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A B S T R A C T   

Background: The reclassification of Papillary Thyroid Carcinoma (PTC) is an area of research that warrants 
attention. The connection between thyroid cancer, inflammation, and immune responses necessitates considering 
the mechanisms of differential prognosis of thyroid tumors from an immunological perspective. Given the high 
adaptability of macrophages to environmental stimuli, focusing on the differentiation characteristics of macro-
phages might offer a novel approach to address the issues related to PTC subtyping. 
Methods: Single-cell RNA sequencing data of medullary cells infiltrated by papillary thyroid carcinoma obtained 
from public databases was subjected to dimensionality reduction clustering analysis. The RunUMAP and Fin-
dAllMarkers functions were utilized to identify the gene expression matrix of different clusters. Cell differenti-
ation trajectory analysis was conducted using the Monocle R package. A complex regulatory network for the 
classification of Immune status and Macrophage differentiation-associated Papillary Thyroid Cancer Classifica-
tion (IMPTCC) was constructed through quantitative multi-omics analysis. Immunohistochemistry (IHC) staining 
was utilized for pathological histology validation. 
Results: Through the integration of single-cell RNA and bulk sequencing data combined with multi-omics anal-
ysis, we identified crucial transcription factors, immune cells/immune functions, and signaling pathways. Based 
on this, regulatory networks for three IMPTCC clusters were established. 
Conclusion: Based on the co-expression network analysis results, we identified three subtypes of IMPTCC: 
Immune-Suppressive Macrophage differentiation-associated Papillary Thyroid Carcinoma Classification 
(ISMPTCC), Immune-Neutral Macrophage differentiation-associated Papillary Thyroid Carcinoma Classification 
(INMPTCC), and Immune-Activated Macrophage differentiation-associated Papillary Thyroid Carcinoma Clas-
sification (IAMPTCC). Each subtype exhibits distinct metabolic, immune, and regulatory characteristics corre-
sponding to different states of macrophage differentiation.   

Introduction 

Recent worldwide epidemiological data indicate a notable rise in the 
prevalence of thyroid cancer over the past few decades [1]. Thyroid 

cancer (TC) is the most widespread endocrine tumor and ranks as the 
eighth most common cancer globally [2,3]. Although thyroid cancer has 
long been recognized as a less malignant malignancy with a better 
prognosis, its high incidence still leads to a significant number of 
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patients experiencing poorer outcomes. Different TC types originating 
from the same differentiated cells show varying prognoses. Except for 
medullary thyroid carcinoma (MTC), which originates from paraf-
ollicular cells, most TCs develop from follicular epithelial cells. The 
majority of cases of thyroid carcinoma consist of papillary thyroid 
cancer (PTC) and follicular thyroid cancer (FTC). Despite being less 
common, anaplastic thyroid cancer (ATC) plays a significant role in the 
mortality associated with thyroid cancer [4,5]. However, despite the 
generally favorable prognosis associated with PTC, a subset of patients 
still experience adverse outcomes, including recurrence and metastasis 
[6]. 

PTC, FTC, and ATC exhibit distinct molecular mechanisms despite 
their shared origin. These differences are also believed to potentially 
demonstrate a progressive nature [7]. The variations in prognosis 
observed within the same pathological type of TC can be attributed, on 
the one hand, to clinical characteristics and, on the other hand, to mo-
lecular mechanisms that influence tumor prognosis. However, taking 
PTC as an example, there is still no consensus on whether molecular 
pathogenic mechanisms contribute to prognostic differences, as evi-
denced by the ongoing debate regarding the impact of BRAF gene mu-
tations on PTC prognosis [8]. Therefore, we speculate that progressive 
molecular mechanisms may also be present within the same patholog-
ical types of tumors. 

At this juncture, considering the prognosis differences of tumors 
from an immunological perspective offers a new approach to unraveling 
this complexity. Ever since Rudolf Virchow proposed the connection 
between inflammation, immune response, and cancer in 1863, under-
standing how the immune system intervenes in tumor progression has 
been a crucial direction in exploring the pathogenic mechanisms of 
cancer [9]. This direction was further explored when Hanahan and 
Weinberg defined the characteristics of tumors [10]. The notion of the 
tumor microenvironment was presented, emphasizing its crucial func-
tion in the onset and progression of tumors. The normal tissue micro-
environment can suppress malignant tumors, while certain pathological 
tissue features are crucial for tumor progression [11,12]. It is of para-
mount importance to simultaneously acquire a comprehensive under-
standing of the tumor microenvironment and delineate the 
immunological aspects of the tumorigenic process to assist in halting 
tumor progression via immune surveillance. Given the numerous con-
nections between thyroid cancer, inflammation, and immune response 
[13], it becomes increasingly crucial to focus on changes in the immune 
environment within the realm of TC. Tumor-infiltrating myeloid cells 
(TIMs) [14] are crucial regulators in tumor progression, operating 
within the intricate cellular networks of the tumor microenvironment. 
They have significant involvement in modulating tumor inflammation 
and angiogenesis, as highlighted by studies [15,16]. Macrophages, as 
important constituents of TIMs, are involved in various aspects of tumor 
immunity. Furthermore, macrophages have become a central focus in 
tumor immunology research due to their remarkable adaptability to 
environmental cues and their complex roles influenced by both temporal 
factors and the surrounding microenvironment [17,18]. 

The objective of this research was to uncover the complete picture of 
tumor pathogenicity by utilizing single-cell RNA sequencing (scRNA- 
Seq) technology. Our focus was on examining the immune microenvi-
ronment to elucidate the prognostic differences in PTC. Based on the 
differentiation of tumor-infiltrating macrophages and their immuno-
logical status within the tumor microenvironment, we established a 
clinical classification of PTC, termed Immune status and macrophage 
differentiation-associated papillary thyroid cancer classification 
(IMPTCC). Based on the immune progression status, we classified 
IMPTCC into three subtypes: Immune-suppressive macrophage 
differentiation-associated papillary thyroid carcinoma classification 
(ISMPTCC), Immune-neutral macrophage differentiation-associated 
papillary thyroid carcinoma classification (INMPTCC), and Immune- 
activated macrophage differentiation-associated papillary thyroid car-
cinoma classification (IAMPTCC). Each subtype exhibits distinct 

pathogenic mechanisms based on differences in the immune environ-
ment and molecular regulatory networks. Moreover, these subtypes 
provide novel insights into the potential pathogenic mechanisms of 
thyroid cancer at the levels of the immune microenvironment and 
metabolism. 

Methods 

Data acquisition 

The scRNA-seq information of thyroid macrophages was acquired 
from the GSE154763 database, comprising gene expressions of 5312 
cells from 10 patients who were diagnosed with papillary thyroid car-
cinoma. The Cancer Genome Atlas (TCGA) database (https://cancerdat 
a.nci.nih.gov/) provided data for 512 tumor tissues and 5 metastases, 
along with genomic profiles, RNA sequencing profiles, Reverse Phase 
Protein Array (RPPA) profiles, Transposase-Accessible Chromatin 
sequencing (ATAC-seq) profiles, population statistics, and clinical in-
formation including overall survival rates. From 2016 to 2018, the Tenth 
People’s Hospital affiliated with Tongji University recruited a total of 72 
patients who were diagnosed with PTC for histopathological validation. 
Furthermore, all primary data were obtained from openly accessible 
repositories, and no further ethical clearance was necessary. Table S1 
lists all the datasets, code packages, and software information used in 
this study. Supplementary materials containing clinical data confirmed 
by pathological histology and the original code of this study have been 
uploaded. 

Batch correction and data quality control 

Our scRNA-seq data were obtained from batch-corrected PTC sample 
datasets publicly released by Professor Zemin Zhang’s research [19]. 
These datasets were processed using Scanorama [20], an algorithm 
designed to identify and merge shared cell types across multiple data-
sets, thus eliminating batch effects within the datasets. The sequencing 
data from the GEO database, consisting of scRNA-seq information, were 
imported into the R software package. After applying the CreateSeur-
atObject function, the data were converted into a Seurat object, followed 
by quality control analysis using the Seurat R package. For further 
analysis, only cells that expressed more than 100,000 transcripts and 
had less than 10 % mitochondrial genes were considered. Further 
analysis also included genes that were expressed in a minimum of 3 cells. 
After applying the NormalizeData function, the data were normalized 
and the resulting values saved in the pbmc dataset. The function Find-
VariableFeatures was utilized for the identification of genes that exhibit 
high variability. The vst technique was utilized to identify the top 2000 
genes with significant variation among all the genes, which were then 
employed for subsequent analysis to reduce dimensionality. Subse-
quently, the ScaleData function was used to linearly transform the data, 
normalizing the expression values of each gene to a mean of 0 and a 
variance of 1, thereby eliminating scale differences between different 
genes. 

Data dimension reduction 

The data from individual cells were subjected to principal compo-
nent analysis (PCA) using the RunPCA function. To find an optimal 
number of principal components for further analysis, the ElbowPlot 
function was used and detected a notable change in direction at the 10th 
PC. Subsequently, the Uniform Manifold Approximation and Projection 
for Dimension Reduction (UMAP) nonlinear dimensionality reduction 
technique was employed using the RunUMAP function to visually 
represent the complex structure of the data and the outcomes of clus-
tering. UMAP was performed using the initial 20 principal components 
as input. The clustering process used the FindNeighbors function to 
perform clustering, while the FindClusters function was employed to 
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group cells at a clustering resolution of 0.5. The differential gene 
expression analysis involved the utilization of the FindAllMarkers 
function to identify markers specific to each cell type. To select genes 
showing differential expression, certain criteria were considered: a 
positive correlation, expression in a minimum of 25 % of cells, and a 
log2 fold change threshold of at least 0.25. 

Cell cycle analysis 

Cell cycle scoring of the scRNA-seq data was conducted using the 
Seurat package, employing well-established gene sets associated with 
the G2/M and S phases. The CellCycleScoring function within Seurat 
was utilized to convert gene expression values into G2M and S phase 
scores. Additionally, the VlnPlot function was used to generate violin 
plots of the G2M and S phase scores, facilitating visualization of score 
distribution across distinct cell populations. 

Cell subpopulation annotation 

The annotation of cells within each UMAP cluster was achieved using 
established cell surface markers, derived from the differential expression 
genes in each cluster and the CellMarker database [21]. The identifi-
cation of marker genes for each cell type was conducted using the Fin-
dAllMarkers function of the Seurat package. The visualization of the 
expression trends of these markers across various cell subpopulations 
was achieved through the generation of heatmaps. The normalized data 
were represented through feature plots or violin plots. To evaluate the 
spatiotemporal distribution of distinct subpopulations within each cell 
type, individual cell types were isolated and organized as Seurat objects 
for subgroup analysis. The RunUMAP function, in conjunction with the 
FindAllMarkers function and Wilcoxon rank-sum test, was employed to 
detect differentially expressed genes (DEGs) among subgroups of the 13 
cell types. Ultimately, the variations in spatial distribution and expres-
sion traits of the 13 cell subpopulations were depicted through cell 
feature plots, spatial feature plots, and heatmaps. 

Macrophage subtyping and differentiation trajectory analysis 

To explore the distribution of macrophage subtypes at different dif-
ferentiation stages in thyroid cancer, we first employed the RunUMAP 
and FindAllMarkers functions from the Seurat package, along with the 
Wilcoxon rank-sum test, to construct an independent Seurat object for 
all macrophages across the samples. Macrophage subtyping was ach-
ieved using the Seurat package’s FindClusters function, following PCA 
dimensionality reduction. We employed the first 20 principal compo-
nents to discern co-expression patterns among cells. Subsequently, cells 
were clustered at a resolution of 0.1, leading to the identification of 
distinct macrophage subtypes. These subtypes were visualized and 
differentiated using UMAP plots, reflecting their unique expression 
profiles. The identification of differentially expressed genes (DEGs) 
within macrophage subtypes 1–5 was performed using the FindAll-
Markers function. This function identifies genes significantly upregu-
lated within each subgroup compared to all other cells, based on 
predefined thresholds of minimum percentage expression (min. pct =
0.25) and log fold change (logfc. threshold = 0.25). This analysis entails 
comparing each macrophage subgroup against the entirety of other cells 
in the dataset. We then applied additional filtering criteria, selecting 
genes with an average log2 fold change (avg_log2FC) greater than 0.5 to 
pinpoint the most significant DEGs. For each macrophage subgroup, we 
extracted the top five genes exhibiting the highest avg_log2FC changes 
as characteristic DEGs, providing a detailed insight into the unique 
expression profiles of each subgroup. Subsequently, we performed a 
subpopulation analysis of the data. Next, we utilized the Monocle 
package in R (version: 2.18.0) to analyze the differentiation trajectory of 
macrophages [22]. We employed the newCellDataSet function to cate-
gorize the UMI expression matrix, sample metadata, and gene 

expression information of all macrophages based on their differentiation 
trajectory. Unsupervised ordering was applied to all cells. The estima-
teSizeFactors function was used for data normalization. The detectGenes 
function was employed to filter out genes with low expression levels. 
Cell numbers at each time point were calculated to determine the 
developmental or differentiation starting point. After performing gene 
filtering and identifying differentially expressed genes, a total of 1000 
genes were obtained as the foundation for cell ordering. Subsequently, 
the DDRTree method was used to reduce the dimensionality of cell 
clusters. The main chart was integrated into the high-dimensional 
scRNA-seq dataset, revealing the correlation between the gene expres-
sion space with many dimensions and a space with fewer dimensions. 
The differentiation trajectory between cells was built by projecting the 
expression data onto the low-dimensional space through the construc-
tion of a Minimum Spanning Tree (MST) using DDRTree. MST was 
recursively calculated to assign pseudotime to cells for ordering. The 
plot_cell_trajectory method was employed to display the developmental 
path of the cells, illustrating their various stages of differentiation. 

Furthermore, we applied the Branch expression analysis modeling 
(BEAM) approach to infer the cell differentiation trajectory, comparing 
the differences between branching points and terminal branches to hy-
pothesize cell fate in differentiation. Finally, we computed the differ-
entially expressed genes (DEGs) among macrophage subtypes in 
different differentiation stages (States) and defined them as macrophage 
differentiation-related genes (MDGs). We selected the MDGs based on a 
q-value < 0.05 derived from the DDRTree algorithm and used them to 
sort the differentiation trajectory. 

Consistency cluster analysis 

To develop the immune status in Macrophage-infiltrated Thyroid 
Cancer Classification (IMPTCC), additional screening of MDGs is 
necessary. This screening procedure involved the integration of bulk- 
RNA sequencing data sourced from the TCGA database. Through the 
correlation of gene expression data with prognostic information derived 
from clinical samples, we utilized the survminer and limma packages to 
calculate Cox proportional hazards models for each gene. Genes with 
KM p-value < 0.05 and Cox regression p-value < 0.05 were selected for 
inclusion in the IMPTCC. Integration of significantly expressed genes 
from Bulk-RNA sequencing data analysis and scRNA-seq data pseudo-
time analysis retained genes that satisfied the following four criteria: [1] 
MDGs with q-values < 0.05 obtained through DDRTree algorithm and 
genes used for differentiation trajectory order; [2] MDGs exhibiting 
significant (non-parametric test p-value < 0.05) correlation between 
gene expression and pseudotime of PTC samples; [3] Genes showing 
significant (non-parametric test p-value < 0.05) results in Kaplan-Meier 
survival analysis; [23] Genes demonstrating significant (non-parametric 
test p-value < 0.05) results in univariate Cox survival analysis. Conse-
quently, the integration of cellular differentiation features and clinical 
prognostic features yielded Macrophage differentiation and 
prognosis-related genes (MD&PRGs). 

Subsequently, we employed the packages igraph, psych, reshape2, 
and RColorBrewer to construct and visualize gene co-expression net-
works for 19 MD&PRGs. Initially, the correlation between gene ex-
pressions was computed, and significant gene pairs were selected based 
on a p-value threshold; the correlation coefficients and p-values stored 
in a matrix. Next, the igraph package was utilized to generate the co- 
expression network graph. Nodes were assigned colors based on the 
grouping of genes according to their cellular differentiation states and 
risk factors, while node sizes were allocated based on the results of Cox 
proportional hazards regression analysis. The relationships between 
genes were represented using line attributes, with line width indicating 
the magnitude of p-values, and line color indicating the direction of 
correlation (pink for positive correlation and blue for negative 
correlation). 

By using the ConsensusClusterPlus package in the R programming 
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language, the consensus clustering analysis (CCA) algorithm was 
applied to cluster the observed samples based on the expression profiles 
of key genes and to integrate their intrinsic characteristics. Observa-
tional samples with similar features, as determined by their close 
Euclidean distances, were defined as belonging to the same cluster 
subtype. To enhance clustering stability and representative grouping, 
the optimal clustering model was selected by constraining the cumula-
tive distribution function (CDF) growth rate, the proportions of samples 
within each group, and both intra-group and inter-group correlations 
[24]. 

Principal component analysis and clinical correlation analysis 

To convert the clustering results into quantitative variables, we 
performed PCA analysis on the sample data using the prcomp and pre-
dict functions. The gene expression data of the samples were dimen-
sionally reduced, and the scores of each sample on the first two principal 
components were computed, yielding PCA scores for each sample. Based 
on these scores, the samples were divided into high and low groups. The 
surv_cutpoint, survdiff, and survfit functions were applied to integrate 
the survival data of the samples for survival analysis, and the ggsurvplot 
and ggplot functions were used for visualization. The results were 
visualized using box plots, bar graphs, violin plots, and heatmaps 
(P<0.05 indicating statistical significance). To obtain more reliable re-
sults, we chose progression-free survival (PFS) as the clinical survival 
outcome endpoint for analysis. Furthermore, with the aid of PCA scores, 
we conducted multi-omics analysis at the genomic, transcriptomic, 
proteomic, and epigenomic levels for the 19 MD&PRGs. 

Survival analysis and prediction model construction and diagnosis 

Differential expression analysis was performed using primary tumor 
and metastasis RNA-seq data from the TCGA database. Survival- 
associated genes were identified through univariate Cox regression 
analysis, and the top 20 prognostic genes were determined using Lasso 
regression based on the survival-associated genes. A multifactorial 
prognostic model was established by identifying the differentiation cell 
fate genomic signature in THCA. Subsequently, we employed random 
number table allocation to divide all samples into a training set and a 
validation set in a 6:4 ratio, and the prior model was trained based on 
the training set. Finally, the hypothesis was validated using the cross- 
validation set to determine the optimal Receiver Operating Character-
istic (ROC) area. Samples were scored based on the median risk score, 
and risk curves, scatter plots, and expression heatmaps were generated. 
The area under the ROC curve was used to evaluate the accuracy of the 
model. Univariate and multivariate Cox regression analyses were 
applied to evaluate whether the risk score, age, gender, and TNM staging 
were independent prognostic factors. 

Genomics correlation analysis 

To calculate the percentage of copy number gains and losses for 
important genes in the samples, we utilized Perl scripts and R code for 
copy number variation (CNV) analysis. Circular chromosome plots dis-
playing the chromosomal location information of the key genes were 
generated using the RCircos package. To analyze the correlation be-
tween tumor mutation burden (TMB) and PCA scores, as well as mi-
crosatellite instability (MSI), and to evaluate the prognostic differences 
of the samples by integrating TMB and PCA scores, the ggpubr and 
reshape2 packages were utilized. The oncoplot package was utilized to 
visualize and analyze gene mutation data. 

Gene-set enrichment analysis 

In this study, we used gene set variation analysis (GSVA) [25], gene 
set enrichment analysis (GSEA) [26], and Overall Represent analysis 

(ORA) [27] methods to better explore gene expression differences and 
their underlying functional implications. 

The gene sets utilized in this research were acquired from the Mo-
lecular Signatures Database (MSigDB) (version 7.1) [28]. To assess the 
variation in the activity of each sample within gene sets, we initially 
utilized GSVA to produce enrichment scores for hallmark gene sets for 
each sample using the ordered gene expression profiles. GSVA assesses 
the variation of biological processes without predefined phenotype in-
formation, thus utilizing all available gene expression information. The 
GSVA package was utilized to conduct GSVA analysis on the gene 
expression matrix, whereas the limma package was employed for dif-
ferential analysis, filtering significantly differentially expressed path-
ways using a logFC cutoff of 0.0001 and adjPvalue cutoff of 0.05. The 
ggplot2 package was used to create stacked bar plots and volcano plots, 
while the pheatmap package was employed to visualize the GSVA 
analysis results using heatmap plots. 

Furthermore, we utilized the ORA technique to investigate genes 
exhibiting notable variations in expression. To assess the degree of 
enrichment in a particular set of genes, the comparison was made based 
on the proportion of genes that showed significant differential expres-
sion within the said gene set. By utilizing the ORA analysis, we con-
ducted a comparison between the 19 essential genes and the gene sets in 
the reference. We evaluated the enrichment of the important genes in 
nine sets of genes by conducting hypergeometric distribution testing. 
The gene sets were classified into nine functional categories according to 
various functional characteristics, which include groups of gene sets 
labeled as C1-C8 and the HALLMARK gene set group. 

To further elucidate underlying biological phenomena and mitigate 
biases arising from threshold selection, we employed the GSEA method 
to identify gene sets with similar expression patterns and examine their 
enrichment between the high-risk and low-risk groups. Specifically, we 
conducted GSEA analyses on the Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) and Gene Ontology (GO) gene set databases. Signifi-
cantly enriched gene sets with p-values less than 0.05 were identified for 
each database. GSEA plots depicting the top five significantly enriched 
gene sets were generated separately for the high-risk and low-risk 
groups [29,30]. 

Immune infiltration and immune checkpoint analysis 

We analyzed the correlation between the expression of the PD-L1 
gene and PCA scores by utilizing data acquired from The Cancer 
Immunome Atlas (TCIA) [31]. Furthermore, we investigated the vari-
ances in the quantities of immune cells infiltrating tumors among PCA 
score groups categorized as high and low. This analysis involved 
assessing the levels of expression for two immune checkpoint proteins, 
namely CTLA-4 and PD-L1. The limma and ggpubr packages were uti-
lized for the analysis of immune checkpoint data processing and 
visualization. 

We employed single-sample gene set enrichment analysis (ssGSEA) 
[32] to assess the immune infiltration status and accurately evaluate the 
differences in immune expression among different subtypes and be-
tween primary and metastatic samples. By utilizing known 
immune-related gene sets, we calculated immune infiltration scores for 
each sample to evaluate the degree of immune infiltration. The immune 
infiltration status was visualized using the corrplot and ggpubr pack-
ages, allowing for intuitive observation and comparison of the differ-
ences in immune infiltration levels among different subtypes. 

To investigate the composition of infiltrating immune cells in com-
plex tissues, we employed a technique known as Cell-type Identification 
By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) [33]. 
This method relies on the characteristics of gene expression profiles to 
estimate the relative subsets of RNA transcripts. To determine the cor-
relation between MDGs and immune cell infiltration in PTC tissues, we 
uploaded the microarray expression data and RNA-seq gene expression 
matrix data to the Cell-type Identification By Estimating Relative 
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Subsets Of RNA Transcripts (CIBERSORT) database to assess the im-
mune infiltration status of the samples. 

Proteomic analysis 

Protein expression values were calculated using gene expression 
profile data and Reverse Phase Protein Array (RPPA) data. Furthermore, 
the correlation between the gene expression profile and protein 
expression values was computed. 

Regulatory network construction 

To further explore the potential regulatory mechanisms of various 
subtypes of IMPTCC, a standardized approach was used to analyze 
quantitative results obtained from MD&PRGs, transcription factors, 
immune cells/immune function, RPPA protein arrays, and signaling 
pathways. We performed co-expression analysis by utilizing Pearson/ 
Spearman correlation analysis. The analysis was based on data 
normality and rank, with a threshold set at R > 0.300 and P 〈 0.001. 
With minimum screening criteria of R 〉 0.300 and P < 0.001, we con-
structed an intricate regulatory network focused on the MD&PRGs of 
every IMPTCC subtype. The regulatory network was visualized using the 
igraph package in the R programming language (http://igraph.sourcefor 
ge.net) [34]. 

Targeted drug prediction analysis for each subtype 

The Connectivity Map (Cmap) is an algorithm that explores the 
statistical matching relationship between small molecule active drugs 
and target genes based on whole-genome transcriptional expression data 
from human cells treated with small molecule compounds. The Cmap 
algorithm incorporates over 7000 cell culture systems and 1309 small 
molecule active drugs, all of which are FDA-approved drugs, and es-
tablishes a drug-function gene-disease network. This network provides a 
statistical basis for identifying small molecule inhibitors targeting genes 
associated with therapeutically relevant diseases (https://portals.broad 
institute.org/cmap/) [35]. In this study, the Cmap algorithm was 
employed to explore small molecule drugs targeting the regulatory 
networks of different IMPTCC subtypes. Subsequently, a dot plot heat-
map analysis was used to identify the top 10 drugs with the lowest 
p-values as targeted drugs for each IMPTCC subtype. Furthermore, by 
integrating the gene expression profiles with the subtype classification, 
the most effective active drugs were selected. Additionally, we linked 
pharmacological data with genomic information using information from 
eight common thyroid cancer cell lines and visualized the data as 
heatmaps and box plots. Moreover, GDSC genomic data were utilized for 
predictive modeling of pharmacological sensitivity [36]. 

Chromatin accessibility assessment 

ATAC-seq [37] is a remarkable, versatile, uncomplicated, and potent 
approach for the comprehensive characterization of chromatin regions 
across the genome, in contrast to traditional methodologies such as 
functional assays or sequence conservation analyses. To establish the 
accessibility of crucial genes on chromatin, we procured ATAC-seq data 
pertaining to these genes. 

Histopathological validation 

Approval for histopathological validation using clinical samples was 
obtained from the Clinical Research Institution Review Committee of the 
Tenth People’s Hospital, which is affiliated with Tongji University in 
Shanghai. Before participation, all patients provided informed written 
consent. Samples for additional validation were gathered from the Tenth 
People’s Hospital, affiliated with Tongji University, from 2016 to 2018. 

Samples of initial tumors collected from a group of 72 patients 

diagnosed with papillary thyroid carcinoma underwent fixation and 
were then embedded in formalin and paraffin. Subsequently, these 
specimens underwent standard procedures of sectioning, dehydration, 
antigen retrieval through rehydration, and blocking, and were sliced 
into sections measuring 4 µm in thickness. The sections underwent in-
cubation with an APOE antibody (1:3000 proteintech) at 4 ◦C overnight. 
Afterward, polymer HRP was used to label all sections for 40 min and 
then counterstained with hematoxylin for 5 min at room temperature. 
The evaluation of all slides was conducted by two pathologists, whereby 
positive cytoplasmic staining in the cancer cells was defined. It is worth 
noting that both cytoplasmic and membranous APOE were stained uti-
lizing the same antibody. To create a negative control, the primary 
antibody was replaced with a buffer solution. We utilized non- 
parametric tests and Spearman’s correlation tests to assess the associa-
tion between the APOE staining intensity scores and the clinical features 
of the individuals. 

Statistical analysis 

The R programming language was utilized for processing and 
analyzing all the data. The normality of quantitative variables was 
assessed using the Shapiro-Wilk test, while Levene’s test was employed 
to examine the homogeneity of variances. Comparisons between the two 
groups were conducted using either the Mann-Whitney U test (also 
known as the Wilcoxon rank sum test) or the t-test, depending on the 
distribution of the data. The chi-squared test or Fisher’s exact test was 
used for categorical variables, depending on the anticipated frequencies. 
The level of statistical significance was determined to be p<0.05. 

Result 

ScRNA-seq cell subtype annotation 

Fig. 1a and Figure S1 display the workflow and schematic of the 
article. To explore the tumor microenvironment and immune landscape 
of thyroid cancer, we analyzed 5312 TIMs from 10 thyroid cancer pa-
tients obtained from the GEO database. Dimensionality reduction and 
clustering of scRNA-seq data using the Uniform Manifold Approxima-
tion and Projection method identified 15 unsupervised clusters, 
comprising 13 unique cell populations, and 5 cell types (monocytes, 
adipocytes, macrophages, cDC, and pDC) (Fig. 1b). The average number 
and percentage distribution of the 13 cell subgroups in 10 cancer and 
adjacent samples are displayed in a bar chart (Fig. 1c). It can be observed 
that, compared to normal tissues, tumor tissues exhibit significant 
macrophage infiltration. Similarly, the bar chart in Figure S2a also 
demonstrates a comparable distribution, and the Cleveland dot plot 
analysis of three marker genes further corroborates this observation. The 
macrophage-associated marker, CD68 [38], exhibits high expression 
within the macrophage-related subgroups, while the mast 
cell-associated marker, KIT [39], shows elevated expression within the 
mast cell subgroups. As observed from the bar graph, tumor tissues 
distinctly possess a higher expression proportion within the macrophage 
subgroups. The classical macrophage marker gene CD68 is significantly 
overexpressed in the macrophage subgroup, while ITGAX is expressed 
across all subtypes. The expression patterns of marker genes for each cell 
subtype are visualized in Fig. 1d. Considering the significant contribu-
tion of macrophages that infiltrate tumors to the advancement of tu-
mors, we isolated 3326 macrophages individually and conducted 
separate analyses to reduce their dimensions and cluster them. This 
process sets the stage for additional investigation into the characteristics 
of macrophages that infiltrate tumors. 

Differential expression analysis and cell cycle analysis for each cell 

To provide a deeper understanding of the immune composition in the 
5312 individual cell samples, we conducted an analysis of differentially 
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expressed genes (DEGs) on the top 2000 genes that exhibit high vari-
ability across all samples. A heatmap was created to exhibit the levels of 
expression of the top 5 differentially expressed genes (DEGs) for every 
subtype in every cell type (Figure S2b). To visualize the communication 
among the 13 subtypes of cells, cell communication networks and cir-
cular plots were employed (Figure S2c-d). Analysis of the cell cycle 
(Figure S2e-f) revealed that macrophages were primarily active during 
the G1 and G2M stages. 

Macrophage subtyping analysis 

The independent dimensionality reduction and clustering analysis of 
macrophages was performed by constructing separate Seurat objects for 
all samples. This analysis identified five subtypes of macrophages 
(Macro_1–5) (Fig. 2a). The distribution of 10 tumors and adjacent non- 
tumor samples within the five macrophage clusters was visualized using 
a bar plot (Fig. 2b). Among them, macrophages 2–4 predominantly 
originated from tumor tissue, while macrophages 1 and 5 exhibited a 
more complex origin, including both tumor tissue and adjacent normal 
tissue. The Cleveland dot plot depicted the expression levels of four 
classical marker genes associated with immune regulation and immune 
response (MRC1, CD40, SPP1, C1QC), revealing distinct immunological 
expression profiles among the five macrophage subtypes. Fig. 2c pre-
sents the top 5 differentially expressed genes (DEGs) within macro-
phages 1–5. Based on the gene expression characteristics in Fig. 2c, we 
functionally categorized five macrophage subgroups. Macro_1 expresses 
M2-related marker MRC1 [40] and stress-response genes HSPA1A and 
HSPA1B, indicating potential dual roles in pro- and anti-inflammatory 
processes [41]. Macro_2 is characterized by the expression of TNF and 
CD40, associated with pro-inflammatory responses [42]. Macro_3 ex-
presses SPP1 and CXCL1, underscoring its role in tissue repair and 
pro-inflammatory processes [43,44]. Macro_4 exhibits lipid metabolism 
genes APOE and APOC1, involved in lipid transport dysregulation and 
inflammation [45]. Finally, Macro_5 expresses CFP and FCN1, consistent 
with its function in complement activation and inflammation [46,47]. 
These subgroup characteristics emphasize the versatility of macro-
phages in the PTC microenvironment and their potential roles in disease 
progression. Finally, to further elucidate the malignancy-associated 
expression features of the five macrophage subtypes, Gene Set Varia-
tion Analysis (GSVA) was applied to generate hallmark gene set 
expression scores based on ranked gene changes in the sample expres-
sion profiles. In the results of gene set enrichment analysis shown in 
Fig. 2d, Macro_2 specifically exhibits a high expression of the classical 
inflammation-related TNFα pathway, highlighting its key role in 
pro-inflammatory responses [42]. Macro_4 shows elevated expression of 
the oxidative phosphorylation pathway, emphasizing its specialized 
function in energy metabolism. The IL6-JAK-STAT3 signaling pathway, 
associated with immune response and inflammation regulation [48], 
aligns with the functions of Macro_1. The commonly high expression of 
downregulated KRAS signaling and WNT/β-catenin pathways across all 
subtypes indicates a shared mechanism in regulating the PTC tumor 
microenvironment, consistent with our following co-expression network 
analysis results. These differences will be comprehensively explained in 
subsequent subtype analyses. 

Macrophage differentiation trajectory analysis 

To delineate the temporal changes in the immune microenvironment 
across the five macrophage subtypes, the Monocle package in the R 
language was employed to infer the differentiation order and formulate 
cell fate hypotheses. Pseudotime analysis, visualized through cell 
developmental trajectories, was used to depict the differentiation states 
of the macrophage subtypes. Figs. 3a-d depict the distribution and dif-
ferentiation trajectory of macrophage subtypes along three distinct cell 
fates. Each macrophage subgroup corresponds to a different state of cell 
differentiation. Macro_1 is involved throughout the differentiation 
process, while Macro_2 primarily exists in THCA 1, Macro_4 in THCA 2, 
and Macro_3 and Macro_5 in THCA 3. The time distribution suggests that 
THCA 1–3 represent early, mid, and late stages of pseudotime differ-
entiation. With a polar division based on the key differentiation node 1 
in Fig. 3a, two cell fates (cell fate 1, cell fate 2) are identified, as shown 
in the heatmap of Fig. 3e. THCA 1 and THCA 3 exhibit different cell 
fates, while THCA 2 appears to be in a transitional state. This compre-
hensive analysis led to a hypothesis about the sequence of macrophage 
subtype differentiation: THCA1 (early differentiation) corresponds to 
Macrophages 1 and 2; THCA2 (early/mid-differentiation) to Macro-
phage 4; and THCA3 (late differentiation) to Macrophages 1, 3, and 5. 

MD&PRGs identification 

During the analysis of pseudotime, we incorporated differentially 
expressed genes across various differentiation stages of macrophage 
subtypes, as well as relevant genes utilized for trajectory ordering 
through the DDRTree algorithm. This approach allowed us to identify 
crucial genes that are associated with the process of macrophage dif-
ferentiation. Additionally, we obtained bulk RNA sequencing data from 
the TCGA database, matching gene expression data with clinical sample 
prognosis information, to identify prognostically relevant key genes. By 
intersecting these two gene sets, we effectively screened genes based on 
four criteria: [1] Macrophage Differentiation Genes (MDGs) with 
q-values < 0.05 obtained through the DDRTree algorithm and genes 
used for differentiation trajectory ordering from scRNA-seq samples; [2] 
MDGs showing significant correlation (non-parametric test p-value <
0.05) with the pseudotime of Papillary Thyroid Cancer (PTC) samples in 
scRNA-seq; [3] Genes exhibiting significant results in Kaplan-Meier 
survival analysis (non-parametric test p-value < 0.05) from TCGA thy-
roid cancer samples; [23] Genes demonstrating significant results in 
univariate Cox survival analysis (non-parametric test p-value < 0.05) 
from TCGA thyroid cancer samples. This process led to the identification 
of a key gene set, termed Macrophage Differentiation and 
Prognosis-Related Genes (MD&PRGs), including 19 critical genes 
(Figure S3a). The prognostic information of these 19 genes is displayed 
in Figure S3b-c. 

Construct imptcc using consistent cluster analysis 

By conducting a correlation analysis on MD&PRGs, we performed a 
co-expression network analysis to elucidate the expression patterns of 
these genes across three cellular differentiation states (THCA1–3) 
(Fig. 4a). The ConsensusClusterPlus package in R was used, applying the 
consensus clustering algorithm, to construct the IMPTCC based on the 
expression profiles of the MD&PRGs. Subsequently, an analysis of 

Fig. 1. scRNA-seq analysis of tumor-infiltrating myeloid cells 
(a) The experimental design flow. The figure was created using BioRender.com. 
(b) The UMAP scatter plot illustrates the results of dimensionality reduction clustering, annotations of cellular subtypes, and the distribution of samples. Notably, 
5312 cells from 10 papillary thyroid cancer patients were clustered into 15 unsupervised clusters, which were subsequently annotated as 13 cell populations 
(Macro_NLRP3, Macro_INHBA, Macro_ISG15, Macro_LYVE1, Macro_C1QC, Macro_SPP1, cDC1_CLEC9A, cDC2_CD1C, cDC3_LAMP3, Mono_CD14, Mono_CD16, 
Mast_KIT, pDC_LILRA4). The distribution of tumor and normal tissue samples from the 10 patients exhibited differential patterns across these cellular subgroups. 
(c) The bar graph depicting the distribution of 13 cell populations across 10 sample sources. 
(d) The feature map illustrating the expression patterns of signature genes within 13 cell populations. 
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Fig. 2. scRNA-seq analysis of macrophage subpopulations. 
(a) The UMAP scatter plot revealing the dimensionality-reduced clustering of isolated macrophages, with annotations for cell subtypes and sample distributions. A 
total of 3326 cells were clustered into 5 cell subgroups (Macro_1, Macro_2, Macro_3, Macro_4, Macro_5). Tumoral and adjacent non-tumoral samples from the 10 
sources exhibit differential distribution across these cell subgroups. 
(b) The bar graph presenting the distribution of 10 tumor and adjacent non-tumor samples across the 5 macrophage clusters. Cleveland dot plot delineates the 
expression levels of four canonical markers (MRC1, CD40, SPP1, C1QC) associated with immunoregulation and immune response. 
(c) The heat map demonstrating the top 5 marker DEG expression levels for each cell type. 
(d) The heatmap displays the GSVA gene set enrichment analysis results for the 5 macrophage subpopulations. 
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feature proportions within the MD&PRGs gene set was conducted, with 
features subsampled for all specimens. The results suggest that k = 3 is 
the most optimal value (Figs. 4b-c). When there are three subtypes in 
IMPTCC, their respective expression statuses of the 19 MD&PRGs in 
each sample are visualized via a heatmap (Fig. 4d). 

Integrating Macro_1–5, derived from dimensionality reduction 
clustering, with the cell fate classifications THCA 1–3 from further 
analysis, we developed the IMPTCC. This classification, grounded in 
macrophage differentiation characteristics within the tumor microen-
vironment and correlated with clinical prognosis, reveals significant 
clinical and environmental implications. Fig. 4d demonstrates potential 
correlations between the three IMPTCC subtypes (Cluster 1–3) and the 
THCA1–3 cell fates, with Subtype 3 aligning with THCA1–2, Cluster 1 
with THCA3, and Cluster 2 appearing in a quiescent phase of differen-
tiation. This correlation will be further elucidated in upcoming co- 

expression network analyses. Further, Kaplan-Meier survival analysis 
confirmed that patients in Cluster 1 had the poorest prognosis, whereas 
those in Cluster 3 exhibited the best prognosis (Fig. 4e). 

Considering that the categorical results of IMPTCC obtained from 
consensus clustering might introduce bias in further analyses, we 
employed the Principal Component Analysis (PCA) algorithm to 
compute the PCA scores of the samples. All samples were categorized 
into high/low PCA score groups, and as depicted in Fig. 4f, there was a 
notable correlation between the PCA scores and prognosis. Furthermore, 
Fig. 4g and Figure S4a showed the PCA scores of the three IMPTCC 
subtypes. Figure S4b visually displays the prognostic outcomes of the 
three subtypes through a Sankey diagram. 

Fig. 3. Pseudo-time analysis traces the differentiation trajectory of macrophage subpopulations 
(a) Pseudo-time analysis reveals the order in which cell fate differentiation takes place. 
(b) Pseudo-time analysis illustrates the distribution of three cell fates. 
(c-d) Pseudo-time analysis demonstrates the distribution of 5 macrophage subpopulations. 
(e) The heatmap illustrates two distinct cell differentiation fate directions in the overall presentation of three cellular differentiation states (THCA1–3). 
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Fig. 4. Identification of MD&PRGs and IMPTCC construction 
(a) Co-expression network analysis elucidating the co-expression relationships of 19 MD&PRGs across three cellular differentiation states. 
(b-c) Bivariate clustering results from consistency matrices suggest optimal clustering into three groups at k = 3, evident from pronounced inter-group differences, 
minimal intra-group heterogeneity, and an expansive area under the CDF curve. Considering clustering distinction and maximal curve area principles, k = 3 is 
deemed optimal. 
(d) The heatmap displays the differential expression of 19 MD&PRGs across three IMPTCC clusters and three cellular differentiation states, correlating with their 
respective clinical characteristics. 
(e) Kaplan-Meier survival curves contrasting survival outcomes of the three clusters. 
(f) Kaplan-Meier survival curves comparing survival outcomes between high and low PCA groups. 
(g) Box plot delineating PCA score variations among the three clusters. 
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Construction, validation, and diagnosis of the predictive model 

Fig. 5a presents a box plot illustrating the differential expression of 
MD&PRGs among the three clinical subtypes. To confirm the accuracy of 
MD&PRGs in predicting the clinical results of thyroid cancer, we com-
bined the prognostic data of the expression pattern of 19 MD&PRGs 
from 503 TCGA database samples, excluding those without available 
metastasis information. This was subjected to univariate Cox regression, 
and 14 genes with statistical significance were incorporated into the 
subsequent analysis (Fig. 5b). Using Lasso regression, we identified that 
the ideal number of variables was nine (Fig. 5c, S4c). Following the 
analysis of multiple variables, a regression model was performed to 
create the predictive framework, affirming its significance as a distinct 
prognostic determinant (Figs. 5d-e). By employing a random number 
technique, the entire set of samples was partitioned into training and 
validation sets with a proportion of 6 to 4. The nine key genes exhibited 
differential expression patterns across the full sample set, training set, 
and validation set (Fig. 5f). To test the hypothesis, cross-validation was 
used, resulting in the optimal area under the ROC curve. Afterward, 
samples were classified into high-risk and low-risk groups based on the 
median risk score. The KM survival curve (Figure S4d), expression 
heatmap (Figure S4e), scatter plot (Figure S4f), and risk curve 
(Figure S4g) indicate that the risk model effectively differentiates the 
high-risk and low-risk groups. Figure S4h illustrates the quantitative 
evaluation of the model’s accuracy through the area beneath the ROC 
curve. The heatmap elucidates the baseline distribution of samples 
within the risk model (Fig. 5g). 

Multi-omics analysis 

Using PCA scores, we performed a co-expression analysis of 
MD&PRGs at the multi-omics level. The analysis of mutation probability 
visualized the patterns of gene mutation in the groups with high and low 
PCA scores, suggesting notable disparities in gene expression patterns 
between the two groups. Significantly, the group with the highest score 
displayed an increased likelihood of mutation in the RAS gene, aligning 
with the unfavorable prognosis observed in the high PCA group 
(Figure S5a-b). Based on the co-expression analysis presented in 
Figures S5c-d, it is inferred that the group with a low PCA score exhibits 
a higher TMB score. This finding suggests that this particular group may 
display increased sensitivity to immunotherapeutic agents like immune 
checkpoint inhibitors (for example, PD-1/PD-L1 inhibitors). Figures S5e 
and S5f respectively display the copy number variations of key genes 
and their chromosomal location information. 

From the results in Figure S6, the application of ORA and GSEA for 
enrichment analysis of various gene sets indicates that key genes 
consistently show enrichment for inflammation and immune-related 
gene sets across multiple databases. 

We employed the CIBERSORT algorithm and the ssGSEA algorithm 
to quantify 23 types of immune cells and immune functions in THCA and 
compared the correlation of these immune cells/features with 
MD&PRGs. The results reveal that most immune cells/functions exhibit 
significant differences across different IMPTCC subtypes (Figure S7a). In 
the analysis related to immune infiltration, subtype 2 demonstrated 
relatively active immune cell expression levels, consistent with our 
definition of subtype 2, suggesting that it might have relatively high 
immune cell expression levels. However, the intermediate prognosis 
outcome of subtype 2 suggests that this active immune state does not 
directly lead to tumor progression. In the combined PCA analysis, 
consistent with the TMB analysis results, the PD-L1 expression level in 
the low PCA score group was significantly elevated (Figure S7b). 
Concurrently, the combined analysis of PD-L1 and CTLA-4 indicates that 
the low PCA group has a better immune therapy response (Figures S7c- 
f). Consistently, PCA scores are negatively correlated with immune cell 
expression levels (Figure S7g). 

Construction of the co-expression network 

Upon determining the immune infiltration related to key genes and 
the enrichment of gene sets, we utilized the transcription factor data 
from the Cistrome database and the RPPA protein chip data obtained 
from the TCGA database to identify the related transcription factors 
upstream of the key genes and the downstream RPPA protein expression. 
In Figure S8, we visualized the key differential genes and the key com-
ponents of the multi-omics analysis, including transcription factors, 
immune cells, and hallmark gene sets, using volcano plots and heat-
maps. As a result, we discerned the relationships among the key com-
ponents required to construct the regulatory network, including DETFs, 
MD&PRGs, immune cells/immune functions, and signaling pathways. 

Construction of the regulatory network for each IMPTCC subtype 

To further investigate the potential key regulatory mechanisms of 
each IMPTCC subtype, we conducted a co-expression analysis based on 
the standardized DETFs, MD&PRGs, immune cells/immune functions, 
and signaling pathways quantitative results for each IMPTCC subtype. 
Using a correlation coefficient R>0.300 and P<0.001 as the minimum 
screening criteria, we constructed three complex regulatory networks 
centered on MD&PRGs, which encompassed upstream TFs, downstream 
signaling pathways, and potential regulatory immune cells/functions 
(Fig. 6a). Based on gene expression patterns, inhibitor analysis, and 
integrated regulatory network analysis, we named the three types from 
cluster1–3 as Immune-Suppressive Macrophage-Infiltrated Thyroid 
Carcinoma Classification (ISMPTCC), Immune-Neutral Macrophage- 
Infiltrated Thyroid Carcinoma Classification (INMPTCC), and Immune- 
Activated Macrophage-Infiltrated Thyroid Carcinoma Classification 
(IAMPTCC). We also used a co-expression heatmap to display the spe-
cific correlation coefficients in each regulatory network (Fig. 6b). The 
detailed regulatory relationships within the co-expression network will 
be further elaborated in the discussion section. At this stage, we have 
understood the expression characteristics of the three IMPTCC subtypes. 
This clarifies the unique correspondence among macrophage subtypes 
(Macro_1–5), cell fate differentiation states (THCA1–3), and IMPTCC 
subtypes: IAMPTCC (related to M1 macrophage differentiation direc-
tion) correlates with THCA1 and corresponds to macrophages 1, 2; 
ISMPTCC (related to M2 macrophage differentiation direction) with 
THCA3, corresponding to macrophages 1, 3, 5. INMPTCC, without a 
clear macrophage subgroup correspondence, suggests an intermediary 
differentiation state. Integrating these relationships, we find that mac-
rophages infiltrating PTC exhibit characteristics of transitioning from 
M1 polarized macrophages (anti-cancer, pro-inflammatory) to M2 
polarized macrophages (anti-inflammatory, pro-cancer). This aligns 
with our definitions of macrophage subtypes, cell fate differentiation 
subtypes, and IMPTCC subtypes. 

Identification of inhibitors through C-map and CCLE algorithms 

To further integrate our proposed clinical staging with clinical 
treatment decisions, we initially employed the Cmap algorithm to 
identify small molecule drugs targeting MD&PRGs and TFs within the 
regulatory network of each IMPTCC subtype. We then selected the top 
10 drugs with the smallest P-values and visualized them using a dot 
heatmap as target drugs for each IMPTCC subtype (Fig. 6c). Subse-
quently, with the assistance of the GDSC database, an analysis of drug 
sensitivity related to cell fate genes identified PIK-93 as a specific in-
hibitor for ISMPTCC (Figs. 6d-f). By integrating the results from both 
Cmap and GDSC databases, PI3K pathway inhibitor PIK93 [49], WNT 
pathway inhibitor LGK-974 [50,51], and M2 polarization inhibitor 
MS-275 [52] were found to be specifically effective against ISMPTCC, 
INMPTCC, and IAMPTCC, respectively. 
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Histopathological validation 

To enhance the clinical applicability of IMPTCC subtyping, the pre-
sent study adopted the differential expression of the APOE gene as a 
marker to delineate the three subtypes of IMPTCC. A total of 72 patients 
with a confirmed diagnosis of PTC were included, and based on the 
staining results of tumor pathological sections, they were categorized 
into groups with high and low staining intensities for APOE (Fig. 7a-b). 
Detailed clinical and immunohistochemical data were carefully recor-
ded for all samples. To discern disparities in clinical information and 
prognosis between the two groups, we conducted an association analysis 
concerning quantitative variables such as age, maximal dimension, and 
Ki67, along with categorical variables like metastasis, BRAF, and TERT, 
contingent on the high and low APOE expression categorizations. Given 
the inherent characteristics of the data distribution, the Mann-Whitney 
U test was deployed for quantitative variable comparisons. Categorical 
variables were evaluated using chi-square tests or Fisher’s exact tests. 
Table 1 showcases the baseline clinical and statistical analysis outcomes 
of the 72 PTC samples. We focused on the intensity of Ki67 expression, 
an immunohistochemical index associated with the prognosis of PTC 
[53], and the average intensity of Ki67 expression was higher in the 
APOE low expression group than in the APOE high expression group 
(Fig. 7c). Regarding clinical features, the percentage of lymph node 
metastasis and the mean tumor diameter were significantly higher in the 
APOE low expression group than in the APOE high expression group 
(Fig. 7d-e). Additionally, there was a significant difference in the posi-
tivity rate of HBME-1, an immunohistochemical marker used for the 
diagnosis of PTC [54], between the APOE high/low groups (Fig. 7f). 
These observations resonate with our antecedent subtype analysis, 
suggesting an association between diminished APOE expression and a 
less favorable clinical prognosis. 

Sequencing to detect transposase accessible chromatin 

Moreover, the accessibility of chromatin fragments for important 
genes (SQSTM1, RGCC, NRGN, PDK4, PLCXD1, APOE) was demon-
strated by high-throughput sequencing findings of transposase- 
accessible chromatin (ATAC-seq) (Figure S9). 

Discussion 

Tumors exhibit a complicated ecological environment in which 
heterogeneous malignant cells engage in complex interactions with both 
immune and non-immune cells, establishing the intricate cell network of 
the tumor microenvironment [10,55]. In the tumor microenvironment, 
TIMs [14] are crucial components of the immune ecology of the TME 
[15]. TIMs consist of several distinct major lineages, including adipo-
cytes, plasmacytoid dendritic cells (pDC), conventional dendritic cells 
(cDC), monocytes, and macrophages [12]. Macrophages are considered 
a double-edged sword with dual potential in cancer; their plasticity in 
response to environmental cues offers rich possibilities for 
macrophage-related research [56–58]. Owing to their function in 
mediating anti-tumor activity and inducing adaptive immune responses 
in immune regulation, macrophages have become one of the primary 
targets of current checkpoint inhibitor immunotherapy [59,60]. 

Additionally, studies on colorectal cancer in humans and mice have 
revealed that different subgroups of myeloid cells, while presenting 
functional differences, have variable sensitivities to therapeutic strate-
gies targeting immune cells [61]. This result suggests that different 
differentiation states of macrophages may lead to varied clinical prog-
nostic outcomes and responses to targeted treatments in tumors, which 
is also one of the significant reasons for our study on macrophage dif-
ferentiation in the thyroid cancer environment. 

During the research on macrophage differentiation, the polarization 
system of "classically activated" M1 and "alternatively activated" M2 
macrophages has been used to describe the in vitro activation status of 
macrophages [62]. However many studies believe that the binary 
M1-M2 model is insufficient to describe the activation of macrophages 
[63–65]. Owing to the plasticity of macrophages and their dependency 
on the surrounding environment, macrophages in the actual in vivo 
environment may exhibit more complex differentiation forms [66]. 

Through the integration of scRNA-seq and bulk RNA sequencing 
data, we analyzed the differentiation status of macrophages in tumor- 
related myeloid cells. Based on the differentiation characteristics of 
macrophages, we further reclassified the immunological environment 
levels of thyroid cancer. Using multi-omics analysis based on both 
scRNA-seq and bulk-sequencing data, we categorized the differentiation 
states of macrophages into three subtypes (ISMPTCC, INMPTCC, and 
IAMPTCC). These subtypes are classified based on their immune char-
acteristics into immune homeostasis, immune activation, and immune 
repair states, respectively reflecting the traits of M1-M0-M2 macro-
phages. However, unlike the classical binary description, this immune 
progression state, based on co-expression analysis results, does not 
strictly follow the classical characteristics of macrophage M1/M2 dif-
ferentiation and shows different molecular mechanisms of action. 

ISMPTCC is associated with Type I IFN response, M2 macrophages, 
and immune cells involved in immune repair. Concurrently, within the 
co-expression network, genes, transcription factors, and signaling 
pathways expressed by ISMPTCC manifest cellular metabolic traits. 
Notably, the expression patterns of glycolytic and lipid metabolic 
markers align with the anti-inflammatory metabolic characteristics 
typically seen in classically activated M2 macrophages. Macrophage 
polarization involves intricate metabolic shifts. Lipid and glucose 
metabolism are at the forefront of these changes. In M2 polarized 
macrophages, research indicates certain trends. Compared to M1 
polarized macrophages, which have pronounced inflammatory traits, 
M2 macrophages show decreased glycolytic metabolism levels [67]. 
They also demonstrate increased lipid metabolism, represented by 
processes like fatty acid uptake and oxidation [68–70]. These observa-
tions match the gene expression traits we identified in our study. Within 
the co-expression network of Fig. 6, cluster1, key genes PDK4, APOE, 
transcription factor FOXO1, and the downstream glycolytic pathway, 
PI3K/AKT/mTOR pathway hint at the potential regulatory mechanisms 
of this subtype. 

The transcription factor FOXO1 is a key member of the Forkhead 
transcription factors (FOX) family [71]. Depending on the regulatory 
targets it modulates, FOXO1 exhibits intricate regulatory activities, 
encompassing processes such as cell apoptosis, cellular metabolism, and 
immunological processes [72]. Its role in metabolic processes extends to 
both glucose metabolism and lipid metabolism. In terms of glucose 

Fig. 5. Construction, Validation, and Diagnosis of the Predictive Model 
(a) Box plot illustrating the expression level disparities of 19 MD&PRGs across three subtypes. (Statistical significance denoted as: *** for p < 0.001, ** for p < 0.01, 
and * for p<0.05). 
(b) Forest plot detailing the univariate Cox regression analysis of the 19 MD&PRGs, with 14 genes displaying statistical significance earmarked for subsequent 
selection. 
(c) Lasso path diagram demonstrating that post-lasso regression, the number of key genes incorporated into the predictive model was finalized at nine. 
(d) Box plot showcasing the differential expression of the nine pivotal genes across all sample groups, training sets, and validation sets, stratified by risk. 
(e) Univariate Cox regression analysis validates the risk score, computed from the predictive model, as a potential independent prognostic factor for PTC. 
(f) Multivariate Cox regression analysis confirms the risk score, derived from the predictive model, as an independent prognostic determinant for PTC. 
(g) Heatmap elucidates the baseline distribution of samples within the risk model. 
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metabolism, FOXO1 has been reported to be activated in diabetic car-
diomyocytes and attenuates glycolysis by stimulating PDK4 [73]. PDK4 
acts by phosphorylating and inhibiting the activity of another protein 
kinase, PDH, thereby suppressing glycolysis by limiting pyruvate pro-
duction [74]. Consistent with this, PDK4 is expressed at high levels in 
ISMPTCC (Fig. 5a), suggesting that ISMPTCC may exhibit a suppressed 
state in glycolytic metabolism. 

On the other hand, in terms of lipid metabolism regulation, FOXO1 
has been reported to modulate lipid synthesis through a principal lipo-
genesis regulator, PPARγ [75]. Concurrently, in ISMPTCC, RBP7 is 
distinctly overexpressed (Fig. 5a). RBP7 is a target gene of PPARγ [76]. 
A dedicated study on this gene revealed that overexpression of RBP7 in 
adipocytes enhances lipid droplet formation and TG accumulation. This 
is accompanied by an increased expression of crucial lipogenic proteins 
including Pparγ, Fabp4, C/ebpα, and AdipoQ [77], suggesting an active 
state of lipid synthesis in ISMPTCC. Beyond its evident lipid synthesis 
characteristics, regarding lipid breakdown regulation, APOE is specif-
ically underexpressed in ISMPTCC (Fig. 5a). Apolipoprotein E (apoE) is a 
multifunctional protein involved in clearing apoB-containing chylomi-
crons and very low-density lipoprotein (VLDL) remnants from plasma, 
thereby reducing plasma lipid levels [78]. The diminished expression of 
APOE indicates reduced lipid transport in ISMPTCC, and lipid retention 
is one of the crucial metabolic features of tumors [79]. This aligns with 
the traits of M2 macrophages promoting tumor progression. 

The metabolic characteristics of ISMPTCC in terms of carbohydrate 
and lipid metabolism align with the metabolic features of M2 polarized 
macrophages, both exhibiting inhibition of glycolysis and enhancement 
of lipid metabolism. We also observed that the PI3K/AKT/mTOR 
pathway is an integral part of the ISMPTCC expression network. 
Intriguingly, both FOXO1 and MTOR are activated by the PI3K/AKT 
signal [80], and MTOR also plays a role in metabolic regulation [81]. 
This suggests a consistent role in metabolic regulation by MTOR and 
FOXO1, both downstream molecules of PI3K/AKT, and hints at a new 
direction for targeting the pathogenic mechanisms of ISMPTCC. In line 
with this, based on our drug sensitivity analysis conducted on tumor cell 
lines, the PI3K inhibitor PIK-93 demonstrated favorable sensitivity [82]. 
Being an upstream target of both the PI3K/AKT/MTOR and 
PI3K/AKT/FOXO1 pathways, inhibiting PI3K might play a role in tar-
geting the metabolic regulation of FOXO1 and MTOR, assisting TAMs in 
adjusting their polarization state. 

INMPTCC expresses M0 macrophages and immune cells related to 
immune activation. Within its co-expression network, the regulatory 
relationships among molecules suggest that the autophagy mechanism 
might exert its influence by affecting tumor angiogenesis. Fig. 6, 
showcasing the INMPTCC co-expression network, highlights key genes 
SQSTM1, protein SCD1, and transcription factors FOXO1, SMAD2, and 
EPAS1. The downstream angiogenesis pathway hints at the potential 
regulatory mechanisms inherent to this subtype. 

Autophagy exhibits bidirectional and contradictory roles in both 
tumor suppression and tumor progression [83]. SMAD2 is a member of 
the SMAD protein family, mediating the signaling of transforming 
growth factor-beta (TGF-β) to regulate various cellular processes [84]. 
Research has identified that the TGF-β signaling pathway can activate 
the autophagy process in human cancer cells [85], thereby linking 
SMAD2 to the activation of autophagy. Concurrently, P62/SQSTM1, as a 
selective autophagy receptor and a crucial molecule in autophagosome 

formation, extensively participates in the autophagy process as a prin-
cipal component and an initiator of WNT-regulated autophagy functions 
[86]. On the other hand, SCD1 has been established as an essential 
molecule during the early stages of autophagosome formation. The 
SCD1 inhibitor 28c inhibits the formation of p62/SQSTM1 puncta [87]. 
The presence of these three molecules in the INMPTCC co-expression 
network suggests the significance of the autophagy mechanism in the 
pathogenic mechanism of INMPTCC tumors. Autophagy in macrophages 
suppresses M1-type polarization of macrophages, alleviating chronic 
inflammation and organ fibrosis. The autophagy signaling in INMPTCC, 
at the molecular mechanism level, indicates that INMPTCC may serve as 
an intermediate state transitioning from M1 polarization to M2 polari-
zation [88]. 

Further, the presence of the EPAS1 molecule suggests a connection 
between autophagy and the angiogenic phenotype. Angiogenesis is 
closely linked with both macrophages and tumors. Tumor-associated 
macrophages (TAMs) can promote tumor progression by producing 
angiogenic growth factors [18]. Angiogenesis-associated phenotypes are 
considered to be prominently enriched pathways in a 
macrophage-infiltrated immune microenvironment [61]. This perspec-
tive is validated in a single-cell study encompassing 15 cancer types, 
where angiogenesis-promoting tumor-associated macrophages were 
associated with poor prognoses in multiple tumors [19]. As a member of 
the hypoxia-inducible factors (HIFs), the family of transcription factors 
activated by hypoxia [89], EPAS1 can stabilize and activate cancer cells. 
Here, it induces angiogenesis-associated genes like VEGF [90], pro-
moting angiogenesis and hence tumor progression. Concurrently, EPAS1 
has been targeted therapeutically to inhibit vascular and tumor growth 
[91]. Importantly, autophagy activation involving SQSTM1 has been 
proven to suppress the angiogenic phenotype by degrading EPAS1, 
thereby inhibiting renal cell carcinoma. This indicates the adverse effect 
of autophagy activation on the angiogenic phenotype. In INMPTCC, 
aside from the high expression of genes associated with angiogenesis 
inhibition, MMP9 is specifically overexpressed (Fig. 5a). MMP9, a 
member of the pericellular proteases, plays a crucial role in initiating 
angiogenesis. It stimulates the recruitment and function of auxiliary 
cells from blood or bone marrow, enhancing angiogenesis [92]. 
Concurrently, the secretion of MMP9 is regulated by EPAS1, and over-
expression of EPAS1 can boost the secretion of both VEGF and MMP9 
[93]. 

In a comprehensive view, INMPTCC demonstrates intricate charac-
teristics of autophagy and angiogenesis. The suppressive effect on 
macrophage M1 polarization brought about by autophagy and the 
negative regulatory influence on the angiogenic phenotype might 
counterbalance the positive regulatory role of angiogenesis directly 
mediated by the activated MMP9. Together, these factors might collec-
tively constitute the regulatory milieu of INMPTCC, potentially 
explaining the intermediate prognostic state of INMPTCC. Concurrently, 
in our drug analysis, we observed that WNT pathway inhibitors, LGK- 
974 and WNT-C59, exhibited specificity in this subtype. Given the 
pivotal role of the WNT pathway in autophagy mechanisms, we hy-
pothesize that the autophagic mechanism in INMPTCC might predomi-
nantly manifest tumor-promoting effects. Nonetheless, this conjecture 
warrants further experimental validation. 

IAMPTCC manifests a type II IFN response as well as immune cells 
associated with other immune homeostatic states. Correspondingly, the 

Fig. 6. Construction of multi-omics regulatory network and target drug prediction for three subtypes in IMPTCC typing 
(a) Multi-omics analysis results, amalgamating both scRNA-seq and bulk-sequencing data, utilizing a minimum selection criterion of correlation coefficient R>0.400 
and P<0.001, structured around the MD&PRGs to form intricate regulatory networks—consisting of upstream TFs, downstream signaling pathways, and potential 
immune cell/function modulators—for the ISMPTCC, INMPTCC, and IAMPTCC subtypes. 
(b) Co-expression heatmap manifesting specific correlation coefficients within each regulatory network. 
(c) Dot map spotlighting target small molecule drugs identified for each IMPTCC subtype’s regulatory network via the Cmap algorithm, with the ten drugs boasting 
the lowest P-values proposed as prospective inhibitors for each IMPTCC subtype. 
(d-f) Utilizing data from the CCLE tumor cell line database for drug susceptibility analysis on genes affiliated with cellular destiny, it was discerned that the inhibitor 
PIK-93 exhibits specificity within ISMPTCC, while LGK-974 is specific to INMPTCC. 
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molecular regulation evidence in IAMPTCC directly suggests its associ-
ation with the M1 polarization state of macrophages. IAMPTCC’s im-
mune milieu displays characteristics related to immune homeostasis, 
accompanied by a type II IFN response. Interferons (IFNs) were initially 

identified as substances that "interfere" with viral replication in vitro, 
comprising type I interferons (IFN-α/β and related molecules), type II 
interferon (IFN-γ), and type III interferons (IFN-lambda) [94]. Type II 
IFN response is considered a classical hallmark of activated M1 

Fig. 7. Histopathological Validation 
(a) Representative H&E images for the APOE-low staining group. 
(b) Representative H&E images for APOE-high staining group. 
(c) Stacked bar chart showing the differences in metastasis rates between the APOE high and low staining groups. 
(d) Stacked bar chart showing the differences in HBME-1 positivity rates between the APOE high and low staining groups. 
(e) Boxplot showing the differences in maximum tumor diameter between the APOE high and low staining groups. 
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macrophage polarization [95,96]. EFHD2, which exhibits specific 
overexpression in IAMPTCC (Fig. 5a), is believed to be a crucial mole-
cule for the binding of IFN-γ to functional IFN-γR [97]. We also observed 
the appearance in IAMPTCC’s molecular regulatory network of the 
protein YAP1, known to promote M1 polarization [98], molecules 
related to the MAPK pathway involved in M1 polarization regulation, 
namely BRAF, MEK1 [99], and EZH2, which enhances the chemotaxis of 
inflammatory macrophages in the tumor environment [100]. 

In terms of pathway expression features, the KRAS pathway emerges 
in the co-expression network [101], aligning with a breast 
cancer-related study that found the enrichment of KRAS 
signaling-associated genes to be associated with an anti-tumor immune 
microenvironment. Likewise, the androgen receptor pathway, which 
also appears in the co-expression network, has similar evidence [102]. 
Evidently, in terms of immune characteristics and gene and pathway 
expression patterns, IAMPTCC displays differentiation characteristics of 
M1 polarized macrophages, distinguishing it significantly from subtypes 
1 and 2 in molecular expression features. 

We acknowledge the limitations of our study. As a project reliant on 
publicly available data analysis, we utilized thyroid cancer scRNA-seq 
data from Peking University Cancer Hospital & Institute and bulk RNA 
sequencing data obtained from the TCGA database. This cross- 
verification approach may introduce biases stemming from ethnic and 
regional differences. Additionally, we made limited inferences based on 

existing research conclusions regarding the regulatory network re-
lationships indicated by our bioinformatics analysis results. Preliminary 
experimental validations were conducted based on these in-
terpretations. Building upon our preliminary validations, our future 
research will delve into the transdifferentiation of macrophages from 
anti-inflammatory to pro-inflammatory states. We plan to conduct 
comprehensive experiments, encompassing both upstream and down-
stream validation of the potential molecular regulatory relationships 
identified in our initial study. This will involve detailed functional as-
says to understand the mechanistic underpinnings of macrophage 
behavior in the context of papillary thyroid carcinoma. These studies 
aim to validate and expand upon our predictive model and candidate 
molecules, enriching our understanding of their roles in tumor biology. 

Conclusion 

In summary, through the integration of scRNA-seq data from the PTC 
environment and bulk RNA-seq data from THCA for multi-omics anal-
ysis, our study established a thyroid cancer typing system based on 
macrophage differentiation characteristics. Guided by intricate up-
stream and downstream co-expression network regulatory clues, we 
identified potential thyroid cancer metabolism and regulation features 
under different macrophage differentiation states. The differentiation 
variance in macrophage states may indeed offer some discriminative 
power in the reclassification of PTC. Research into the specific mecha-
nisms underlying the prognostic variations of PTC should consider the 
tumor immune microenvironment, especially the differential charac-
teristics of tumor-infiltrating macrophages. We hope our analysis can 
offer new insights and research directions for risk stratification and 
precision treatment of PTC. 
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Table 1 
Clinical baseline information and differential analysis results of PTC patients 
with high/low APOE expression. 
Significant statistical differences were observed between patients with high and 
low APOE expression in terms of metastasis rate, maximum tumor diameter, 
Ki67 mutation proportion, and HBME-1 positivity rate.   

APOE-low 
(N = 50) 

APOE-high 
(N = 22) 

P-value 

Metastasis    
Metastasis 15 (30.0 %) 1 (4.5 %) 0.0161 
Nonmetastasis 35 (70.0 %) 21 (95.5 %)  

Max size (cm)    
Mean (SD) 1.12 (0.844) 0.595 (0.408) 0.00145 
Median [Min, Max] 0.800 [0.300, 4.00] 0.450 [0.200, 1.50]  

Ki67 (%)    
Mean (SD) 5.00 (5.94) 2.23 (1.19) 0.0457 
Median [Min, Max] 3.00 [1.00, 35.0] 3.00 [0, 5.00]  

Age (years)    
Mean (SD) 48.2 (12.6) 47.3 (12.5) 0.651 
Median [Min, Max] 47.5 [22.0, 70.0] 41.0 [30.0, 69.0]  

HBME-1    
- 24 (48.0 %) 18 (81.8 %) 0.00938 
+ 26 (52.0 %) 4 (18.2 %)  

BRAF    
- 17 (34.0 %) 8 (36.4 %) 1 
+ 33 (66.0 %) 14 (63.6 %)  

TERT    
- 50 (100 %) 22 (100 %) 1 
+ 0 (0 %) 0 (0 %)  

CK19    
- 2 (4.0 %) 1 (4.5 %) 1 
+ 48 (96.0 %) 21 (95.5 %)  

TPO    
- 44 (88.0 %) 22 (100 %) 0.168 
+ 6 (12.0 %) 0 (0 %)  

Galectin-3    
- 2 (4.0 %) 0 (0 %) 1 
+ 48 (96.0 %) 22 (100 %)  

CD56    
- 46 (92.0 %) 21 (95.5 %) 1 
+ 4 (8.0 %) 1 (4.5 %)  

34βE12    
- 5 (10.0 %) 2 (9.1 %) 1 
+ 45 (90.0 %) 20 (90.9 %)  

TG    
- 2 (4.0 %) 1 (4.5 %) 1 
+ 48 (96.0 %) 21 (95.5 %)   
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