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Comparing the performance of beamformer
algorithms in estimating
orientations of neural sources

Yvonne Buschermöhle,1,2,10,11,* Malte B. Höltershinken,1,3,10 Tim Erdbrügger,1,3 Jan-Ole Radecke,4,5

Andreas Sprenger,5,6,7 Till R. Schneider,8 Rebekka Lencer,2,4,5,9 Joachim Gross,1,2 and Carsten H. Wolters1,2
SUMMARY

The efficacy of transcranial electric stimulation (tES) to effectively modulate neuronal activity depends
critically on the spatial orientation of the targeted neuronal population. Therefore, precise estimation
of target orientation is of utmost importance. Different beamforming algorithms provide orientation es-
timates; however, a systematic analysis of their performance is still lacking. For fixed brain locations, EEG
and MEG data from sources with randomized orientations were simulated. The orientation was then esti-
mated (1) with an EEG and (2) with a combined EEG-MEG approach. Three commonly used beamformer
algorithms were evaluated with respect to their abilities to estimate the correct orientation: Unit-Gain
(UG), Unit-Noise-Gain (UNG), and Array-Gain (AG) beamformer. Performance depends on the signal-to-
noise ratios for the modalities and on the chosen beamformer. Overall, the UNG and AG beamformers
appear as the most reliable. With increasing noise, the UG estimate converges to a vector determined
by the leadfield, thus leading to insufficient orientation estimates.

INTRODUCTION

Transcranial electric stimulation (tES) is a promisingmethod to modulate neurons non-invasively. Several studies suggest that the application

of tES can reduce symptoms of neurological andmental health disorders such as depression1,2 or epilepsy.3–5 In a conventional tES setup, two

electrode patches are placed on the scalp and a small electric current (� 0.5–4mA) is applied in order tomodulatemembrane polarization.6 It

is a common approach to place the anode (or cathode) above the target for excitatory (or inhibitory) stimulation.6 However, it was shown that

this procedure does not maximize the current flow at a given target location, but often in non-target areas.7,8 Furthermore, individual differ-

ences in functional targets are neglected.9 Importantly, also, the spatial orientation of the neural target population is neglected, which leads

to suboptimal stimulation.8–16 Using realistic individual head models, the electric current flow resulting from a certain stimulation electrode

setup can be simulated and the tES montage can be optimized.17 This allows individually targeted tES considering both target location and

orientation to be developed8,17 to maximize the outcome in actual tES applications.11,16,18 In these approaches multiple (but at least 2) small

electrodes are placed on the scalp in a way to maximize the electric current flow in the target area,8 while some algorithms additionally mini-

mize it in other areas15 while restricting the total sum of injected currents to minimize side effects.17 As an electric current flow parallel (or

orthogonal) to the neural orientation has shown to maximize (or limit) the stimulation effect, another essential condition for optimizing the

stimulation montage is to align the direction of the current flow with the orientation of the stimulation target.9–13,15,16,19 Therefore, knowing

the main spatial direction of the targeted neuronal population (i.e., the orientation), is crucial. Determining the orientation can be accom-

plished in different ways. Neural activity observed in electro- (EEG) and magnetoencephalography (MEG) is generated mainly by the large

pyramidal neurons of cortical layer V,20 which evoke an electromagnetic field, measurable on the scalp surface with EEG and MEG.21–23 It

is often assumed, that these cells are arranged in parallel to each other and oriented orthogonally to the cortex surface,21–24 which offers

an approach to determine the orientation anatomically. Results obtained by Bonaiuto et al. suggest, that a linking vector between gray

and white matter is the better estimate for the orientation of the target.25 tES is closely entangled with bioelectromagnetic data via the
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6Department of Neurology, University of Lübeck, 23562 Lübeck, Germany
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Helmholtz reciprocity theorem.22,26,27 As the target can be modeled as a sum dipole, which in turn can be measured with EEG and MEG, it

seems natural to use inverse source analysis based on EEG andMEGdata for the target estimation in the context of tES. Only few studies have

yet taken into account individual target orientations, estimating it by means of dipole scans11 or current density reconstructions.16,18 An alter-

native inverse method for target reconstruction are beamforming algorithms, which will be evaluated in this study. Beamformers are inverse

algorithms designed to only focus on the target activity while spatially filtering out activity originating from interfering sources. Therefore,

beamformers are well suited for neural data containing artifacts or weak sources.28,29 While there are studies evaluating the performance

of beamformers in source localization30,31 or time series reconstruction,32 a systematic evaluation of their performance in orientation recon-

struction is still lacking, which leads to the first question, we will address in this study: How well do the beamformers estimate target orien-

tation and which algorithm provides the best orientation estimate? This study attempts to answer this question by testing the performance of

three commonly used and implemented beamformer algorithms: Linearly Constrained Minimum Variance (LCMV) beamformers with Unit-

Gain (UG),28,29 Unit-Noise-Gain (UNG)28,33 and Array-Gain (AG) constraint.28,29 As the algorithms are implemented and used for both,

EEG and MEG data, a second important question is which modality can be used to reliably recreate the underlying orientation. The MEG

is known to be insensitive to radially oriented parts of a source’s activity, thus MEG is not recommended to be used to reconstruct source

orientation with a radial component.23,34,35 However, we hypothesize that by combining EEG and MEG (hereafter: EMEG) data for the anal-

ysis, the estimation error decreases in comparison to a pure EEG estimate, due to the sensitivity of the MEG to tangential orientation com-

ponents. This hypothesis is dependent on the accuracy of the underlying headmodel: only a sufficiently realistic representation of the volume

conductor takes the different sensitivity profiles of EEG and MEG adequately well into account to allow a combined use of EEG and MEG,

especially with regard to source orientation.35–38 Additionally, the orientation estimation performance shall be evaluated regarding different

signal-to-noise-ratios (SNR), which differ in EEG or MEG measurements and are an important parameter in inverse source modeling. In this

work, we evaluate beamformer performance for estimating target orientations using simulated data with known source orientation. We

choose the posterior visual area V5 and the anterior Frontal Eye Field (FEF) of the right hemisphere as two exemplary realistic simulation tar-

gets.We specifically investigate effects ofmodality (MEG, EEG, and EMEG) and SNRon the three LCMVbeamformers (UG, UNG,AG), using a

six-compartment finite element head model with anisotropic white matter conductivity, calibrated with regard to individual skull-

conductivity.37,39
RESULTS

In this study, we simulatedMEG and EEG data at two realistic target locations (and further sources varying in depth) with different underlying

orientations and attempted to reconstruct orientations with the commonly used LCMV beamformer algorithms with (1) UG, (2) UNG and (3)

AG constraints. In a first step, we simulated EEG andMEGdatawith randomly generated target orientations (ground truth) and different noise

levels s, which are ameasure of the SNR (for details, see STARMethods). FromMEGdata, we only estimated the tangential component of the

orientation, for EEG we estimated the full orientation. To obtain a combined EMEG estimate, we recombined the tangential part of the MEG

estimate and the radial part of the EEG estimate. For all modalities, we tested all investigated beamformers. The reconstructed orientations

were compared to the ground truth orientation. In the second analysis, we repeated this procedure for varying ratios between EEG andMEG

noise levels to compare resulting estimation performance in EEG and EMEG. Thirdly, possible orientations are scanned systematically, and

these fixed orientations were estimated from simulated EEG and MEG data (for details, see STAR Methods).
Mathematics summary

Our numerical investigations are complemented by theoretical investigations. In the STARMethods (section Mathematical Details), we show

that for the single source setup used in the numerical simulation, the AG andUNGbeamformers have no orientation bias when estimating the

complete orientation in the EEG case, as well as when estimating only the tangential component in theMEG case. Furthermore, we show that

the UG beamformer exhibits an orientation bias in both the EEG case and the MEG case. Specifically, we present an in-depth investigation of

the nature of the UG bias, showing that even in an ideal scenario, for a low SNR the UG reconstruction is essentially determined only by the

leadfield and is not expected to give a good estimation of the source orientation. Furthermore, we also show that at a high SNR the EEG UG

reconstruction converges to the true source orientation, while the MEG estimation of the tangential component will in general not converge

to the true tangential component of the source orientation even at an arbitrarily high SNR. Furthermore, we show that the performance of the

UG reconstruction, in addition to suffering from a low SNR, can also be degraded by a high condition number of the leadfield used in the

reconstruction. Finally, we show that natural generalizations of the results regarding the bias of the UG beamformer are also valid for arbitrary

positive definite noise covariance matrices.
Random orientations: UNG and AG are more robust toward noise than UG

The first part of our results presents the orientation estimation error of 1000 randomly generated orientations per noise level s for each mo-

dality with equal signal strengths for all scenarios (Figure 1) (noise level s therefore represents a measure of the SNR). In each condition, all

three beamformer algorithms were evaluated with possible orientation estimation errors between 0+ (perfect estimate) and 90+ (worst esti-

mate; for details, see STAR Methods). First, we consider the effect of noise level s on the performance at reconstructing the orientation. The

results show that for a low noise level (s = 0:5), all three algorithms perform reasonably well in all modalities and both target locations,

although the estimation error in UG comprises a larger range of values and is therefore less accurate than the UNG and AG (Figure 1 and
2 iScience 27, 109150, March 15, 2024
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Figure 1. Estimation errors for different orientations in all beamformers (UG, UNG, AG) and modalities (MEG, EEG, EMEG)

Angles between estimate and ground truth for 1000 random orientations per condition in V5 (A) and FEF (B) for different beamformers (UG: blue; UNG: orange;

AG: yellow). Conditions differ in noise levels (s = ½0:5;2;4�) and modalities (MEG, EEG, combined EMEG). For MEG, the estimation error is evaluated in the

tangential plane only. Signal strength is equal in all scenarios. Data are represented as boxplots. See also Figures S2 and S5, Tables S1 and S2.
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Table 1). Increasing the noise to a medium level (s = 2), the error in the UG orientation estimate increases, revealing a high uncertainty in the

estimation (Figure 1 and Table 1). In contrast, the errors in the UNG and AG estimates increase as well but are still lower than for UG (Table 1).

AlthoughMEG seems to be themost reliablemodality to estimate the orientation (Figure 1 and Table 1), it is once again emphasized, that this

estimate only considers the tangential components and does therefore not suffice for our purposes. It is only shown for descriptive reasons.

This first analysis demonstrates the overall best performance for the UNG and AG beamformers across modalities, noise levels and random

orientations. However, a difference between the pure EEG and the combined EMEG estimate cannot be determined properly from these

results and is therefore examined in the next section. In general, no systematic differences are found between different targets (Figures 1

and S2, and Table 1). Especially the UNG and AG show the same behavior for targets of different locations and depths (Figures 1 and S2).

The UG always performs worse than the other two algorithms, but also shows differences between the targets, which are particularly evident

for low noise levels (Figures 1 and S2). As we examined targets differing in depth, we investigated the dependency of the estimation error on

the target depth (Figure S3; Table S1). No significant correlations were found in any condition (Table S1). This is congruent with the mathe-

matical analysis (STAR Methods), which shows no dependency of the expected orientation estimate on the target location r. The ratio be-

tween the largest and smallest singular values of the leadfield (in the following referred to as the condition number) however, is an important

indicator for the convergence of the UG beamformer, as we suggestedmathematically in STARMethods. The results confirm that the median
Table 1. Confidence intervals of orientation estimation errors for random orientations

s

V5 FEF

UG UNG AG UG UNG AG

MEG 0.5 [5.98; 6.44] [0.23; 0.25] [0.22; 0.25] [14.21; 15.52] [0.24; 0.28] [0.23; 0.26]

2 [39.37; 42.68] [2.15; 2.37] [2.13; 2.34] [40.31; 43.59] [2.20; 2.52] [2.16; 2.47]

4 [43.25; 46.54] [7.93; 8.84] [7.83; 8.73] [42.07; 45.33] [8.65; 9.73] [8.55; 9.62]

EEG 0.5 [3.15; 3.35] [0.32; 0.34] [0.32; 0.34] [9.18; 9.84] [0.34; 0.37] [0.34; 0.36]

2 [30.30; 32.99] [3.19; 3.40] [3.18; 3.39] [51.23; 54.09] [3.38; 3.63] [3.37; 3.62]

4 [48.29; 51.11] [12.78; 13.84] [12.74; 13.80] [53.70; 56.47] [13.32; 14.46] [13.27; 14.40]

EMEG 0.5 [5.46; 5.78] [0.30; 0.32] [0.30; 0.32] [11.86; 12.79] [0.32; 0.34] [0.32; 0.34]

2 [47.68; 50.47] [2.95; 3.16] [2.93; 3.14] [51.28; 54.15] [3.14; 3.39] [3.12; 3.36]

4 [53.94; 56.66] [11.59; 12.54] [11.51; 12.46] [53.71; 56.49] [12.28; 13.37] [12.19; 13.27]

95% confidence intervals of the orientation estimation error of 1000 randomly generated orientations for different modalities (MEG, EEG, EMEG), noise levels,

beamformers (UG, UNG, AG) and targets (V5, FEF). Values are indicated in degrees. FEF: Frontal Eye Field; UG: Unit-Gain; UNG: Unit-Noise-Gain; AG: Array-

Gain; MEG: Magnetoencephalography; EEG: Electroencephalography; EMEG: combined EEG and MEG; s: Noise level.
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Figure 2. Difference between sets of ground truth orientations and estimated orientations

Contrasting the set of simulated orientations hsim (blue) and the reconstructed orientations bh (orange) for varyingmodalities (MEG and EEG) and noise levels s in

both targets V5 (A) and FEF (B). Coordinates represent the orientations in spherical coordinates (x axis: elevation/radial component; y axis: azimuth/tangential

component). While simulated orientations (blue) cover the entire sphere, UG reconstructions converge to a fixed value with increasing noise levels in both targets

and modalities. The convergence value is the singular vector corresponding to the smallest singular value of the leadfield (MEG or EEG). In UNG and AG,

estimates cover (at least) half the sphere of possible orientations. Since beamformers only reconstruct up to a difference of 180+, this is equivalent to

covering the entire sphere of possible orientations and points to no convergence value. Signal strength is equal in all scenarios. See also Figure S6.
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estimation error shows no large differences between targets (error range per condition < 2+) for UNG or AG beamformer (Figure S4). The UG

estimation error however shows stronger differences (error range per condition up to � 15+), which also seem to be connected to the con-

dition number (Figure S4). A statistical analysis confirms this correlation for low (r = 0:967, p< 0:001, uncorrected for multiple comparisons)

and medium noise level (r = 0:820, p = 0:013, uncorrected for multiple comparisons) (Table S2). For high noise levels, the correlation is not

significant (Table S2), however with the limited number of investigated targets, the valuesmust be interpretedwith care.We also find a strong

correlation between the median estimation error in EEG and the condition number for UNG and AG (Table S2). Additional insight on the

insufficient orientation estimation of the UG reveals the contrast between the set of ground truth orientations (hsim) and the set of estimated

orientations bh (Figure 2). For increasing values of s, the UG estimates converge to the singular vector corresponding to the lowest singular

value of the leadfield. For UNG and AG, no such convergence is observed. Instead, the sets of estimates fill half the sphere of possible ori-

entations. The reason for the reduction of the set of estimates (half sphere) compared to the set of ground truth orientations (entire sphere) is

explained by the beamformer’s insensitivity for antiparallel orientations: two antiparallel ground truth orientations are mapped to the same

estimation orientation. The set of estimates covers half of the possible orientations, which is equivalent to cover all possible orientations and

therefore no systematic preference for the orientation is deduced from these results in AG and UNG. This finding also applies to extremely

high noise levels (s = ½102;103;104�), where the estimate errors for UNGandAGare equally high as for UG (Figure S6), showing that there is no

convergence for UNG or AG estimates.
MEG- and EEG-specific noise levels influence the orientation estimation error

Weexpect the orientation estimate to bemore accurate using combined EMEGdata than only EEGdata. In this context, the noise level of the

simulated data, especially the ratio between EEG noise level sE and MEG noise level sM, most likely plays an important role. In the previous

result section, the noise levels were kept equal between MEG and EEG (sE = sM), where the different scaling and units of EEG and MEG is

accounted for as described in Equation 11. However, the assumption of equal noise levels between modalities cannot be generalized and, in
4 iScience 27, 109150, March 15, 2024
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Figure 3. Mean estimation errors for varying sE

95% confidence intervals of mean orientation estimation error for increasing noise levels in simulated EEG data for all three beamformer algorithms (UG: blue;

UNG: orange; AG: yellow) and themodalities EEG (solid lines) and EMEG (dashed lines) in V5 (A) and FEF (B). The noise level in MEG data is kept constant (sM =

4). Signal strength is equal in all scenarios. See also Tables S3 and S4.
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realistic cases the noise levels will differ. Figure 3 therefore shows the estimation error depending on increasing sE (range: sE = 0.5 to 10), with

sM kept constant (sM = 4). Following the UNG and AG performance curves from low to high values of sE , one discovers that the EEG out-

performs the EMEG for values of sE < sM, while it is vice versa for sE > sM. In cases of equal noise levels, the EMEG performs slightly better

than the pure EEG estimate (Figure 3; Tables S3 and S4). The results are valid for both, V5 and FEF. In accordance with the results of the pre-

vious section, the UG produces the highest estimation error among the three algorithms in all modalities (Figure 3; Tables S3 and S4). While

for UG in V5, the combined EMEG is the worse estimate compared to the EEG estimate even for relatively high sE (Figure 3; Table S3), in FEF

they perform a lot more similar (Figure 3; Table S4). Overall, however, the UG algorithm performs much worse than the other two algorithms

(Figure 3, Tables S3 and S4).
Fixed orientations: No orientation preference for UNG and AG

In the last two paragraphs, we have seen general estimation errors for the reconstruction of random orientations, but the question remains, if

the estimation error depends on the underlying ground truth orientation. To answer this question, the estimation error was evaluated for 400

fixed orientations, which were distributed over the sphere of possible orientations a target can have (Azimuth/tangential plane: from 0+ to

180+ Elevation/radial direction: � 90+ to 90+; each in steps of 9+). For both targets and all modalities, again three values for the noise level

(s = ½0:5;2;4�) were analyzed for all three beamformers.What stands out are the results from the UGalgorithm, showing a strong dependency

of estimation error on orientation which grows with increasing noise level: For the lowest noise level (s = 0:5), the median estimation error is

comparatively low in all tested orientations (Figure 4). Increasing the noise to a medium level (s = 2), the estimation error for certain orien-

tations increases to 90+ (Figure 4), meaning that these orientations are estimated consistently wrong. For the highest noise (s = 4), the num-

ber of orientations that is estimated inaccurately is increased in EEG and EMEG, while in MEG no differences are noticeable (Figure 4). The

estimation error in UG is always lowest for the singular vector corresponding to the lowest singular value of the leadfield (Figure 4). In contrast,

the estimation error is highest for the singular vector corresponding to the highest singular value and even reaches maximal values in high

noise conditions (Figure 4). Apart from the different singular vectors, there are no systematic differences between the results of V5 and FEF.

For the UNGandAG, the estimation errors showno systematic dependency on source orientation in any condition but seem randomly distrib-

uted over orientations. Consistent with the previously presented results, the estimation error is lowest for the UNGand AGbeamformers (Fig-

ure 4). Estimation errors for EMEG are slightly lower than for EEG in both algorithms. The results between FEF and V5 do not differ for UNG

and AG (Figure 4).
DISCUSSION

In this study we compared the performance of reconstructing the orientation with three different versions of the LCMV beamformer, namely

the UG,29 the UNG28,33 and the AG beamformer.28,29 The results (Figure 1) show, that the UNG and AG beamformers lead to the most ac-

curate estimates of a source’s orientation. Concerning the modality (EEG, MEG, EMEG), we demonstrated that the combined EMEG analysis

is beneficial, especially when the noise level in EEG is higher than in MEG data (Figure 3). Furthermore, we found, that the performance of the

UG is generally poor as the orientation estimation converges to a value determined by the leadfield, not by the data (Figures 2 and 4). For

UNG or AG no dependence of the orientation estimate on the ground truth orientation and no convergence was observed (Figures 2, 4, and

S6). The results offer a substantial benefit to make an informed decision about which beamformer algorithm to use when interested in the

source orientation of a given neural generator. Thus, especially the UNG and AG beamformers offer the possibility to compute a reasonably
iScience 27, 109150, March 15, 2024 5
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Figure 4. Median estimation errors for fixed orientations

Median orientation estimation error depending on the orientation, presented in spherical coordinates (x axis: elevation/radial component; y axis: azimuth/

tangential component) for different modalities (MEG: A, D; EEG: B, E; EMEG: C, F), noise levels (0.5, 2, 4) and targets (V5: A–C; FEF: D–F). Assigned colors

represent the orientation estimation error on a scale of 0+ to 90+. The red markers represent the singular vectors of the respective leadfield (in MEG and

EEG). Signal strength is equal in all scenarios.
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accurate estimate of the orientation, even in cases with low SNR or where artifacts indicate the necessity of a spatial filter approach. Concern-

ing the choice of beamformers we suggest, that the UG beamformer provides insufficient orientation estimates and should be avoided when

estimating target orientations. According to our results the estimate converges to an orientation, which is determined by the leadfield rather

than being determined by the EEG or MEG data. Importantly, the convergence can also be shown mathematically: For increasing noise, the

expectation value of the reconstructed orientation shifts from the true orientation or one close to it (for s/0) to the singular vector corre-

sponding to the smallest singular value of the leadfield matrix (for s/N) as presented in detail in the STAR Methods. In this simulation

we additionally show that the UG estimation of orientations does not only converge for infinite, but also for finite noise levels, for which

the AG and UNG still work well. These results are congruent with previous findings by Neugebauer et al. (2017),31 that imply a bad estimation

of the orientation for the UG and point out the resulting loss of localization accuracy. Similar results were also reported by Johnson et al.

(2011),40 who found strong radial components when reconstructing tangentially oriented sources. They concluded that the scalar UG beam-

former is not suited to reconstruct non-radial source orientations. Our study adds to these findings the insight, that the problem we face with

the UG beamformer, is rooted in the algorithm itself. Especially we want to stress, that the associated problems do not result from the weak

radial component in MEG, since we observe the same issues in (1) EEG data and (2) MEG data reduced to the tangential plane and (3) offer a

mathematical proof for the UG convergence (STAR Methods). Since there is no ground truth for comparison in realistic data, the observed

convergence of the UG orientation estimates emphasizes the importance of our investigation using a simulation approach. The question

therefore remains as to whether there is a difference between the beamformer performances in different targets. For UNG and AG, there

is no preference for a certain target in the present analyses (Figures 1, 3, 4, and S2). This is in accordance with our mathematical findings,

as the expected orientation estimate does not depend on the target location. However, one should keep in mind, that activity from deeper

sources tends to have a lower SNR and we therefore expect the estimate of deeper (or other weak) sources to be less accurate than the es-

timate of more superficial sources. For UG, we see a difference between the estimation errors in the investigated targets: especially for small

noise levels, we see an overall better estimation of the orientation in V5 when compared to FEF (Figures 1, 3, 4, and S2). According to our

analysis, this seems to be the result of a dependency of the estimation error on the condition number. This correlation can be explained

with the convergence of the UG beamformer. In the mathematical analysis, we found the condition number to be an indicator of the
6 iScience 27, 109150, March 15, 2024
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convergence speed. What we found in the simulation results represents the mathematical findings: the larger the condition number of a

target leadfield, the higher themedian estimation error for the same noise level. For the lowest noise levels, the UG estimates are still compar-

atively far away from the convergence orientation. With increasing noise levels, the correlation decreases as the UG estimates reach the

convergence orientation, and the error does not increase anymore – hence a lower correlation with the condition number (Figure S4;

Table S2). The correlations between the condition number and median estimation error of the UNG and AG beamformer in EEG cannot

be explained mathematically. However, since compared to the UG beamformer the median error of UNG and AG barely differs between tar-

gets (Figure S4), these correlations are notmeaningful in this context. To confirm these results statistically profound, we suggest a whole-brain

analysis, which is beyond the scope of our investigations. For FEF, the UG estimation errors hardly differ between EEG and EMEG, while in V5,

the EMEG estimate performs even worse than the pure EEG estimate. This discrepancy can be explained by the specific singular vectors of

FEF and V5. The singular vectors corresponding to the lowest singular values in V5 are very different in EEG and MEG, while they are rather

close in FEF (Figure 3). Since theUGestimates always converge to these singular vectors, it makes sense that the EEG andEMEGestimates are

closer to each other in FEF than they are in V5. As discussed above however, UG estimates for sufficient noise levels (here: sa2) do not reflect

the actual orientation, but mainly characteristics of the leadfields. Consequently, the reduced performance of EMEG compared to EEG (Fig-

ures 1 and 3, Tables S3 and S4) should not be taken as an argument against EMEG. In general, one can conclude that the actual noise levels in

the EEG andMEG data are decisive when it comes to the performance of the modalities (Figure 3). If the noise level is known, comparing the

corresponding parameters with the presented results might help deciding, which modality should be preferred. However, estimating sE and

sM comes with its difficulties. Previous research has shown that the noise level of a source depends on its location depth and orientation.35,41

As the MEG is more sensitive to tangential sources, it is therefore more sensitive to superficial than to deep sources since the latter are more

similar to radial sources. Hence, one can expect that MEG signals of subcortical or deep cortical sources contain stronger noise levels than

EEG signals. Another important aspect is the volume conductor model of the head as it plays a vital role in this context. For our realistic six

compartment headmodel, most cortical areas show a lower noise level in MEG data than in EEG data35 and therefore the combined EMEG

analysis is recommended for those sources. In summary, our study clearly identified the UNG and AG beamformers as the most reliable

choice, when it comes to reconstructing the source orientation (regardless of modality). The UG beamformer should be avoided, since it

does not reconstruct the orientation, but leadfield parameters. The choice of modality depends on the noise level of the data. Since most

cortical sources have a higher SNR in MEG than in EEG data, using the combined analysis will be beneficial in most cases.
Limitations of the study

As we aim to present a mathematically controllable simulation, the main limitation of this simulation study is the assumption of Gaussian

Noise. Note however, that for a sufficiently good estimate of the noise covariance matrix, prewhitening of the data leads to a covariance ma-

trix similar to the one derived from the investigated Gaussian Noise. Our simulated data contains only one active source to whose signal

Gaussian Noise is added. Real data will contain multiple active sources, which are potentially correlated. While especially correlated sources

are known to limit beamformer performances (e.g., in localization accuracy),29 this is a very important topic to be investigated in future

research, as it goes beyond the scope of this study. Additionally, a realistic combination of values for the noise levels sE and sM is difficult

to estimate and the utilized values should therefore be interpreted with care. Furthermore, although orientation estimates were assessed

for two realistic cortical target locations and 6 additional target locations varying in depth, future studies need to investigate if the observed

robust (insufficient) orientation of the UNG and AG (UG) holds true for various other cortical locations. Finally, our results hold only for single

active targets, with a priori known location and leadfield. In many applications, researchers will estimate the location and orientation in the

same process, using numerically computed leadfields. Orientation estimation errors will then be entangled with the localization estimation

error and the one in the leadfield.Our study provides important insight into the estimation of a target orientation. However, it also raises open

questions, which should be addressed in the future. The results should be validated in real data applications, for example by comparing tES

effects for montages optimized based on our estimated beamformer orientations with effects for montages based on other orientations.

Comparisons to other orientation estimation methods (e.g., in dipole fits for evoked potentials or fields), could additionally give insight

into the transferability of our results to real data. Further, another approach to validate our results further might compare the estimated ori-

entations to anatomically determined orientations as for example in Bonaiuto et al. (2020),25 although the estimated orientation from EEG/

EMEG summed electromagnetic activity data might not directly correspond to the main anatomical orientation of cortical pyramidal cells.
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STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

EEG + MEG leadfields of targets V5 and FEF This study https://doi.org/10.5281/zenodo.10492310

Software and algorithms

Python code for present simulation This study https://doi.org/10.5281/zenodo.10492310

FieldTrip Oostenveld et al., 2010 fieldtriptoolbox.org; RRID: SCR_004849

Matlab R2022b The Mathworks mathworks.com; RRID: SCR_001622
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Yvonne Buschermöhle (yvonne.

buschermoehle@uni-muenster.de).
Materials availability

This study did not generate new unique reagents.
Data and code availability

� EEG and MEG leadfields for the targets V5 and FEF have been deposited on zenodo and are publicly available as of the date of pub-

lication. The access link is listed in the key resources table.
� All original code has been deposited on zenodo and is publicly available as of the date of publication. The access link is listed in the key

resources table.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Wecollecteddata for one nativeGerman speakingparticipant (male; 27 years old) with normal vision, who providedwritten informed consent.

The experimental design was approved by the local ethics committees of the Universities of Münster (Ref: 2015-263-f-S) and Lübeck (Ref:

20-459).
METHOD DETAILS

The main goal of this study was to evaluate the accuracy to estimate source orientations using different beamformer algorithms. Structural

Magnetic Resonance Imaging (MRI) data was recorded to define a realistic six compartment finite-element volume conductor headmodel for

N = 1 subject, including white matter anisotropy and skull conductivity calibration. Two realistic cortical target locations of the oculomotor

brain network were defined based on functional MRI (fMRI) data of the same subject during smooth pursuit eye movements. For those two

cortical locations, three beamformers (UG, UNG, AG) were compared with respect to their ability to reconstruct known orientations for simu-

lated EEG and MEG data. Furthermore, orientation estimates for EEG only, combined EMEG data and tangential orientations in the MEG

were assessed.
Data acquisition (fMRI and MEG/EEG)

MRI data were recorded using a 3-T Siemens Magnetom Skyra scanner (Siemens, Germany) and a 64-channel head coil. Structural T1 and T2,

as well as diffusion weighted images were acquired. Furthermore, horizontal smooth pursuit eye movements together with blood oxygen

level dependent (BOLD) activity were recorded. The participant performed smooth pursuit foveating a red dot (size 0.5�) in the framework

of a continuous triangle pursuit task (four blocks, 18.7�/s ramp velocity, G15� amplitude). Each block was preceded by a fixation interval

with the red dot presented at the center of the screen (12 s duration; NordicNeuroLab, Norway). Eye movements were recorded using a

video-based Eyelink 1000Plus eyetracker system (1000 Hz sampling rate; SR Research Ltd., Canada).

Simultaneous MEG (275 axial gradiometers; OMEGA2005, VSM MedTech Ltd., Canada) and EEG (60 electrodes; EASYCAP GmbH,

Herrsching, Germany) data were collected during a median nerve stimulation at the participant’s left wrist. The stimulation comprised
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1932 monophasic square-wave electrical impulses of 0.5 ms width and a stimulus onset asynchrony varying between 0.35 ms and 0.45 ms. For

the participant’s convenience, the amplitude was chosen as low as possible but such that the thumb moved involuntarily.
Target location definition and leadfield computation

EEG andMEG data from visual stimulation often contain eye movement artefacts, which can be difficult to remove. We therefore exemplarily

defined the visual area V5 and the FEF (both in right hemisphere) as regions of interest of the oculomotor brain network.42–45 The correspond-

ing target locations were drawn from fMRI data. Functional imageswere corrected for slice-timing, motion corrected, bias-corrected, spatially

normalized to a standard template (Montreal Neurological Institute, MNI) and spatially smoothed. Functional MRI time series were modeled

using a general linear model (GLM) including regressors for the start of each stimulation trial convolved with the canonical hemodynamic

response function implemented in SPM12. The six motion parameters were defined as covariates in the GLM. Individual locations of right

visual area V5 (MNI x/y/z = 48/-61/-7) and right Frontal Eye Field (FEF; MNI x/y/z = 36/-1/44) were determined based on statistical maps

showing significantly increased BOLD activity during triangle pursuit blocks in contrast to fixation intervals (FWE-corrected). The locations

were defined as the local minima near putative V5 and FEF regions that have previously been shown to signal brain activity during smooth

pursuit eye movements in a sample of healthy individuals.43,45 For the subsequent analysis, the identified positions of individual V5 and FEF

were re-transformed to native space coordinates using the inverse deformation field maps resulting in our final targets r V5 and r FEF. Six

further sources close to the target locations r V5 and r FEF (three each), but varying in depth, were identified and analyzed (Figure S1).

Realistic 6-compartment (white matter, gray matter, cerebrospinal fluid (CSF), spongiosa, compacta, scalp) head models including aniso-

tropic whitematter were created from the aforementioned T1-/T2 and DTI sequences. Using the EEG/MEGdata from themedian nerve stim-

ulation, the skull conductivity was estimated such that the source reconstructions of the P20/N20 somatosensory component are coherent

between EEG and MEG data.39 A geometry adapted hexahedral mesh46 was created from the segmentation and leadfields for MEG

(LMðrÞ) and EEG (LEðrÞ) were computed using a first order finite element method. The St. Venant model was used to simulate dipolar neural

sources as implemented into DUNEuro.47

Parts of the analyses were also performed on sources close to r V5 and r FEF varying in depth. Based on the realistic head model, we

computed the connecting vector c between r V5 (or r FEF) and the closest point of the segmented skull surface and defined sources with

different distances (0:5c, 1:5c, 2:5c) to the skull surface. The closest points on the source grid to these target locations were determined

and the final distance from the skull was computed for each grid point.
Scalar LCMV beamformers and optimal orientations

For an EEG or MEG measurement with Nch channels, let LðrÞ˛RNch33 be the solution of the forward problem as described above, sðr; tÞ the
source magnitude over time, hðrÞ˛R3 the source orientation and nðtÞ˛RNch the noise strength. Then the data dðtÞ˛RNch can be

described as

dðtÞ =
XN
i = 1

Lðr iÞhðriÞsðr i; tÞ + nðtÞ =
XN
i = 1

lhðriÞsðr i; tÞ+ nðtÞ;

where lhðrÞ = LðrÞhðrÞ denotes the gain vector in the direction hðrÞ. If we define the source at location rj as the target of interest, we can

rewrite the data as the sum of the target signal (1st addend), signals from other sources (2nd addend) and those from outside the source space

(3rd addend) as

dðtÞ = lh
�
rj
�
s
�
rj; t
�
+
XN
isj

lhðriÞsðr i; tÞ+ nðtÞ:

To compute an estimate bsðrj; tÞ of the signal sðrj; tÞ, we want to find a spatial filter wðrjÞ that fulfills

bs�rj; t� = wu
�
r j
�
dðtÞ:

The expected power of the time discrete signal is approximated by

C
��bs�rj; t���2D = C

��wu
�
rj
�
dðtÞ��2D

= C

�����wu
�
rj
� 

lh
�
rj
�
s
�
rj; t
�
+
XN
isj

lhðriÞsðri; tÞ+nðtÞ
!�����

2

D;

where C $D denotes the time average.

An ideal filter would let the signal produced at the target location rj pass, while it suppresses the signals produced at other sources or

outside the source space. In realistic scenarios, it is not possible to wholly suppress the signals generated by other sources. However,

they can be partially suppressed by minimizing the power under a constraint, which ensures that the signal of interest is passed. Using the

definition R : = CdðtÞdðtÞuD this is expressed as
12 iScience 27, 109150, March 15, 2024
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wðr;hðrÞÞ = argmin
wðr;hÞ

Cjwuðr;hðrÞÞdðtÞj2D

= argmin
wðr;hÞ

ðwuðr;hðrÞÞCdðtÞdðtÞuDwðr;hðrÞÞÞ

= argmin
wðr;hÞ

ðwuðr;hðrÞÞRwðr;hðrÞÞÞ;

subject to

wu
UGðr;hðrÞÞlhðrÞ = 1; (Equation 1)

or

wu
UNGðr;hðrÞÞlhðrÞ = t;wu

UNGðr;hðrÞÞwUNGðr;hðrÞÞ = 1; (Equation 2)

or

wu
AGðr;hðrÞÞlhðrÞ= klhðrÞk : (Equation 3)

The constraints distinguish the three different beamformers. The UG29 constraint ensures, that signal from location r is passed in a way that

is produces a signal of strength 1 on sensor level. This leads to a depth bias since deep sources with weaker leadfields need to have higher

power to evoke the same signal. The UNG28,29,33 and the AG28,29 constraints include different normalization strategies to account for this

depth bias: The UNG normalizes by the norm of the filter (Equation 2) and the AG normalizes the leadfield (Equation 3), which will lead to

different estimation measures of the orientation (cf. Equations 7, 8, and 9).

In practice, the secondmomentmatrixR is estimated from themeasured data and is customarily called the covariancematrix (as it is equiv-

alent to it for zero mean data, which is often the case).

Solving the constrained minimization problems with Lagrange multipliers, the filters are computed as (for explicit derivations see Seki-

hara & Nagarajan (2008),28 chapter 4.)

wUGðr;hðrÞÞ =
R� 1lhðrÞ

lhðrÞR� 1lhðrÞ
; (Equation 4)
wUNGðr;hðrÞÞ =
R� 1lhðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lhðrÞR� 2lhðrÞ

q ; (Equation 5)
wAGðr;hðrÞÞ =
R� 1~lhðrÞ

~lhðrÞR� 1~lhðrÞ
; (Equation 6)

where~lhðrÞ =
lhðrÞ
klhðrÞk. As can be seen, the filters still depend on the source orientation h. To estimate the orientation from the data, we assume

that the optimal orientation maximizes the resulting signal power. We therefore maximize the power with respect to h, using the filters

computed in Equations 4, 5, and 6 via

bh�r j� = argmax
hðrÞ

C
��bs�r j; t���2D

subject to constraints in Equations 1, 2, and 3. Using the Rayleigh-Ritz formula, the optimization problems can be rewritten in terms of gener-

alized eigenvalue problems as (for explicit derivations see Sekihara & Nagarajan (2008),28 section 13.3.)

bhUGðrÞ = nmin

�
LðrÞuR� 1LðrÞ�; (Equation 7)
bhUNGðrÞ = nmin

�
LðrÞuR� 2LðrÞ; LðrÞuR� 1LðrÞ�; (Equation 8)
bhAGðrÞ = nmin

�
LðrÞuR� 1LðrÞ; LðrÞuLðrÞ�; (Equation 9)

where nminðA;BÞ = nminðB� 1AÞ is the eigenvector corresponding to the lowest eigenvalue lmin solving the eigenvalue problem Anmin =

lminBnmin.

Source activity and simulated data

The simulated EEG andMEG data are based on the leadfields and targets above. The data were considered as the EEG/MEG signal evoked

by a source at the target superposedwith noise tomake the datamore realistic. The unitless simulated sensor datadsimðtÞ˛RNch , createdby a

source at r with orientation hsim ˛R3 is defined in Equation 10. The signal is defined in a way to obtain the same signal strength for each

source, independent of the source location.
iScience 27, 109150, March 15, 2024 13
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dsimðtÞ =
LðrÞhsim

kLðrÞhsimk
$ssimðtÞ (Equation 10)

Here, ssimðtÞ describes the simulated source magnitude at time t and is defined as

ssimðtÞ = sin
�
2pfqt

�
with the source oscillation frequency fq being chosen as 20 Hz. In this simulation, time t comprised 60 s, and the sampling frequency was cho-

sen as 600 Hz resulting in a total of T = 36000 simulated time points. Temporally and spatially independent Gaussian noise nsimðtÞ˛ RNch ,

scaled to standard deviations, was added to the signal at each time sample. The simulated data vector dsimðtÞ at time t was therefore defined

by

dsimðtÞ = dsimðtÞ+ snsimðtÞ: (Equation 11)

As the signaldsim contains the same power in all investigated scenarios, the parameters is ameasure of the ratio between signal and noise

power. In the following, we refer to s as the noise level.

The second moment matrix is estimated by

R =
1

T

XT
i = 1

dsimðtiÞdu
simðtiÞ:

Target specific coordinates vt1 -vt2 -vr

It is well-known that MEG is relatively insensitive to the radial component of source orientation.48 Since we aimed to observe the effect of

modality (MEG, EEG, EMEG) on accuracy of estimated source orientation we estimated source orientation in a target specific coordinate sys-

tem that aligned to the radial and two tangential orientations (vr , vt1 , and vt2 ). While vr denotes the vector oriented radially towards the skull

surface, vt1 and vt2 are the two perpendicular vectors spanning the plane tangential to the skull surface. The vectors were obtained by per-

forming a Singular Value Decomposition (as implemented in MATLAB) on the MEG target leadfield49 as

LMðrÞ = USVu;

where U˛RNch3Nch , S˛RNch33 and V = ðvt1 ;vt2 ;vrÞ˛R333.
Estimating orientations

To estimate the source orientation from the simulated data, the covariancematrix R and the respective leadfield LðrÞwere inserted into Equa-

tions 7, 8, and 9. To solve the eigenproblems, the numerical implementation available in Fieldtrip was used.50 As even in a realistic six-

compartment head model MEG is mainly sensitive to the tangential part of the source activity, only the tangential component of the

orientation (in the vt1 -vt2 plane) was estimated from the MEG data. Therefore, the MEG leadfield LMðrÞ was reduced to the two tangential

dimensions by LredM ðrÞ = LMðrÞ$ðvt1 ;vt2 Þ˛RNch32. For EEG, the leadfield LEðrÞ was kept complete and the entire 3-dimensional orientation

was estimated. In both cases, a regularization of 5% was used.

To obtain a combined EMEG estimate, we exploited the strengths of eachmodality. As MEG is mainly sensitive to tangential components

and additionally barely influenced by conductivity parameters, we estimated the tangential part of the orientation fromMEG data. The radial

component was then estimated from EEG data, which is sensitive to all source orientations, but also more susceptible to conductivity param-

eters. The two components were superposed, and the resulting vector was normalized. The estimation error e, the angle between the esti-

mate bh and the ground truth hsim, was computed as quality measure

e =
arccosðjbhuhsimjÞ

2p
$360+

Since beamformer algorithms reconstruct the source power C
��bsðrj; tÞ��2D, orientations enclosing an angle of 180+ are indistinguishable.

Hence, we defined the smaller angle between the vectors as the estimation error. It can range between 0+ and 90+ with 0+ meaning the es-

timate equals the ground truth (parallel or anti-parallel) and 90+ meaning the vectors are orthogonal to each other.
QUANTIFICATION AND STATISTICAL ANALYSIS

All simulations were performed at the target locations r FEF, r V5 using the respective data and leadfields.
Computational simulations

To obtain an overview of the beamformers‘ performances, 1000 random orientations were generated, and the data was simulated for these

orientations with noise levels s of 0.5, 2, and 4 (sE = sM) and with extremely high noise levels (s = ½102;103;104�). The orientations were then

estimated from the data and compared to the ground truth orientations resulting in 1000 estimation errors for different orientations. Pearson’s
14 iScience 27, 109150, March 15, 2024
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correlation coefficient was computed between the median errror and (1) the source depth and (2) the condition number of the leadfield (ratio

of largest and smallest singular value). Furthermore, the set of ground truth orientations was contrastedwith the set of estimated orientations.

To answer the question whether the pure EEGor the combined EMEGapproach leads to the smallest estimation error, the combination of

the noise levels sM and sE was examined. While the noise level of the MEG was kept constant at sM = 4, the EEG was assigned noise levels

between sE = 0:5 and sE = 10. The simulation as explained in the previous section was repeated and the mean of the distribution was ex-

tracted as a central measure for the estimation error.

Finally, the dependency of the estimation error on the source orientation itself was evaluated. If one considers the target as the center of a

unit sphere, each orientation can be considered the unit vector between the center and a point on the spherical surface. To generate orien-

tations, the sphere was scanned systematically using spherical coordinates (Azimuth/tangential plane: from 0+ to 180+ in steps of 9+; Eleva-

tion/ radial direction:� 90+ to 90+ in steps of 9+). Using bootstrapping by drawing random data samples with replacement from the full simu-

lated data set, each orientation was estimated 100 times. The median of the 100 estimation errors was then extracted.
Mathematical Details

In the Method Details, it was described how beamforming was used to reconstruct the orientation of neural activity. There, three different

beamforming strategies, namely UG, AG, and UNG, were presented. We now want to investigate the theoretical reconstruction properties

of these strategies in a simple setting generalizing the test setup described in the Method Details, namely a scenario with a single active

source in the presence of uncorrelated noise. In this setting, we will mathematically prove that the UG beamformer introduces a noise-depen-

dent bias into the reconstruction of the orientation. In particular, we will show that at small SNRs we cannot expect the orientation recon-

structed using the UG beamformer to contain any information about the true source orientation. Furthermore, we will show that AG and

UNG beamformers do not introduce such a bias.

Preliminaries

Weuse the notation described in theMethodDetails. In the following, wewill keep the position r fixed andwill hence omit it from the notation

(i.e., we will write LE instead of LEðrÞ). Furthermore, we assume that LE has rank 3, and that LM has at least rank 2.

We denote by LM = U$S$Vu a singular value decomposition of the MEG leadfield, i.e. U˛RNch3Nch , S˛RNch33, and V ˛ R333.

Let U = ðu1;u2;u3;U0Þ, with U0 ˛RNch3ðNch � 3Þ, S = diagðs1; s2; s3Þ with s1 R s2 R s3 R 0, and V = ðv1;v2;v3Þ. As described in the Method

Details, we reduced the MEG leadfield to the tangential directions. Formally this means that we applied beamforming to the matrix LredM

defined by

LredM = ðs1 $ u1; s2 $ u2Þ˛RNch 3 2:

Note that then LredM $ei = LM$v i, where 1% i% 2 and ei denotes the i-th unit vector inR
2. In the following, if y ˛R3 is an arbitrary vector, we

will refer to yt = ðvu1 y; vu2 yÞ as the tangential component of y, and to yr = vu3 y as the radial component of y.

We want to model our signal as originating from the fixed position r with the fixed orientation hsim. Generalizing from Equation 11, we

hence model our signal vector dðtÞ as

dðtÞ = L $
�
hsim $qðtÞ�+ nðtÞ;

where L is either LE or LM, q is a scalar function modeling the source magnitude, and n is a noise vector. We assume the components of the

noise vector to bemutually uncorrelated, and to be uncorrelated to the sourcemagnitude. Furthermore, we assume the noise components to

be identically distributed, and to have zero mean. We call this a noisy single-source setting. Using R = CdðtiÞdðtiÞuD, where dðt1Þ;.;dðtT Þ
denote samples of the signal dðtÞ, and letting Q2 : = CqðtiÞ2D and s2 : = Cn1ðtiÞ2D, we then have

R = Q2ðLhsimÞðLhsimÞu + s2 Id; (Equation 12)

where Id denotes the identity matrix. We call Q2 the source power and s2 the noise power, and assume Q2 > 0 and s2 > 0. A derivation of

Equation 12 can e.g. be found in the book of Sekihara and Nagarajan,28 Equation 2.43. Note that since L can be either LE or LM, this defines

an EEG and a MEG covariance matrix.

We now define that a beamformer has no EEG orientation bias if the orientation reconstruction algorithm described in the Method De-

tails, applied to the covariance matrix (Equation 12) and the EEG leadfield LE, produces, up to a sign change, the true orientation hsim of the

simulated source. Similarly, we define that a beamformer has no MEG orientation bias if, as long as the true orientation has a non-zero

tangential component, the estimated orientation using the covariance matrix (Equation 12) and the reduced MEG leadfield LredM is, up to a

sign change, given by the orientation defined by the tangential component of the true orientation hsim.

Note that even though a beamformer might have no EEG or MEG orientation bias, in practice it can still produce orientations that deviate

from the true orientation. This may be because one can typically only estimate the true covariancematrix using the sample covariance matrix.

Additionally, the exact leadfield is generally not known but instead approximated using some numerical approach. For a discussion on how

beamformers are affected by these types of errors, we again refer to the book of Sekihara and Nagarajan.28

In theorem 1 below, we will investigate UG, AG, and UNG beamformers. As described in the Method Details, the reconstructed orienta-

tions for these different beamformer approaches are then given by
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hUG = nmin

�
LuR� 1L

�
(Equation 13)
hAG = nmin

�
LuR� 1L; LuL

�
(Equation 14)
hUNG = nmin

�
LuR� 2L; LuR� 1L

�
(Equation 15)

where nminðAÞ denotes an eigenvector to the smallest eigenvalue of A and nminðA;BÞ denotes an eigenvector to the smallest generalized

eigenvalue of the pair ðA; BÞ, i.e. a vector v with Av = lBv, where l is minimal. For a derivation of these approaches, we refer to the

book of Sekihara and Nagarajan,28 sections 4.3 and 13.3.

Relationship to previously known results and different beamforming approaches

A number of results regarding the theoretical reconstruction properties of different beamforming approaches have already been derived.

Vrba and Robinson51 show that for MEG signals in a spherical volume conductor, and assuming a noisy single source setting as described

above, the so-called pseudo-Z score of a position and orientation pair ðx0;hÞ peaks for pairs consisting of the true dipole position and an

orientation whose tangential component is parallel to the tangential component of the true orientation. This result relies on the fact that

for spherical volume conductors, radial dipoles produce no magnetic field outside of the head model, as shown by Sarvas,48 and hence

does not directly generalize to other volume conductor models. In the following, we will denote the process of using the pseudo-Z score

to estimate source parameters as SAM beamforming. Using essentially the same argument as Vrba and Robinson,51 Sekihara et al.52 show

that, more generally, an estimation of the orientation based on maximizing the pseudo-Z score, in a noisy single source setting as described

above, has no orientation bias when estimating the complete dipole orientation (Note that Sekihara et al.52 denote the pseudo-Z score as

output SNR.). Extending upon this paper, they were able to show that under the assumption of a noisy single source setting AG and UNG

beamformers have no location bias.28,53 Furthermore, while they do not explicitly state it, their proof in fact also shows that AG and UNG

beamformers have no orientation bias when estimating the complete dipole orientation. Greenblatt et al.54 also give proof that in a noisy

single source setting the UNG beamformer has no location bias. Another particularly noteworthy contribution is due to Moiseev et al.55 In

this work, the authors introduce functionals generalizing the pseudo-Z score and the neural activity index (NAI, see Van Veen et al.29). Moiseev

et al. then rigorously prove that maximizing these generalized pseudo-Z- and NAI-functionals gives an unbiased estimation for multiple

possibly correlated sources and an arbitrary noise covariance matrix. As a special case, this implies that maximizing the pseudo-Z score,

resp. the NAI, provides an unbiased source estimation in a single source setting with an arbitrary noise covariance matrix.

At first sight, this last statement seems like a strong improvement over the results regarding AG and UNG beamformers, since pseudo-Z

and NAI allow unbiased source estimation for arbitrary noise covariance matrices, while the corresponding statements for AG and UNG

beamformers require a noise covariance matrix of the form s2$Id. But it turns out that, up to a change of variables, AG beamforming is equiv-

alent to NAI beamforming, and UNG beamforming is equivalent to SAM beamforming (i.e. maximizing pseudo-Z). We want to show this.

Assumewe have datab = ðbð1Þ;.;bðTÞÞ˛Rn3T .We then estimate the covariancematrixR as 1
T$b$b

u. Denote byN a positive definitematrix

to be used as a noise covariancematrix. Now denote bywðx0;hÞ˛Rn a spatial filter for the position x0 and orientation h, and by lðx0;hÞ˛ Rn

the lead field at position x0 and orientation h. The pseudo-Z score is then defined as

Zðx0;hÞ =
wðx0;hÞu$R$wðx0;hÞ
wðx0;hÞu$N$wðx0;hÞ

;

and, following Moiseev et al.,55 the scalar version of the NAI is given by

NAIðx0;hÞ =
lðx0;hÞu$N� 1$lðx0;hÞ
lðx0;hÞu$R� 1$lðx0;hÞ

:

Now let ~b = N� 1
2$b be the pre-whitened signal, and denote by ~lðx0;hÞ = N� 1

2$lðx0;hÞ the corresponding transformed leadfields. If we now

compute the covariance matrix of the pre-whitened signal ~b as ~R = 1
T$
~b$~bu, we see that ~R = N� 1

2$R$N� 1
2. Denote by ~wAG the AG beam-

former computed using the pre-whitened signal and the transformed leadfield, and denote by ~PAGðx0;hÞ = ~wAGðx0;hÞu$~R$ ~wAGðx0;hÞ its
projected power. Define ~wUNG and ~PUNG analogously. Using the formulas for the AG and UNG beamformers as given in Equations 5 and

6, a straightforward computation shows that

~PAGðx0;hÞ = NAIðx0;hÞ
~PUNGðx0;hÞ = Zðx0;hÞ:
We thus see that searching for the source that maximizes the neural activity index is equivalent to searching for the source maximizing the

projected AGpower in the pre-whitened signal and searching for the source thatmaximizes the pseudo-Z score is equivalent to searching for

the source maximizing the projected UNG power in the pre-whitened signal. Similarly, performing a change of variables withN� 1
2 shows that

the unbiasedness of SAM beamforming, resp. NAI beamforming, for single sources with an arbitrary noise covariance matrix, is a direct
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consequence of the unbiasedness of UNGbeamforming, resp. AGbeamforming, for noise covariancematrices of the form s2$ Id. On a further

note, we see that statements derived for AG and UNG beamformers under the assumption of noise covariance matrices of the form s2$ Id

translate to statements about SAM and NAI beamformers for arbitrary noise covariance matrices, and vice versa. Additionally, as a particular

special case note that for noise covariances of the form s2$Id we have that even without a coordinate change the AG beamformer power is a

scalar multiple of the neural activity index, and the UNG beamformer power is a scalar multiple of the pseudo-Z score. Hence in this case we

have that the source estimation using AG beamforming is the same as NAI beamforming, and that source estimation using UNG beamform-

ing is the same as SAM beamforming.

We thus see that there are already many results showing the unbiasedness of different versions of AG and UNG beamformers in different

settings. Additionally, it is well-known that the UG beamformer is not unbiased, and e.g. introduces a depth bias into the reconstruction (see

e.g. Sekihara and Nagarajan,28 5.1.6).

In Theorem 1, we will extend upon the known results, with a particular focus on (un-)biasedness of reconstructed orientations. While

the orientations of the different beamformers are defined as maximizers of certain power functionals, it is well-known that for a fixed po-

sition, the orientation can also be derived by solving a (generalized) eigenproblem (which is the origin of Equations 13, 14, and 15). While

the papers cited above show that AG and UNG beamformers have no EEG orientation bias by investigating these functionals, we will show

below how this unbiasedness can be derived in a straightforward algebraic way by computing the eigenvectors of the corresponding

generalized eigenproblems. Furthermore, we will also show that the estimation of the tangential component of the orientation

using the reduced MEG leadfield LredM is unbiased for AG and UNG beamformers. Finally, we will give an in-depth discussion on the nature

of the bias of the UG beamformer, both for noise covariance matrices of the form s2$Id and for arbitrary positive definite noise covariance

matrices.

Investigating the reconstruction properties of beamforming approaches

In the following, if we call a vector v an orientation, we implicitly assume kvk = 1. Looking at Equations 13, 14, and 15 , we see that whenever v

is a valid reconstructed orientation, then so is � v. The beamformers described thus far can hence not differentiate between orientations of

opposing signs. If we want to investigate the limiting behavior of reconstructed orientations, we need to take this non-uniqueness into ac-

count. More concretly, if vs is a family of orientations parametrized by some parameter s, we say that vs converges up to sign to vs0 if, as

s approaches s0, we have that vs is eventually arbitrarily close to either vs0 or � vs0 . Furthermore, note that in the following considerations,

we keep the source power fixed. Hence increasing or decreasing the noise power corresponds to decreasing or increasing the SNR. We can

now state the orientation bias behavior of the different beamforming strategies.

Theorem 1. We assume a noisy single-source setting. We then have the following.

(1) The AG and UNG beamformers have no EEG orientation bias and no MEG orientation bias.

(2) The UG beamformer has an orientation bias in the EEG case and the MEG case. More concretely, we have the following.
(a) In the UG EEG case, as the noise power approaches zero, the reconstructed orientation converges up to sign to the true orienta-

tion. As the noise power approachesN, the limiting behavior of the reconstructed orientation depends on the relation of the true

orientation to the singular vectors of LE. More specifically, we have the following.

i. If the true orientation is not orthogonal to the eigenspace of LuE LE corresponding to the smallest singular value of LE, the re-

constructed orientations converge for s/N up to sign to the orthogonal projection of the true orientation onto this eigen-

space.

ii. If the true orientation is orthogonal to this eigenspace, the reconstructed orientation depends discontinuously on the noise po-

wer and is, for sufficiently large noise, given by an arbitrary singular vector of LE corresponding to the smallest singular value.
(b) In the UGMEG case, the limiting behavior as the noise power approachesN is the same as the behavior in the EEG case, with the

true orientation replaced by its tangential projection and LE replaced by LredM . But in contrast to the EEG case, as the noise power

approaches zero, the reconstructed orientation does not converge to the tangential component of the true orientation, but instead

to some other vector ~h, which typically will be quite close to, but different from, the tangential component of hsim. We refer to the

following proof for the precise form of ~h.
Remark. We want to add some comments on the UG reconstruction.

(1) In the generic case the eigenspace of LuL corresponding to the smallest singular value of L is one-dimensional. In this case, as s/N

the UG orientation reconstruction simply converges up to sign to the corresponding singular vector.

(2) It might seem somewhat surprising that the limiting behavior of the UG beamformer as s/0 is different in the EEG case and the MEG

case. The fundamental reason for this is that in the MEG case, the covariance matrix R contains the full leadfield LM$hsim, while the

reconstruction uses the reduced leadfield LredM . However, note that theMEG signal of a source is generally dominated by its tangential

component, which is the reason why the reconstructed orientation ~h will still be quite close to the true orientation. In fact, if ht
sim de-

notes the tangential component of the true orientation, the following proof shows that the difference between ~h and ht
sim is caused by

the difference between kLM$hsimk and kLredM $ht
simk.
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Part 1: Proof that investigating the covariance matrix. As a first step, we need to better understand the covariance matrix R. Letting

x = Q$L$hsim, we have R = xxu +s2Id. Now let ~x = x
kxk and let v1;.; vN� 1 be an orthonormal basis of fxgt. Letting A = xxu, we have

A~x = kxk2$~x, and Av i = 0 = 0$v i. Hence f~x; v1;.; vN� 1g is an orthonormal basis consisting of eigenvectors of A, corresponding to the

eigenvalues kxk2 and 0. Hence f~x; v1;.; vN� 1g is also an orthonormal basis of eigenvectors of R� 1 corresponding to the eigenvalues
1

s2+kxk2 and
1
s2
. Denoting by p the orthogonal projection onto the line defined by R$x, this implies for v ˛RNch

R� 1v = R� 1pðvÞþR� 1
�
v � pðvÞ� =

1

s2þ kxk2 pðvÞþ
1

s2

�
v � pðvÞ�

=
1

s2
v � 1

s2

k xk2
s2þ kxk2

xxu

k xk2 v:
(Equation 16)

This in particular implies

vuR� 1v =
1

s2
kvk2 � 1

s2

kxk2
s2+ kxk2

ðvuxÞ2
kxk2 =

kvk2
s2

�
1 � kxk2

s2+ kxk2cos
2ðx; vÞ

	
; (Equation 17)

where cosðx; vÞdenotes the cosine of the angle between the vectors x and v. These last two equations are also derived in the book of Sekihara

and Nagarajan,28 section 13.4.

Part 2: Proof that the AG and UNG beamformers have no orientation bias. We are now going to prove that AG beamformers and

UNG beamformers have no EEG or MEG orientation bias. We start with the EEG case. Let U = spanfv1;.; vNch � 1g and let ImðLEÞ be the

image of the EEG leadfield. Grassmann’s formula (https://proofwiki.org/wiki/Grassmann%27s_Identity) then implies

dimðUX ImðLEÞÞ = dimðUÞ + dimðImðLEÞÞ � dimðU + ImðLEÞÞ
= ðNch � 1Þ + 3 � Nch = 2:

Hence there exists h1;h2 linearly independent with LE$h1;LE$h2 ˛U. Since U is the eigenspace of R� 1 to the eigenvalue 1
s2
, this implies

�
LuE R� 1LE

�
$hi =

1

s2

�
LuE LE

�
$hi;

and

�
LuE R

� 2LE
�
$hi =

1

s2

�
LuE R� 1LE

�
$hi:

Additionally, since x = Q$LE$hsim is also an eigenvector of R� 1 corresponding to the eigenvalue 1
s2+kxk2, we have

�
LuE R� 1LE

�
$hsim =

1

s2+ kxk2
�
LuE LE

�
$hsim;

and

�
LuE R� 2LE

�
$hsim =

1

s2+ kxk2
�
LuE R� 1LE

�
$hsim:

Hence the smallest generalized eigenvalue of the pairs ðLuE R� 1LE; L
u
E LEÞ and ðLuE R� 2LE; L

u
E R� 1LEÞ is given by 1

s2+kxk2, with a one dimen-

sional eigenspace given by R$hsim. Hence the reconstructed orientation for the AG and UNG beamformers in this case is, up to sign, given

by hsim.

We now continue with the MEG case. Just as in the EEG case, Grassmann’s formula implies that there exists 0sh˛R2 so that LredM $ h is

orthogonal to LM$hsim. Again, just as in the EEG case, this implies that h is a generalized eigenvector for the pairs ððLredM ÞuR� 1LredM ; ðLredM ÞuLredM Þ
and ððLredM ÞuR� 2LredM ; ðLredM ÞuR� 1LredM Þ corresponding to the generalized eigenvalue 1

s2
. Computing the remaining eigenvector is slightly more

involved than in the EEG case, which is due to the fact that x = Q$LM$hsim is in general not contained in the image of LredM .

Let ht
sim be the tangential component and hrsim the radial component of the true orientation hsim. Recall that L

red
M = ðs1 $u1;s2 $u2Þ. By defi-

nition of the singular value decomposition, we know that u3 is orthogonal to u1 and u2, and hence in particular that ðLredM Þu$u3 = 0. This in

particular implies ðLredM ÞuLredM $ht
sim = ðLredM ÞuLM$hsim. Furthermore, we have R$u3 = s2u3 + ðxuu3Þx, and hence applyingR� 1 to both sides of

this equation yields 

LredM

�u
R� 1u3 = � Qxuu3

s2ðs2+ kxk2Þ


LredM

�u
LredM ht

sim: (Equation 18)

Noting that xuu3 = Qs3h
r
sim and that LM$hsim = LredM ht

sim + s3h
r
simu3, we can compute
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LredM

�u
R� 1LredM

�
$ht

sim =

 
1

s2
$
s2+

�
Qhr

sims3
�2

s2+ kxk2
!



LredM

�u
LredM

�
$ht

sim: (Equation 19)

Hence ht
sim is a generalized eigenvector of the pair ððLredM ÞuR� 1LredM ; ðLredM ÞuLredM Þ corresponding to the generalized eigenvalue

1
s2
$
s2+ðQhrsims3Þ2

s2+kxk2 < 1
s2
. This last inequality follows from ðQhrsims3Þ2 = ðxuu3Þ2< kxk2, which itself is a consequence of Bessel’s inequality

(see Rudin,56 Theorem 4.17) together with the assumption that the true orientation has a non-zero tangential component. Hence

the eigenspace corresponding to the smallest generalized eigenvalue is given by R$ht
sim, and we see that the AG beamformer

has no MEG orientation bias.

Noting that R2u3 = ðs2 + s2 + kxk2ÞRu3 � s2ðs2 + kxk2Þu3, applying R� 2 to both sides of this equation yields

LredM

�u
R� 2u3 =

�
1

s2
+

1

s2+ kxk2
	


LredM

�u
R� 1u3

Using this together with LM$hsim = LredM $ht
sim + s3h

r
simu3 and Equations 18 and 19, we can compute




LredM

�u
R� 2LredM

�
$ht

sim =

 
1

s2+ kxk2 +
1

s2

�
Qhr

sims3
�2

s2+ðQhr
sims3Þ2

!


LredM

�u
R� 1LredM

�
$ht

sim:

This shows that ht
sim is a generalized eigenvector for the pair ððLredM ÞuR� 2LredM ;ðLredM ÞuR� 1LredM Þ, and, again using that ðQhrsims3Þ2< kxk2, it is

straightforward to see that the eigenvalue computed above is smaller than 1
s2
. The eigenspace corresponding to the smallest generalized

eigenvalue of the pair ððLredM ÞuR� 2LredM ; ðLredM ÞuR� 1LredM Þ is thus given by R$ht
sim, which shows that the UNG beamformer has no MEG orien-

tation bias.

Part 3: Proof that the UG beamformer has an orientation bias. We now discuss the UG beamformer. In this case, the reconstructed

orientation is given by an eigenvector corresponding to the smallest eigenvalue of LuR� 1L, where L is either LE or L
red
M . It is well known that a

vector hUG with khUGk = 1 is an eigenvector corresponding to the smallest eigenvalue of LuR� 1L if and only if it is a minimizer of

h1huLTR� 1Lh over the unit sphere (see e.g. Sekihara and Nagarajan,28 section 13.3), and hence

hUG = arg min
khk = 1

huLuR� 1Lh = ð17Þargmin
khk = 1

k Lhk2
s2

�
1 � k xk2

s2+ kxk2cos
2ðx; LhÞ

	
= arg min

khk = 1

k Lhk2
�
1 � kxk2

s2+ kxk2cos
2ðx; LhÞ

	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

= :fsðhÞ

:

Now define f0ðhÞ= kLhk2ð1 � cos2ðx; LhÞÞ= kLhk2 sin2ðx; LhÞ and fNðhÞ = kLhk2. One can now quickly see that fs /
s/0

f0 and fs /
s/N

fN
uniformly over the unit sphere. Since f0 and fN are continuous, it follows that any cluster point of minimizers of fs as s/0 is also a minimizer

of f0, and any cluster point of minimizers of fs as s/N is also a minimizer of fN.

We first discuss the EEG case. First note that f0 is minimized if sin2ðx;LE $hÞ = sin2ðQ $LE $hsim;LE $hÞ = 0, which happens if and only if

either h = hsim or h = � hsim. Hence arg minkhk = 1f0ðhÞ = fhsim;�hsimg, and since the unit sphere is compact this implies that, as s/ 0, the

UG reconstruction converges up to sign to the true orientation hsim.

Furthermore, it is well known that fNðhÞ= kLE$hk2 is minimized in the singular vectors of LE corresponding to the smallest singular value.

Hence, as s/N, it follows that the reconstructed orientations get arbitrarily close to the space of these singular vectors. That the recon-

structed orientations actually converge up to sign to the orthogonal projection of the true orientation onto this space (resp. are given by

an arbitrary singular vector corresponding to the smallest singular value if this projection is zero) can now be seen by explicitly computing

the corresponding eigenvectors using the Bunch-Nielsen-Sorensen formula (see Bunch et al.57 for a statement and a proof of this formula).

We now discuss the MEG case. The limiting behavior as s/N can be established in the same way as in the EEG case. In fact, the limiting

behavior as s/0 can also be established in this way, but since the difference between this limit and the desired orientation, namely ht
sim, is of

interest, we want to be more explicit. By Equation 16 we have

LredM

�u
R� 1LredM =

1

s2



LredM

�u
LredM � 1

s2

1

s2+ kxk2


LredM

�u
xxuLredM

=
1

s2

  
s21 0

0 s22

!
� Q2

s2+ kxk2
 
s21$h

t1
sim

s22$h
t2
sim

!
$
�
s21$h

t1
sim s22$h

t2
sim

�!
If either ht1sim or ht2sim is zero, this matrix is diagonal and the limiting behavior is evident. We shall thus now assume h

t1
sim;h

t2
sims0. As is shown in

Bunch et al.,57 the smallest eigenvalue l of s2ðLredM ÞuR� 1LredM is then given as the unique solution of the equation
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�
s21h

t1
sim

�2
s21 � l

+

�
s22h

t2
sim

�2
s22 � l

= a;

where a = s2+kxk2
Q2 , in the interval ð� N;s22Þ. Note that the solution l of this equation in the interval ð�N; s22Þ is a strictly increasing function of

a˛ ð0;NÞ, and furthermore depends continuously on a. Note in particular that a =
Q2kLredM $ht

sim
k2

Q2 corresponds to l = 0. Hence we have, as s/

0, that l


s2+kxk2

Q2

�
/l



kxk2
Q2

�
= :l0. Note that if the MEG leadfield has a non-vanishing radial component, this implies l0 > l



Q2kLredM $ht

sim
k2

Q2

�
= 0.

The Bunch-Nielsen-Sorensen formula now finally implies that the eigenvector of ðLredM ÞuR� 1LredM corresponding to the smallest eigenvalue is,

up to scaling, given by

�
s2
1
h
t1
sim

s2
1
� lðaÞ;

s2
2
h
t2
sim

s2
2
� lðaÞ

	
, where a = s2+kxk2

Q2 . This implies that the reconstructed orientations converge up to sign to a scalar

multiple of

�
s2
1
h
t1
sim

s2
1
�l0

;
s2
2
h
t2
sim

s2
2
�l0

	
. If now s1ss2 and the radial component of the MEG leadfield does not vanish, we see that the limit of the recon-

structed orientations is different from ht
sim.

To summarize, as s/0, the MEG UG beamformer reconstructions converge up to sign to

~h = c$

0BBBB@
s21h

t1
sim

s21 � l0

s22h
t2
sim

s22 � l0

1CCCCA;

where c is chosen so that the vector has norm 1, and l0 is the unique solution of�
s21h

t1
sim

�2
s21 � l

+

�
s22h

t2
sim

�2
s22 � l

= kLM$hsimk2

on the interval ½0;s22Þ.
Note that as long as the MEG leadfield is dominated by the tangential part we have kLM$hsimk2z kLredM $ht

simk2 and hence l0z 0, which in

turn implies ~hz~c$ht
sim, where ~c is chosen so that k~c$ht

simk = 1. As long as the MEG leadfield is dominated by its tangential component we

thus expect the UG beamformer for small noise levels to approximately reconstruct the tangential component of the true source orientation.

Remark. In the proof above, we have seen that in the generic case, as s/N, the UG reconstruction converges up to sign to the singular

vector of the lead field corresponding to the smallest singular value. But large noise is not the only reason the UG reconstruction might pro-

duce noticeable errors. In fact, if the lead field is badly conditioned, i.e. if the ratio of the largest to the smallest singular value is large, we also

expect large errors in the reconstruction. To get an idea of why this is the case, we take a look at the minimization problem defining the UG

approach. At the beginning of Part 3 of the proof above, we derived the formula

hUG = argmin
khk = 1

kLhk2
�
1 � kxk2

s2+ kxk2cos
2ðx; LhÞ

	
:

In the following discussion, wewill keeps fixed.Now the smallest value of kLhk for khk = 1 is given by the smallest singular value of L, which is

attained in the corresponding singular vector, and similarly, the largest value of kLhk for khk = 1 is given by the largest singular value, which is

also attained at the corresponding singular vector. Hence a large condition number for L corresponds to a large range of values in the first

factor of the above expression, and hence a tendency for the minimizer of the product to be close to the minimizer of the first factor. In the

extreme case, when the smallest singular value is zero, we in particular see that the minimizer is given by the singular vector corresponding to

the smallest singular value. In total, we thus expect that larger condition numbers of the lead fields result in faster convergence of the UG

reconstructions to the singular vectors.

Another expression of this principle can be observed in Figure 4. There, one sees that for the V5 lead field and s = 2:0, the mean error is

quite high for orientations close to the largest singular vector vE1, while orientations close to the middle singular vector vE2 have compara-

tively low median errors. This is a mathematical necessity. Computing the corresponding expected UG reconstructions using the Bunch-

Nielsen-Sorensen formula, one sees that the component of the expected reconstruction in the direction of vE1 converges faster to 0 than

the component of the expected reconstruction in the direction of vE2. When looking at the corresponding expressions, it can be shown

that the components in the respective directions are monotonically decreasing functions in the ratios of the singular value in the direction

and the smallest singular value. Thus, since the ratio of the largest singular value and the smallest singular value is larger than the ratio of

the middle singular value and the smallest singular value, we again see that a larger ratio of singular values leads to a faster convergence

against the smallest singular vector.

Finally, we want to discuss a generalization of the statement of theorem 1 for UG beamformers to arbitrary noise covariance matrices.

Theorem 2. We now model our signal vector as

dðtÞ = L $
�
hsim $qðtÞ�+ nðtÞ;
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where L is a full rank lead field matrix, nðtÞ is uncorrelated noise with an arbitrary positive definite covariance matrixN, hsim is the true source

orientation and qðtÞ is the source activity. Similar to the derivation of Equation 12, one can then see that the expected covariance matrix R in

this case is given by

R = N +Q2ðL $hsimÞðL$hsimÞu;

whereQ2 = CqðtÞ2D> 0 (see e.g. Moiseev et al.55). Now denote by hUG the UG reconstruction using this covariancematrix R. We then have the

following generalization of the statement of theorem 1.2.

(1) For kNk/0, the reconstructed orientation hUG converges up to sign to the true orientation hsim.

(2) Let t> 0. LetN = t$N0, whereN0 is a positive definitematrix so that the smallest eigenvalue of LuN� 1
0 L is simple. Then, as t/N, the

reconstructed orientation hUG converges up to sign to the eigenvector of LuN� 1
0 L corresponding to the smallest eigenvalue.

Note that theorem 2.2) is indeed a generalization of the corresponding statement in theorem 1. In that theorem, we haveN = s2$ Id =

s2$N0, with N0 = Id. In this case, the smallest eigenvector of LuN� 1
0 L = LuL is simply the smallest singular vector of L.

Additionally note that based on theorem 2.2), and the argument used to derive it, we can more generally expect that, in the case that the

noise is much stronger than the signal, the orientation hUG will be close to the eigenvector of LuN� 1L corresponding to the smallest

eigenvalue.

Proof. In order to keep the presentation concise, we will restrict ourselves to a sketch of the proof.

Using the Sherman–Morrison formula, we have

LuR� 1L = Lu
 
N� 1 � Q2N� 1$ðLhsimÞ$ðLhsimÞu$N� 1

1+Q2$CLhsim;N
� 1$LhsimD

!
L = LuN� 1L

�
�
LuN� 1L

�
$ðQhsimÞ$ðQhsimÞu$

�
LuN� 1L

�
1+CQhsim; L

uN� 1LQhsimD
=

�

LuN� 1L
�� 1

+Q2hsim$h
u
sim

�� 1

;

where the Sherman–Morrison formula was applied in the first and the last line. We thus see that

hUG = nmin

�
LuR� 1L

�
= nmax

n�
LuN� 1L

�� 1
+ Q2 $hsim $hu

sim

o
:

Using standard results from spectral theory, one can see that kNk/0 implies kðLuN� 1LÞ� 1k/0. Together with standard results from the

perturbation theory of the hermitian eigenproblem, as they can e.g. be found in the book of Saad,58 3.2.2, one can then see that as kNk/0,

the UG reconstruction converges up to sign to the eigenvector corresponding to the largest eigenvalue ofQ2$hsim$h
u
sim, which is given by the

true orientation hsim. This shows 1).

Statement 2) can be derived analogously, where in this case we interpretQ2$hsim$h
u
sim as a perturbartion of ðLuN� 1LÞ� 1. Then essentially

the same reasoning as for statement 1) shows that hUG converges up to sign to nmaxfðLuN� 1
0 LÞ� 1g, which is given by the eigenvector corre-

sponding to the smallest eigenvalue of LuN� 1
0 L.
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