-out test set (AUC: 0.84, AUCPR: 0.93;
random AUC: 0.50, AUCPR: 0.72) performed better
compared to models trained on predicted protein targets

(AUC: 0.77, AUCPR: 0.89) and MOA annotations with Cmax
(total) (AUC: 0.77, AUCPR: 0.90) (Figure 5a,b). In fact,
models using Mordred descriptors were as good as the
ensemble of six selected models (AUC: 0.83, AUCPR: 0.92;
random AUCPR: 0.72) also evaluated on the 90 compounds
held-out test set (Supporting Information Figure S3). Further,
models across most data sets performed with high AUCPR and
F1 scores, with top-performing models using Mordred
descriptors (AUCPR: 0.93; random AUCPR: 0.72) and
ensemble models (AUCPR: 0.93 for both ensemble models)
when using the DICTrank data set directly (Supporting
Information Figure S3a and b). Exceptions were models using
the broad-based omics data, Cell Painting, Gene Expression,
and Gene Ontology, where the performance was relatively
poor and similar to random predictions according to the
distribution of respective training data. This lack of predictive
power may be inherent to the data sources but could also be
due to the highly unbalanced and sparse training data available
for these data sources (see Supporting Information Table S2).
When comparing the models evaluated with the smaller test set
(Supporting Information Figure S3), we found that models
trained on the DICTrank data set enriched with all SIDER
compounds and using MOA data with Cmax (unbound)
(AUCPR: 0.93, random AUCPR: 0.73) performed equally as
the ensemble models that used predictions from all 11 models
trained on just the DICTrank data set (AUCPR: 0.93; random
AUCPR: 0.73). Overall, a strong detection of cardiotoxicity

Table 4. Six Hits from SIDER with Structural Alerts for the DICT Most-Concern Category
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was seen equally among the ensemble model and models using
physicochemical descriptors.
We next analyzed the applicability domain of these models

based on evaluating the quality of prediction for groups of
compounds that are structurally dissimilar to the training data.
We found that ensemble models and models using MOA
annotations perform consistently well across the similarity
range (Figure 5c). Models using Mordred descriptors, on the
other hand, perform with slightly lower AUCPR when
compounds are structurally dissimilar to the training data.
Finally, we predicted the DICTrank labels for 82 unique

compounds that were labeled ambiguous in the original
DICTrank data set (Supporting Information Table S6). We
used Mordred descriptors and retrained the model on all 1020
compounds (training and held-out compounds) in DICTrank,
except for the ambiguous compounds. We found that 43 of the
82 ambiguous compounds were predicted to be cardiotoxic
and 39 were predicted to be nontoxic and provided this list to

the community for further study (Supporting Information
Table S6).
Limitations of This Study. While we considered in this

study various chemical and biological data sources, it is
important to remember that conclusions are based on limited
data. Certain feature spaces contain features that are computed
based on chemical structure, such as CELLSCAPE target
predictions and physicochemical properties, while data sets
such as MOA and SIDER are manually gathered and have
'evidence-of-the-presence' and 'absence-of-evidence' annota-
tions. To train models using feature spaces such as Cell
Painting, Gene Expression, and Gene Ontology data sets, we
dropped compounds where we could not find profiles
(whether experimentally captured or imputed based on
matching to highly similar compound profiles using the v-nn
approach). The amount of training data (and also the class
balance of SIDER/DICTrank labels) is lower for these models.
Although we compare data sources using the same test

Figure 5. Comparison of evaluation metrics models built in this study with an external test set of 90 compounds evaluated by the (a) AUC-ROC
and (b) AUCPR and (c) performance of each model across compounds that are similar (dissimilar) to the training data. The ensemble mode in (c)
is based on the models built on six data sources listed in the main text, and evaluation is for 90 held-out compounds; results for the ensemble using
11 data sources and 78 held-out compounds are in Supporting Information Figure S3.
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compounds, the varying amounts of training data and the
differing types of compounds represented therein can
disadvantage some data sources versus others, such that we
cannot with certainty compare the signal contained across the
feature spaces. The poor performance of -omics data should
therefore not yet be attributed to representing the signal in the
feature space. Rather in this study, we aim to evaluate the
signal present in the data that is available and build the best
predictive models possible with public data. Recently, deep
learning lgorithmms have been shown to learn feature
representations from various -omics data. Transfer learning
allows for leveraging pretrained models on large data sets (for
example general image-based models), which can then be fine-
tuned for specific tasks with limited data (such as Cell Painting
data).85,86 Similarly, one-shot learning shows potential in
enabling models to make precise predictions with minimal
data.87 In the future, deep learning models, by learning and
generalizing across feature representations, hold the promise of
enhancing predictive accuracy and broadening the scope of
data analysis in the study of cardiotoxicity. Further, a recurring
challenge in using comprehensive -omics data is the sparsity of
data, which limits prospective validation.88 This necessitates
the development of models that can make reliable predictions
even with sparse or incomplete data sets. In this study, we
observed that models based on computed physicochemical
properties performed on par with other ensemble models. We
recommend that this model, which we have made available for
public use, be used for prospective validation. In the future, the
availability of more data, for example, Cell Painting from
JUMP-CP89 and Recursion RxRx390 will significantly improve
our ability to ascertain the presence of a signal for
cardiotoxicity in -omics data.

■ CONCLUSIONS
In this work, we used biological and chemical data (Figure 1)
to predict DICT. We determined the feature contained in each
data source that most differed between the most-concern
versus nontoxic category for DICTrank and found these could
drive mechanistic insights. Features from data sources such as
predicted protein targets and annotated MOAs that could
distinguish the DICT concern categories resembled activity
against targets (ion channels in particular) that are
mechanistically most plausible. We further evaluated these
feature spaces using machine learning to build the first
predictive models of DICTrank. Our findings indicate that
models relying on physicochemical properties trained on larger
training data sets performed on par with the ensemble models
based on diverse data sources. The exploratory data analysis in
this study suggests that as more -omics data becomes
accessible in the future, it will enhance our ability to predict
cardiotoxicity. Therefore, for the present, when constructing
models using public data sets, we advocate the use of Mordred
descriptors and predicted targets (based on chemical
structure), since these computed properties are readily
available for compounds; they do not require experimental
data and could be used to build models for cardiotoxicity. In
the future, using biological data, we can look into the biological
pathways and mechanisms of DICT leading to better drug
design and safer therapeutic strategies.
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