Skip to main content
. 2024 Feb 15;15:1348974. doi: 10.3389/fmicb.2024.1348974

Table 3.

Comparison between evaluation metrics of XGBoost (XGB), Random Forest (RF), and Support Vector Machine (SVM) classifiers.

ACC F1 PREC AUC ROC AUPRC
XGB 0.652 (0.017) 0.567 (0.022) 0.613 (0.022) 0.701 (0.015) 0.639 (0.021)
RF 0.673 (0.015) 0.507 (0.030) 0.729 (0.038) 0.699 (0.011) 0.668 (0.016)
SVM 0.633 (0.025) 0.478 (0.091) 0.613 (0.032) 0.663 (0.036) 0.597 (0.037)

The mean values accompanied by the standard deviation are shown. The highest values for each metric are indicated in bold, and the second-highest values are underscored.