
Journal of Molecular Cell Biology (2024), 15(7), mjad048 https://doi.org/10.1093/jmcb/mjad048
Published online July 25, 2023 

Letter to the Editor 

Cholinergic α7 nAChR signaling suppresses 

SARS-CoV-2 infection and inflammation in lung 

epithelial cells

 

 

 

infected with wild-type SARS-CoV-2. We 
found that viral titers in supernatant were 
124 times lower in the GTS-21-treated 
group than in the PBS-treated ( control) 
group ( Figure 1 C and D) , suggesting 
an anti-SARS-CoV-2 effect of α7 nAChR- 
mediated cholinergic signaling. Further- 
more, immunofluorescence and real-time 
quantitative polymerase chain reaction 
( RT-qPCR) assays revealed significantly 
reduced ACE2 protein and mRNA levels, 
respectively, in Calu3 cells treated with 
GTS-21 and infected with SARS-CoV-2 
pseudovirus ( Figure 1 E and F) , suggest- 
ing that activation of α7 nAChR could 
disrupt SARS-CoV-2 entry by suppressing 
ACE2 expression. 
Then, RNA sequencing ( RNAseq) was 

performed with Calu3 cells treated with 
or without GTS-21 and infected with or 
without wild-type SARS-CoV-2 ( BGI BIG 

DATABASE, see Supplementary Materials
and methods) . Data analysis revealed 
that activation of α7 nAChR inhibited the 
expression of 39 viral defense response 
genes ( Supplementary Figure S1A–C) , 
suggesting that viral replication might be 
disrupted. Activation of α7 nAChR also 
significantly reduced the mRNA level 
of FOS , a member of the AP-1 family 
( Supplementary Figure S2A–C) , and 
suppressed both ACE2 and FOS protein 
levels in SARS-CoV-2 pseudovirus- 
infected Calu3 cells ( Supplementary
Figure S2D) . Consistently, activation 
of α7 nAChR significantly reduced the 
protein levels of p-p38MAPKα, FOS, 
the viral nucleocapsid ( N protein) , and 
ACE2 in wild-type SARS-CoV-2-infected 
Calu3 cells ( Figure 1 G) . In addition, FOS 
knockdown in Caco2 cells markedly 
reduced ACE2 mRNA and protein levels 
( Supplementary Figure S2E and F) and 

SARS-CoV-2 pseudovirus infectivity 
( Supplementary Figure S2G) . These find- 
ings suggest that FOS is required for ACE2 
expression and SARS-CoV-2 S protein 
entry. Next, Calu3 cells were treated with 
T5224 ( a compound that inhibits FOS 
binding to the ACE2 promoter) and then 
infected with SARS-CoV-2 pseudovirus. 
Western blotting and luciferase assays 
demonstrated that the inhibition of 
FOS binding reduced ACE2 protein level 
( Figure 1 H) and SARS-CoV-2 pseudovirus 
infectivity ( Figure 1 I) , respectively. 
These findings suggest that activation 
of α7 nAChR reduces FOS expression 
levels to suppress ACE2 expression 
and disrupt SARS-CoV-2 S protein 
entry. 
The binding between SARS-CoV-2 S 

protein and ACE2 can induce reactive 
oxygen species ( ROS) production ( Li et 
al., 2021 ) . Thus, we examined whether 
activation of α7 nAChR affects ROS 
production by using a dichlorodihydroflu- 
orescein diacetate ( DCFH-DA) fluorescent 
probe and found that activation of 
α7 nAChR significantly reduced ROS 
levels in SARS-CoV-2 pseudovirus- 
infected Calu3 cells ( Supplementary
Figure S3A and B) . Meanwhile, Caco2 
cells were pretreated with H2 O2 and then 
infected with SARS-CoV-2 pseudovirus. 
H2 O2 significantly increased SARS-CoV-2 
infectivity ( Supplementary Figure S3C) , 
suggesting that ROS mediate SARS- 
CoV-2 S protein entry. To determine 
the anti-oxidative mechanism of 
GTS-21, we performed volcano plot 
analysis with the RNAseq data and 
identified 164 genes upregulated and 
448 genes downregulated in GTS-21- 
treated wild-type SARS-CoV-2-infected 
Calu3 cells compared to GTS-21- 
Dear Editor , 
Coronavirus disease 2019 ( COVID-19) , 

caused by severe acute respiratory 
syndrome coronavirus 2 ( SARS-CoV-2) 
infection, has led to > 6 million deaths
and posed a huge threat to the global
economy and public health. SARS-CoV-2 
enters lung epithelial cells depending on 
the binding between SARS-CoV-2 S pro- 
tein and the host receptor angiotensin- 
converting enzyme 2 ( ACE2) . In addition, 
in-silico studies indicated that both 
SARS-CoV and SARS-CoV-2 S glycopro- 
teins can interact with the extracellular 
domain of α7 nicotinic acetylcholine 
receptor ( nAChR) . Given that α7 nAChR 
possesses anti-inflammatory properties 
and may interact with SARS-CoV-2 S
protein, activating α7 nAChR-mediated 
cholinergic anti-inflammatory pathway 
might be an ideal therapeutic strategy for 
COVID-19. However, whether activation 
of α7 nAChR truly affects SARS-CoV-2 
replication is still elusive. 
In this study, human lung epithelial 

Calu3 cells were simultaneously treated 
with GTS-21 ( a specific agonist of α7 
nAChR) and infected with the SARS-CoV-2 
pseudovirus containing the S protein as 
a surface capsid glycoprotein ( hereafter 
referred to as SARS-CoV-2 pseudovirus) . 
We found that activation of α7 nAChR 
significantly reduced S protein entry 
( Figure 1 A) . This finding was recapitu- 
lated in human colon epithelial Caco2 
cells ( Figure 1 B) . Next, Calu3 cells were 
simultaneously treated with GTS-21 and 
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untreated infected cells. Activation 
of α7 nAChR significantly increased 
the expression levels of anti-oxidative 
genes, including TXNRD1 ( maintaining 
redox homoeostasis) , G6PD ( maintaining 
a normal NADPH/NADP ratio that in turn 
regulates glutathione biosynthesis) , 
GCLC ( the first rate-limiting enzyme of 
glutathione synthesis) , and SQSTM1 
( Figure 1 J) . 
To further elucidate how α7 nAChR 

mediates anti-oxidative effects, anti- 
α7 nAChR antibodies were used to 
pull down its binding proteins. Mass 
spectrometry analysis identified 178 
proteins that could bind to α7 nAChR. 
The gene transcripts encoding 145 of 
these proteins were found in our RNAseq 
database. Through volcano plot analysis, 
we found that the mRNA levels of anti- 
oxidative genes, including G6PD , TKT 
( decreasing glucose flux into glycolysis 
and increasing glutathione synthesis) , 
and SQSTM1 , were significantly 
increased in GTS-21-treated SARS- 
CoV-2-infected Calu3 cells ( Figure 1 K; 
Supplementary Figure S4A and B) . These 
findings suggest that activation of α7 
nAChR may recruit and promote G6PD 

and TKT to execute their anti-oxidative 
activities. 
Further analysis of the RNAseq data 

indicated that activation of α7 nAChR 
increased the mRNA levels of GPX4 and 
GPX2 ( Supplementary Figure S5A–C) , 
which play pivotal roles in maintaining 
glutathione function and inhibiting 
ferroptosis, as well as GCLC and 
GCLM ( genes related to glutathione 
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t was reported that local electric
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020 ) . In our study, activation of
7 nAChR also significantly reduced
he mRNA levels of cytokine storm-
ssociated genes ( e.g. CXCL1 , CCL20 ,
XCL8 , and CXCL5) in lung epithelial
ells ( Supplementary Figure S6A–C) ,
onfirming that activation of α7 nAChR
uppresses the cytokine storm in lung
pithelial cells. 
Previous studies showed that
ctivation of α7 nAChR could attenuate
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MGB1 and NF- κB signaling ( Kox et al.,
011 ; Sitapara et al., 2020a , b ) . Similar
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Meanwhile, in SARS-CoV-2-infected
mouse lungs, Nfkbid , Nfkbie , Nfkb2 ,
Nfkbiz, and Nfkbil1 were upregulated
( Supplementary Figure S7F) , s ug ge s tin g
the activated NF- κB signaling. In SARS-
CoV-2-infected Calu3 cells, activation of
α7 nAChR significantly upregulated
two NF- κB inhibitors NFKBIL1 and
NFKBIB ( Supplementary Figure S7G) ,
suggesting that activation of α7 nAChR
may inhibit NF- κB. FOS is a member of the
AP-1 family, which can be activated by
NF- κB ( Hsieh et al., 2010 ) . Compared
to SARS-CoV-2-infected Chrna7+ / +

mice, SARS-CoV-2-infected Chrna7−/ −

mice showed higher Fos and
Cxcl2 mRNA levels ( Supplementary
Figure S8A) and severe inflammation
( Supplementary Figure S8B) in the lung,
suggesting that activation of α7 nAChR
could suppress FOS expression and
lung inflammation during SARS-CoV-2
infection. Therefore, activation of α7
nAChR disturbs SARS-CoV-2-induced
NF- κB–FOS signaling. 
Taken together, the binding between

SARS-CoV-2 S protein and ACE2 triggers
ROS, which promote SARS-CoV-2 S
protein entry. Activation of α7 nAChR
likely increases glutathione biosynthesis
and reduces ROS-mediated SARS-CoV-2
S protein entry. Moreover, activation of
α7 nAChR compromises the binding of
FOS to the ACE2 promoter and therefore
suppresses ACE2 expression and SARS-
CoV-2 S protein entry ( Figure 1 L) .
Activation of α7 nAChR also suppresses
inflammation in SARS-CoV-2-infected
lung epithelial cells. These findings
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prompt us to target lung epithelial α7
nAChR to curb COVID-19 by reducing
viral replication and proinflammatory
responses. Electric stimulation of the 
vagus nerve to increase the excitability or
administration of α7 nAChR agonists into
the airways might be promising strate-
gies for combating this deadly disease. 
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