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Prediction of plasma ctDNA fraction and
prognostic implications of liquid biopsy in
advanced prostate cancer

A list of authors and their affiliations appears at the end of the paper

No consensus strategies exist for prognosticating metastatic castration-
resistant prostate cancer (mCRPC). Circulating tumor DNA fraction (ctDNA%)
is increasingly reported by commercial and laboratory tests but its utility for
risk stratification is unclear. Here, we intersect ctDNA%, treatment outcomes,
and clinical characteristics across 738 plasma samples from 491 male mCRPC
patients from two randomized multicentre phase II trials and a prospective
province-wide blood biobanking program. ctDNA% correlates with serum and
radiographic metrics of disease burden and is highest in patients with liver
metastases. ctDNA% strongly predicts overall survival, progression-free sur-
vival, and treatment response independent of therapeutic context and out-
performed established prognostic clinical factors. Recognizing that ctDNA-
based biomarker genotyping is limited by low ctDNA% in some patients, we
leverage the relationship between clinical prognostic factors and ctDNA% to
develop a clinically-interpretable machine-learning tool that predicts whether
a patient has sufficient ctDNA% for informative ctDNA genotyping (available
online: https://www.ctDNA.org). Our results affirm ctDNA% as an actionable
tool for patient risk stratification and provide a practical framework for opti-
mized biomarker testing.

Metastatic castration-resistant prostate cancer (mCRPC) is lethal
and globally results in over 375,000 deaths annually1. Although
new treatments have extended survival, clinical outcomes remain
heterogeneous, ranging from relative indolence to upfront
therapy resistance and rapid death2. Prognostic classification
schemes and nomograms leveraging clinical and routine labora-
tory prognostic factors are used to estimate disease aggression
and influence patient management3–8—including treatment
selection and intensification, choice of early versus late
chemotherapy9, as well as imaging frequency and clinical trial
prioritization10. However, existing prognostication strategies
provide modest stratification value and were developed using
historical trial datasets that do not represent the contemporary
mCRPC population that receives several lines of systemic therapy
and has a median survival of more than 2–3 years.

In patients with cancer, tumor DNA is shed into the blood and
mixes with normal cell-free DNA (cfDNA) from apoptosed leukocytes11.
ctDNA fraction (ctDNA%) is the proportion of tumor-derived cfDNA12

and is an emerging prognostic factor across cancers and clinical
scenarios13,14. Early studies suggested that high ctDNA% is associated
with poor prognosis in mCRPC and may be more accurate than exist-
ing clinical prognostic factors14–22. However, the precise relationship
between ctDNA%, established clinical prognostic factors (including
serum markers and radiographic features), subsequent therapy
response, and overall life expectancy is unknown. Evaluating these
relationships requires large standardized cohorts to determine whe-
ther ctDNA% testing can outperform existing prognostication strate-
gies and warrants incorporating into clinical practice. Excitingly,
ctDNA% is increasingly reported on commercially-available tests that
genotype ctDNA to determine treatment-predictive biomarker
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status23, meaning that ctDNA%-prognostication is poised to rapidly
influence patient management pending its clinical validation.

In current clinical practice, plasma ctDNA testing is typically used
to identify actionable somatic alterations (i.e., cancer genotyping), and
tests can be ordered multiple times across sequential disease pro-
gression on different systemic therapies. In particular, ctDNA geno-
typing is used in patients with mCRPC to evaluate eligibility for poly
(ADP-ribose) polymerase [PARP] inhibitor treatment24,25. However,
ctDNA% is critical for interpreting genotyping results since low ctDNA
% is common and precludes detection of clinically-relevant alterations
such as somatic BRCA2 truncating mutations and homozygous
deletions20,26. Healthcare providers are increasingly aware of this lim-
itation of ctDNA testing and there is considerable debate about the
reliability of results andwhen it is necessary to rely insteadupon tumor
tissue testing for cancer genotyping27,28. Unlike ctDNA%, which can be
measured with inexpensive assays such as low-pass whole-genome
sequencing29, comprehensive ctDNA genotyping requires relatively
expensive deep sequencing. Ideally, tests for ctDNA genotyping
should be directed towards patients with a high probability of abun-
dant ctDNA, while patients likely to have lower ctDNA% could be
prioritized for tissue-based or germline-only biomarker testing. There
are currently no practical tools to estimate ctDNA% sufficiency for
genotyping prior to blood draw, resulting in treatment delays as
patients await potentially uninformative ctDNA genotyping results,
and wasted resources in profiling samples with insufficient tumor
material.

In this context, we have assembled a large standardized metaco-
hort of mCRPC patients with serial cfDNA linked to comprehensive
time-matched clinical annotation.Wedissect the complex associations
between ctDNA%, clinical prognostic markers, and treatment out-
comes, and build a public user-friendly tool (http://ctDNA.org) to
predict ctDNA% from routine clinical markers to help clinicians prior-
itize patients for ctDNA genotyping.

Results
Metacohort clinical characteristics and ctDNA fraction
distribution
We profiled 738 plasma cfDNA samples from 491 clinically-
progressing mCRPC patients with comprehensive clinical annota-
tion matched to times of blood collection (Fig. 1A, B; Supplementary
Figs. 1, 2; Supplementary Data 1). This metacohort is comprised of
previously published samples and data from 292 patients enrolled in
two completed randomized multicentre phase II trials addressing
treatment involving standard-of-care drugs for first- and second-line
mCRPC (NCT02125357 and NCT02254785)16,20,30 and new samples
and data from 199 previously-unpublished patients from a pro-
spective province-wide plasma cfDNA biobanking program. All clin-
ical annotation and endpoints have been standardized (Methods)
and we have obtained updated outcomes for consenting trial
patients. Overall, 463 (94%), 213 (43%), and 62 (13%) patients pro-
vided cfDNA samples within 1 month prior to first (i.e., baseline),
second, or third-line mCRPC therapy, respectively, and 206 (42%)
provided ≥2 timepoints. Time-matched clinical characteristics
(including Eastern Cooperative Oncology Group performance status
and serum laboratory measurements of disease burden) were
broadly consistent across successive lines of treatment andmirrored
contemporary real-world mCRPC populations (Fig. 1C–H; Table 1).
Line-specific treatment patterns also reflected standard clinical
practice, with most patients receiving AR-axis inhibitors abiraterone
or enzalutamide for first-line mCRPC31,32. Notably, 17% (n = 81)
patients initiating first-line mCRPC therapy received prior systemic
treatment intensification for castration-sensitive disease—typically
via addition of docetaxel chemotherapy (74/81; 91%) rather than AR
pathway inhibitors (7/81, 9%) to continuous androgen deprivation
therapy (ADT)—reflecting standard practice at time of enrollment

(Methods). Consequently, most patients in our metacohort were
naive to standard first-line therapies for mCRPC30. Median follow-up
for overall survival (OS)measured from initiation of first, second, and
third-line mCRPC therapy was 20.3 (range: 0.4–81.6), 14 (0.5–63.5),
and 10.6 (2.2–32.8) months, respectively. Median OS measured from
first-line mCRPC treatment initiation was 25 months (95% CI:
22.4–28.2) (Fig. 1B; Table 1).

For all new plasma samples, we performed deep targeted
sequencing of plasma cfDNA and leveraged multiple lines of evidence
to estimate ctDNA%, including copy number alterations and somatic
mutation allele frequencies corrected for outliers and concomitant
loss-of-heterozygosity (Methods; Supplementary Fig. 3). For pre-
viously published samples, ctDNA% was re-estimated from existing
sequencing data using the same approach. Concurrent deep sequen-
cing of patient-matched white blood cells (performed for all patients)
minimized the likelihood of false-positive ctDNA% estimates due to
germline or clonal-hematopoiesis variants26,33. Across all samples,
median ctDNA% was 5.0% (range: 0–89.2%; IQR: 0–25.2%) and 63.8%
had evidence for ctDNA with our relatively conservative detection
thresholds. We partitioned ctDNA% into categories of high (30–100%),
low (2–30%), and undetected ctDNA (<2%)—the proportion of patients
with high ctDNA% was similar across all lines of therapy (Table 1;
Fig. 1E, F).

To characterize ctDNA% temporal dynamics across serial pro-
gression events, we analyzed the 227 consecutive same-patient
sample pairs in our metacohort (median collection interval: 6.5
months; range: 0.9–32.5; IQR: 3.7–11.2). Serial ctDNA%measurements
were correlated (Pearson R = 0.70, p < 0.0001), especially for pro-
gression samples collected <8 weeks apart (R = 0.97, p < 0.0001)
consistent with primary therapy resistance (Fig. 1I, J). Low ctDNA%
prohibits comprehensive assessment of all classes of ctDNA bio-
markers (especially copy number alterations)26. In the event of a
poorly informative first collection (i.e., ctDNA < 2%), we investigated
whether later re-testing can overcome an initially low ctDNA%, con-
sidering conventional limits of detection formutations (1–2% ctDNA)
and copy number deletions (≥30%) used by commercial tests that
genotype ctDNA23,34. ctDNA ≥ 2% at a later progression timepoint was
significantly less likely if the earlier sample was ctDNA < 2% (30.6%
versus 81.7% if initially positive, odds-ratio = 0.09; Fisher’s Exact Test
p < 0.001) (Fig. 1J). Strikingly, only 8.7% of sample pairs with initial
ctDNA < 30% increased to ≥30% in a subsequent collection, and only
two patients (2.2%) converted from <2% to ≥30%. Probability of
ctDNA% conversion between baseline and second-line was related to
depth of PSA response on first-line therapy, with consecutively
increasing ctDNA% occurring more frequently in patients who did
not achieve a PSA response >50% (p < 0.01) (Fig. 1K).

ctDNA fraction correlates with clinical metrics of tumor
aggression
Previous studies in multiple cancer types have demonstrated that
plasma ctDNA abundance is positively correlated with metastatic
volume35–41, and that distinct patterns of metastasis may influence
patient prognosis42–45. We correlated baseline ctDNA%with 15 disease
associated features including diagnostic and time-matched serum
and radiographic variables with prognostic relevance in mCRPC7.
ctDNA% was significantly elevated in patients with liver metastases
on conventional imaging (median ctDNA 42% versus 4.9% in patients
with lymph node-only disease, Mann-Whitney U (MWU) p < 0.001),
detected in 90% of patients compared to only 59% of patients with
bone metastases (without visceral involvement) and 57% with lymph
node-only disease (Fig. 2A). Consistent with this observation, serum
lactate dehydrogenase (LDH)—a reliably demonstrated negative
prognostic factor for mCRPC that is classically associated with liver
metastases46—was also strongly correlated with ctDNA% (Spearman
r = 0.41, p < 0.0001) (Fig. 2B)7,18,20. In patients with bone metastases,
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≥10 lesions on bone scan was associated with 2.7-fold higher ctDNA%
than <10 bone lesions (median ctDNA 10.4% versus 3.9%, MWU
p < 0.001), corroborating prior data showing elevated ctDNA% in
patients with higher disease burden36,37,40,41. Among plasma markers,
ctDNA% was most strongly correlated to cfDNA concentration
(r = 0.55), although most blood analytes (including cfDNA con-
centration and LDH) were also inter-correlated (Fig. 2B, C). cfDNA

concentration was similarly correlated with most aforementioned
clinical factors, although the effect size was weaker relative to ctDNA
% (Supplementary Fig. 4; Fig. 2C).

Several clinical hallmarks of aggressive disease in the castrate-
sensitive setting—includingdiagnosis of denovometastatic cancer and
short time to mCRPC progression from ADT initiation (<12 months)—
were also linked to higher baseline mCRPC ctDNA%, reflecting a
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continuity in disease aggression over the clinical spectrum of
advanced prostate cancer. By contrast, PSA concentration at diagnosis
and Gleason Grade Group were poorly or not correlated with baseline
mCRPC ctDNA% (Fig. 2A, B) regardless of diagnosis of de novo or
metachronous metastatic disease (p = 0.71; two-way ANOVA test for
interaction). Patients who received treatment intensification for
mCSPC (versus ADTmonotherapy) had a 1.9 × higher baselinemCRPC

ctDNA%, likely reflecting patient selection for higher-volume and/or
poorer prognosis disease47.

Machine-learning model to predict utility of ctDNA somatic
genotyping
No practical tools exist to predict ctDNA% and determine at or before
blood drawwhether ctDNA genotypingwill be informative, or whether

Fig. 1 | Clinical mCRPC cohort with comprehensive clinical annotation and
ctDNA-fraction estimates. A Study overview. B Per-patient summary of clinical
prognostic metrics and treatment outcomes stratified by line of mCRPC therapy,
illustrating approximate relationships between high ctDNA-fraction (ctDNA%) (see
Supplementary Data 2) and poor prognosis (see Supplementary Data 1 for com-
plete list of clinical variables). All variables (including ctDNA%)aremeasured at time
of line-specific mCRPC treatment initiation except for pre-mCRPC clinical history
and diagnostic metrics (i.e., time from androgen deprivation therapy (ADT) initia-
tion toCRPCdiagnosis, de novometastatic diagnosis, and treatment intensification
for metastatic castration-sensitive prostate cancer (mCSPC)). Bars representing
right-censored time-to-event clinical endpoints are colored gray (events reached
are black). Patients whose best PSA response was rising PSA (i.e., nadir at baseline)
have been truncated at a fixed positive value. Note that bonemetastases were only
enumerated in the first-line context, although all patients (independent of treat-
ment line) were evaluated for bone lesion presence/absence. Temporal consistency

of key patient clinical characteristics (C, D) and plasma cfDNA and ctDNA mea-
surements (E–H) per initiating line of treatment. Number of patients with evaluable
data matched to line of treatment annotated above (see Supplementary Data 3).
I Correlation between consecutive same-patient ctDNA% and cfDNA concentration
measurements taken at sequential clinical progressions as a function of collection
interval. JMirrored barplot showing same-patient ctDNA% across 227 consecutively
collected cfDNA sample pairs (p-value reflects Fisher’s Exact Test). In-set boxplot is
centered atmedian anddisplays interquartile ranges (IQR) andminimaandmaxima
extending to 1.5× IQR.K Serial ctDNA% dynamics are associated with PSA response
on intervening treatment. Relative ctDNA% change from initiation of first-line
mCRPC therapy to initiation of second-line therapy in patients who did or did not
achieve a PSA response ≥50% to first-line treatment. Fisher’s Exact Test compares
proportion of patients in each category with serially decreasing ctDNA%. All p-
values are two-sided. Yrs years, Tx treatment, PCa prostate cancer, prog. progres-
sion, w weeks, KDE kernel density estimation, ULN upper-limit of normal.

Table 1 | Cohort clinical characteristics measured per line of mCRPC therapya

Patient characteristic First line (n = 463) Second line (n = 213) Third line (n = 62)

Age at initial prostate cancer diagnosis (years) 68 (41–96) 67 (41–86) 63 (41–75)

Gleason Grade Group 4–5 71% (245) 71% (96) 71% (32)

De novo metastatic diagnosis 46% (171) 49% (69) 42% (19)

Treatment intensification for mCSPC 17% (81) 11% (25) 13% (8)

Taxane chemotherapy (docetaxel) 16% (74) 11% (25) 12% (7)

Abiraterone, enzalutamide 2% (6) 0% (0) 0% (0)

Other <1% (1) 0% (0) 0% (0)

CRPC within 12 months of ADT initiation 40% (174) 53% (104) 57% (32)

Age at systemic mCRPC treatment initiation (years) 73 (45–98) 73 (45–93) 69 (45–88)

Systemic treatment for mCRPC 100% (463) 100% (213) 100% (62)

Taxane chemotherapy (docetaxel or cabazitaxel) 8% (39) 17% (37) 49% (30)

Abiraterone, enzalutamide 91% (420) 78% (166) 11% (7)

Other 1% (4) 5% (10) 40% (25)

ECOG performance status 0–1 86% (345) 70% (143) 70% (37)

Alkaline phosphatase > ULN 35% (155) 34% (73) 45% (27)

Lactate dehydrogenase > ULN 23% (93) 22% (45) 36% (19)

Hemoglobin (g/L) 130 (79–174) 128 (79–157) 127 (97–156)

PSA (ng/mL, plasma) 26 (0–5800) 19 (0.2–1604) 53 (3.8–812)

Visceral metastases 18% (83) 24% (51) 29% (18)

Lymph-node only metastases 12% (55) 7% (15) 10% (8)

Cell-free DNA concentration (ng/ml) 14 (1.5–3870) 15 (2.4–1650) 16 (1.1–2140)

ctDNA fraction 5% (0–89) 5% (0–89) 10% (0–77)

ctDNA concentration (ng/mL) 0.7 (0–3146) 0.5 (0–771) 1.14 (0–1286)

ctDNA not detected (i.e., <2%) 38% (174) 39% (83) 18% (11)

ctDNA fraction 2–30% 40% (187) 42% (90) 53% (33)

ctDNA fraction >30% 22% (102) 19% (40) 29% (18)

Follow-up for OS (months) 20 (0.36–81.6) 14 (0.52–63.5) 11 (2.16–32.8)

Median OS (months)b 25 (22.4–28.2) 15.7 (13.6–17.8) 11.1 (8.7–14.4)
aData are median (range), or % (n); percentages reflect proportion of patients with complete data for the given variable.
b95% confidence interval.
ADT androgen deprivation therapy, mCSPC metastatic castrate-sensitive prostate cancer, ECOG Eastern Cooperative Oncology Group, GGG Gleason Grade Group, mCRPC castration-resistant
prostate cancer, OS overall survival, PSA prostate-specific antigen, ULN upper limit of normal.
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tissue-based genotyping should be a preferred testing strategy38,48. We
reasoned that the modest correlations between ctDNA% and clinical
factors elucidated above (Fig. 2) could be integrated into a singlemore
powerful predictive tool, helping providers to decidewhichpatients to
prioritize for ctDNA- versus tissue-genotyping (based on anticipated
likelihood for sensitive characterization of somatic alterations).
Therefore, we developed a clinically-interpretable machine-learning

model to predict ctDNA% from 17 laboratory and radiographic clinical
features as well as diagnostic characteristics. We trained a gradient-
boosted tree (XGBoost) model using all 463 baseline cfDNA samples,
with hyperparameter tuning via 5-fold cross-validation. Model accu-
racy was estimated via 20-fold cross-validation (Methods). We opti-
mized the XGBoostmodel for binary classification of samples as either
above or below 2% ctDNA: the approximate lower limit of detection for
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point mutations and indels in contemporary genotyping assays using
large targeted panels23,34. Our proof-of-principle model achieved rela-
tively high accuracy, as measured by area under the curve of receiver
operating characteristics (AUC =0.80) (Fig. 3A, B). Performance was
orthogonally validated using a dimensionally-weighted K-nearest

neighbor classification model trained on the identical 17-feature set
(AUC=0.74, Fig. 3B; Supplementary Fig. 5A).

Consistent with prior bivariate rank correlations (Fig. 2), cfDNA
concentration had the highest relevance for predicting ctDNA ≥ 2%,
whereas features associated with initial prostate cancer diagnosis (i.e.,

Fig. 2 | Serum and radiographic prognostic clinical features correlate with
baseline ctDNA fraction. A Fraction of patients with ctDNA>30%, ctDNA 2-30%,
and ctDNA<2% (left) and ctDNA% as a continuous variable (right) across various
categorical clinical subgroups. Note that the “bone ± lymph node” category
excludes patients with visceral metastases, and the “lung” category excludes
patients with liver metastases; the “liver” category does not exclude any other
metastatic subgroup. P-values reflect Mann-Whitney U tests and are two-sided;
boxplots are centered at the median and display interquartile ranges (IQR) and
minima and maxima extending to 1.5× IQR. B Correlation between ctDNA% and

eight continuous prognostic serum markers. K-nearest neighbor regression
(neighbors = 20 with uniform weights; red line) is used to nonparametrically
visualize each bivariate relationship (i.e., avoids making assumptions about how
ctDNA% is linked to each clinical factor). Kernel density estimates shown above.
Spearman p-values are two-sided. C Correlation matrix showing that most serum
prognostic markers are co-correlated. Spearman’s rho is annotated. See Supple-
mentary Data 2 for per-patient ctDNA% values. mCSPC metastatic castration sen-
sitive prostate cancer, ADT androgen deprivation therapy, m months, LN lymph
node, Hb hemoglobin, PSA prostate-specific antigen, ULN upper limit of normal.
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Fig. 3 | ctDNA fraction prediction based on routine clinical variables.
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and PSA as continuous variables (evaluated on the 17-feature XGBoost model).

E Uniform model prediction error across sequential lines of mCRPC treatment
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Gleason grade and stage at diagnosis) were less informative (Fig. 3C,
D). Importantly, we observed equal accuracy of our model when
applying it to 275 second- and third-line samples it had not encoun-
tered during training, suggesting generalizability across mCRPC clin-
ical contexts (Fig. 3E). We next utilized our XGBoost model to
understand whether there exist any unaccounted factors causing a
consistent bias in observed ctDNA% relative to a patient’s model-
predicted ctDNA%. After analyzing 200 patients with multiple cfDNA
samples, we found that patients with greater-than-predicted ctDNA%
in one cfDNA sample also showed a greater-than-predicted ctDNA% in
their other samples (Pearson r =0.38, p <0.0001), suggesting addi-
tional patient- or tumor-specific determinants of ctDNA% (Fig. 3F).

Recognizing that comprehensive and standardized clinical anno-
tation is not always available in real-world settings, we also developed a
more parsimonious XGBoost classification model focused on seven
routinely collected clinical features (plus cfDNA concentration) that
had high importance for ctDNA% classification and reflected time-
matched information. Specifically, we excluded diagnostic features
whose predictive relevance is expected to gradually fade in later dis-
ease stages (e.g., Gleason grade) or outcomes features that are con-
founded by rapidly shifting standard of care (e.g., time from start of
ADT to mCRPC)49. Since this secondary model achieved similar per-
formance (including cfDNA concentration as input: AUC =0.78,
PPV =0.75, NPV = 0.63; excluding cfDNA concentration: AUC=0.76,
PPV =0.78, NPV =0.55), we implemented it as a practical point-of-care
online tool (https://www.ctDNA.org) (Supplementary Data 6). Impor-
tantly, our tool is trained to handle every combination ofmissing input
variables (i.e., n = 255 combinations) and produces a best-effort
numerical prediction of per sample ctDNA%, empowering users to
initiate ctDNA biomarker testing conditional on custom objectives
(e.g., priority of mutation versus copy number information; tolerance
for likelihood of false negatives). We validated the performance of our
parsimonious 8-feature model in two external prospective mCRPC
datasets collectively including 391 patients with first-line mCRPC,
achieving similar AUCs for predicting ctDNA ≥ 2% of 0.76–0.78
(Methods; Fig. 3G, h, Supplementary Fig. 6, Supplementary Data 6).
Patient clinical characteristics for one of the two validation cohorts
(n = 81 patients) has been published previously50.

ctDNA fraction strongly predicts clinical and biochemical
outcomes
In patientswhere ctDNAgenotyping has beenperformed, prior studies
indicate that measured ctDNA% alone (i.e., independent of any iden-
tified genomic driver alterations) is prognostic for outcomes. We
sought to validate and expand upon prognostic trends identified in
smaller studies with limited follow-up for outcomes (including our
own previously published work on two prospective trial cohorts
included in our metacohort16,20). We correlated ctDNA% to OS, PSA-
PFS, and PSA response rates in the context of first and second-line
mCRPC, incorporating treatment context and known clinical prog-
nostic factors in secondary multivariable analyses (Fig. 4A–G; Sup-
plementary Fig. 7). Notably, OS and PSA-PFS event rates in our
metacohort were 70% and 75% for first-line, and 84% and 83% for
second-line, reflecting the long median follow-up of our metacohort
(Table 1; Supplementary Data 3).

Patients with high baseline ctDNA% (>30%) had a 5 times greater
risk of PSA progression on first-line treatment (95% CI 3.7–7.0,
p < 0.001) (Fig. 4B, E) and 5.6 times greater risk of death (95% CI
4.1–7.6, p <0.001) (Fig. 4A, D) versus patients with ctDNA < 2%. Con-
sistent with these observations, increasing baseline ctDNA%was linked
to incrementally lower first-line PSA response rates (Fig. 4G). When
collected prior to initiation of second-line mCRPC therapy, ctDNA%
was similarly associated with second-line PSA response rates, time to
PSA progression, and OS (measured from second-line treatment
initiation) (Supplementary Fig. 7). In multivariable analyses adjusting

for 8 established clinical prognostic markers (each significant in uni-
variable testing), high ctDNA% remained independently associated
with PSA-PFS andOS inboth a first- and second-line treatment context,
consistently outperforming other clinical covariates (Fig. 4C, F; Sup-
plementaryData 5). ctDNA%was alsoprognostic forOS and PSA-PFS as
a continuous variable (HR = 1.03 [95% CI: 1.02-1.03], p <0.001; HR =
1.02 [95%CI: 1.02-1.03], p <0.001; hazard ratios reflect 1% unit increase
in ctDNA%). These data demonstrate that ctDNA% is strongly and
independently prognostic across clinical scenarios.

We additionally tested whether ctDNA concentration (i.e., nano-
grams of ctDNA per mL plasma, the product of total cfDNA con-
centration and ctDNA%) enabled more precise prognostication than
ctDNA% or cfDNA concentration alone. When dichotomized by med-
ian, baseline ctDNA% and ctDNA concentration were associated with
comparable univariable hazard ratios for OS (HR = 3.18 [95% CI:
2.53–3.99], p <0.001; HR = 3.28 [95%CI: 2.61–4.12], p < 0.001) and both
enabled superior patient stratification relative to cfDNA concentration
(HR = 2.05 [95% CI: 1.64-2.56], p <0.01) (Fig. 4A; Supplementary
Fig. 8)51. ctDNA% was more strongly prognostic than cfDNA con-
centration (both variables dichotomized at median) independent of
treatment line and endpoint (Fig. 4A, B; Supplementary Fig. 8; Sup-
plementary Data 4). Finally, we observed that incremental increases in
baseline ctDNA% were associated with greater relative increase in risk
of deathwhen ctDNA%was low, implying that the relationship between
ctDNA% and risk is nonlinear (Fig. 4H).

Discussion
We systematically dissect the relationship between ctDNA%, synchro-
nous laboratory and radiographic prognostic indices, and clinical
outcomes in the largest such standardized metacohort of mCRPC
patients to date. We demonstrate that ctDNA% is powerfully prog-
nostic for multiple validated clinical endpoints, independent of treat-
ment context and recognized clinical prognostic covariates inmCRPC.
Leveraging these correlative insights, we build a practical point-of-care
machine-learning framework to predict the likelihood of informative
ctDNA genotyping prior to blood collection. Our work nominates a
hypothetical biomarker testing framework enabling clinicians to
decide between ctDNA testing and alternative testing modalities (e.g.,
archival tissue, fresh tissue biopsy, or germline-only) on the basis of
anticipated ctDNA% (Fig. 5).

Our data, together with prior smaller studies, authenticate
ctDNA% as a comprehensive prognostic tool across the clinical
spectrum of mCRPC14–18,20–22. ctDNA% was linked to multiple clinical
metrics of tumor burden and disease aggression (Fig. 1B; Fig. 2),
although the effect size between ctDNA% and any individual marker
(including PSA) was moderate at best (R < 0.55), illustrating that
ctDNA% is not merely a surrogate for existing prognostic indices.
This is reinforced by two additional observations: (1) ctDNA%
remaining highly prognostic for time-to-event outcomes after
adjustment for known prognostic features in multivariable models
(Fig. 4A–F), and (2) the imperfect performance (AUC: 0.77–0.80) of
our machine-learning models for predicting ctDNA ≥ 2% from clin-
ical characteristics (Fig. 3). Collectively, these data demonstrate
that ctDNA% captures unique biology and offers an additional
dimension of prognostic information. Future clinical trial designs
for advanced disease should consider incorporating ctDNA% as a
stratification factor for randomization, and/or evaluating ctDNA%
imbalances between arms to facilitate post hoc interpretation. New
studies investigating additional determinants of ctDNA% should
utilize next-generation targeted imaging (e.g., [68Ga]PSMA-PET/CT
in prostate cancer) for more precise quantification of disease bur-
den and location40—as well as investigate the potential relevance of
tumor cell proliferation indicators (e.g., Ki-67-positive tumor nuclei
or total lesion glycolysis) and microenvironmental factors (e.g.,
tumor vascularization, macrophage infiltration) on ctDNA%.
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Importantly, ctDNA% predicted outcomes as both a continuous
variable and irrespective of ctDNA% dichotomization approach14

(Fig. 4A–E). Future optimization of ctDNA%-based prognostication
should explore alternative risk groups and/or opportunities for tai-
loring to specific clinical scenarios. Dichotomizing patients into non-
overlapping ctDNA% prognostic groups enables convenient and
easily-actionable stratification, but analogous to most existing clin-
ical prognostic factors, risks oversimplifying the relationship

between ctDNA% and outcomes (Fig. 4G). However, non-arbitrary
thresholds are also challenging to derive, and binning a continuous
variable may cause false positive/negative patient allocations. We
believe that the ctDNA% risk categories validated herein (low,
medium, and high) provide a useful working model for the immedi-
ate clinical implementation of ctDNA% as a prognostic aide in
mCRPC. cfDNA concentration was also prognostic for outcomes
(Supplementary Fig. 8; Supplementary Data 4), although the effect

Fig. 4 | ctDNA fraction is independently associated with mCRPC treatment
outcomes. Kaplan-Meier estimates of time from initiation of first-line systemic
therapy for mCRPC to death or last follow-up (A +D) and PSA progression-free
survival on first-line therapy (B + E) stratified by synchronously-measured ctDNA%
dichotomized by median (A +B) or by predefined bins (high, low, undetectable)
(D + E)—see Supplementary Data 2 for per-patient ctDNA% values. Shading indi-
cates 95% confidence intervals; in-set tables show univariable hazard ratios (HRs)
fromaCox proportional hazardsmodel. Forest plots showHRs and95%confidence
intervals from univariable (C) and multivariable (F) Cox proportional hazard
regression models incorporating ctDNA% plus additional clinical prognostic mar-
kers.GWaterfall plot showing best PSA response (relative to baseline PSA) on first-
linemCRPC therapy stratified by baseline ctDNA% (ctDNA > 30%, ctDNA2-30%, and
ctDNA< 2%). P-values (two-sided) reflect Fisher’s Exact Test’s comparing the pro-
portion of patients achieving a ≥50% PSA response across ctDNA categories.

H Evidence for a nonlinear relationship between ctDNA% and risk of death. Uni-
variable Cox proportional HRs (plotted as dots) for overall survival from initiation
of first-line mCRPC therapy as a function of ctDNA% partitioned into non-
overlapping intervals. Each interval is demarcated by the horizontal gray lines, with
the center of each ctDNA% interval used as each datapoint’s x-coordinate. Vertical
gray lines show individual intervals’ 95% HR confidence intervals. For all compar-
isons, the reference group is patients with ctDNA < 2%; marker size is proportional
to the number of patients in the non-reference group (per-interval n is provided in
the Source Data file). Solid red line shows a three-parameter negative exponential
(with upper asymptote) curve fit. See Supplementary Data 4–6 for a complete
summary of univariable and multivariable Cox proportional hazard regression
model statistics, per-endpoint event rates, and summaryofmissing clinical data per
initiating line of therapy. Correction for multiple hypothesis testing was not per-
formed. REF reference.
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size (e.g., hazard ratio) was consistently smaller than ctDNA%. In
theory, the weaker prognostic stratification via cfDNA concentration
may be pragmatically offset by the relative expediency and lower
cost of quantification (compared to ctDNA%); however, ctDNA
sequencing has the notable advantage of enabling simultaneous
prognostication (via ctDNA%) and analysis of prognostic and
treatment-predictive genomic alterations. Integrating ctDNA% with
somatic information (e.g., TP53 defects20) may provide additional
prognostic granularity albeit potentially at the cost of added imple-
mentational complexity. Unfortunately, optimal ctDNA%-thresholds
for risk stratification will likely differ by cancer type, meaning that
our derived thresholds for mCRPC should not be extrapolated in a
tumor-agnostic manner52.

Patients with low ctDNA had exceptionally good prognosis but
our data do not inform whether further stratification of this <2% sub-
group would be helpful. Tumor-informed cfDNA assays originally
developed forminimal residual disease can permit detection of ctDNA
below 0.001%, given sufficient cfDNA input41,53–55. While unproven,
prior data from primary cancers suggest that all patients with radio-
graphic metastases will have detectable ctDNA with sensitive tumor-
informed approaches36,39,41,56. However, these ultrasensitive assays
would add operational complexity (i.e., archival tissue block retrieval
and cancer genotyping) and exclude patients for whom tumor tissue is
unavailable; ultimately it is plausible that more granular stratification
of the ctDNA < 2% subgroup may offer diminishing returns for prog-
nostication in advanced disease where ctDNA is relatively abundant.
Conversely, measuring ctDNA% in the range of 2–100% is readily
achieved via a variety of existing panel-based de novo genotyping
strategies23,29,57,58, including assays that have been deployed across
recent phase II-III mCRPC trials16,30,59–61. In future, continued improve-
ments in methodological transparency and acknowledgement of test
limitations will be important for truly optimized ctDNA% testing,
and ultimately end-users should still be aware of factors such as clonal-
hematopoiesis and tumor aneuploidy that can cause erroneous
ctDNA% readouts26,33. Newer generations of research mutation-based
and methylation assays may be capable of comparably ultrasensitive
ctDNA% detection without needing tissue53–55,62, but are largely untes-
ted in prostate cancer and are not currently available to clinicians.
Ultimately, it is plausible that further prognostic stratification of the

ctDNA< 2% subgroup will provide diminishing returns in an elderly
population (with generally good cancer-specific prognosis) where life
expectancy is increasingly dictated by non-cancer comorbidities.

Same-patient ctDNA%washighly stable across serial progressions.
This suggests limited utility of repeat sampling in the event of initially
low ctDNA% (i.e., that would prohibit sensitive detection of all bio-
marker classes), and patients with ctDNA< 2% at progression should
therefore be prioritized for biomarker analysis of archival tissue or
metastaticbiopsy (Fig. 1I, J). Likelihoodof conversion to >30%ctDNA in
a subsequent sample was especially low, occurring in only 8.6% of
patients. In current clinically-validated biomarker tests, 30% ctDNA is
the approximate limit of detection for deletions which constitute a
major class of genomic eligibility for targeted drugs in prostate cancer
(e.g., BRCA2 and PARP inhibitors, PTEN and AKT/PI3K inhibitors)23,61,63.
While more sensitive tumor-agnostic ctDNA sequencing approaches
can largely overcome low ctDNA% for de novo detection of single
nucleotide polymorphisms and indels41,53,54, sensitivity for focal dele-
tions cannot generally be improved beyond a fundamental lower limit
of ~5-15% ctDNA26,58. Although the interval between sample requisition
and results reporting is typically longer for tissue than ctDNA40,64,
potential delays are more tolerable for patients with excellent prog-
nosis (i.e., ctDNA< 2%) where urgency of biomarker-informed clinical
management is ostensibly lower. Nevertheless, our data indicates that
serial ctDNA% closely mirrors clinical metrics of tumor aggression,
meaning that patients with initially low ctDNA% who subsequently
experience rapid clinical deterioration (and/or strong shifts inmarkers
linked to ctDNA%, e.g., LDH) may be suitable candidates for ctDNA
biomarker re-testing (Fig. 1K; Fig. 5). Generalizability of our ctDNA
%-prediction tool to second- and third-line mCRPC may guide appli-
cation of serial ctDNA genotyping, helping facilitate detection of
resistance mechanisms or reevaluate eligibility for precision oncology
trials or targeted treatments (Fig. 3E).

Biomarker testing in advanced cancers is highly time-sensitive,
meaning that futile tests can deprive patients of biomarker-informed
clinical management. Advantages of ctDNA profiling include its capa-
city to capture global metastatic biology (in contrast to single-core
tissue biopsy) while simultaneously providing prognostic information
via ctDNA%65. However, ctDNAprofiling is only informative for somatic
alterations if ctDNA% is relatively high, creating a dilemma over

Laboratory
measurements

Clinically-progressing
mCRPC patients

Predict ctDNA%
for genotyping

https://ctDNA.org
ctDNA testing

Redirect to
tissue testing
if insufficient
ctDNA% for

comprehensive
genotyping

Germline-only testing

Archival tissue testing

Metastatic tissue biopsy

Redirect to
ctDNA testing
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of insufficient
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May be difficult to retrieve
Material may be exhausted

Not available at all centres
Can exclude poor ECOG patients

Excludes somatic information

ctDNA provides prognostic information (via ctDNA%) regardless of utility for genotyping and therefore testing should be offered to all patients.
Can use https://ctDNA.org to evaluate need for simultaneous tissue genotyping (if predicted ctDNA% is low)

Predicted
positive?

Routine
ctDNA
testing

available?

Fig. 5 | Workflow for optimized clinical biomarker profiling for mCRPC incor-
porating ctDNA testing.The ctDNAprediction tool (available at http://ctDNA.org)
can be used to inform optimal strategy for mCRPC genomic biomarker testing,
offering guidance as to whether to pursue ctDNA or tissue-based genotyping (in
resource-limited circumstances where both testing modalities cannot be pursued
simultaneously). Tissue-based genotyping should be initiated for patients with low
predicted ctDNA%. However, ctDNA testing also offers valuable prognostic

information (via ctDNA%) regardless of ctDNA%-sufficiency for sensitive genotyp-
ing, and therefore should be offered to patients if available as a prognostic adjunct
(potentially in tandem with tissue-based genotyping). The tool’s output includes
the probability of a sample having ctDNA≥ 2% and a point estimate of predicted
plasma ctDNA%. Finally, the ctDNA%-prediction tool is flexible to any combination
of missing data as well as differences in laboratory reference range values for
lactate dehydrogenase and alkaline phosphatase.
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optimal biomarker testing strategy. We developed a publically avail-
able web tool to guide users onwhether to pursue blood collection for
ctDNA genotyping versus prioritization of archival tissue retrieval or
re-biopsy. The output generated from this machine-learning tool (i.e.,
probability that ctDNA-based genotyping is likely to be informative for
somatic biomarkers in a patient with mCRPC) is based on consensus
detection thresholds for mutations in clinically-relevant genes (e.g.,
BRCA2) in contemporary commercial tests23,34. Additionally, our tool
can facilitate selective ctDNA genotyping in patients where tissue
acquisition is not possible, and financial or logistical constraints pro-
hibit routine indiscriminate ctDNA testing. For improved accuracy, the
model can additionally utilize plasma cfDNA concentration which is
inexpensive and expedient to measure, with extraction from blood
plus quantification taking only a few hours. Since ctDNA% is being
explored in other cancers as a prognostic tool13,14,40,66, we anticipate
that our results will serve as a blueprint of similar predictive tools
across the spectrum of metastatic malignancies.

Our study has several limitations. First, our ctDNA% estimation
approach did not account for whole-genome doubling events, which
are challenging to infer from narrow targeted sequencing and can
cause overestimation of ctDNA% due to inflated somatic allele fre-
quencies. Second, we did not record the time of day of plasma cfDNA
collection, which could plausibly affect ctDNA% via prior physical
activity and hypothesized circadian variation in cfDNA release67–69.
Third, the left-censored and right-skewed distribution of ctDNA% in
mCRPC poses a challenge for supervised learning approaches that aim
to predict ctDNA% (Fig. 1F)—this unbalanced dataset (with limited
availability of high ctDNA samples for training) may potentially con-
tribute to suboptimal classification accuracy. Interpretation of our
ctDNA%-prediction tool’s output may become more challenging for
future generations of increasingly sensitive genotyping assays (with
limits of detection <<0.5–1% VAF). Fourth, our study contained rela-
tively fewpatients receiving first- or second-line taxane chemotherapy,
with most chemotherapy-treated patients sourced from a single clin-
ical trial enriched for poor prognosis features16. Small numbers and
risk of selection bias precluded examination of potential interactions
between treatment class (e.g., ARPI versus taxane) and ctDNA%. It is
plausible that differences in prior treatment exposure may modulate
tumor-intrinsic or -extrinsic determinants of ctDNA% at future time-
points, as well as the effect size of ctDNA% for prognosticating sub-
sequent lines of therapy. Furthermore, ctDNA% may have subtly
varying prognostic significance for different classes of subsequent
treatment (i.e., is a predictive biomarker). Analysis of large clinically-
standardized randomized cohorts will be required to uncover poten-
tial interactions between drug class (and/or mechanism of action) and
ctDNA%. Importantly, the prognostic or predictive implications of
ctDNA% remain largely undefined in the context of recent additions to
the mCRPC therapeutic armamentarium (e.g., PARP inhibitors and
Lutetium-177-PSMA-617 radioligand therapy). Finally, although we did
not collect self-reported race or other measures of patient genetic
background, based on the demographics of the jurisdictions con-
tributing to ourmetacohort and validation cohorts we can assume that
patients were primarily of European ancestry. Considering that
ancestry may potentially interact with the relationships of ctDNA% to
clinical/radiographic features and outcomes, caution should be exer-
cised when extrapolating these correlations to diverse populations.

Methods
Cohort and clinical endpoints
We studied patients from: (1) two published randomized multicentre
phase II trials addressing treatment involving standard-of-care drugs
for first- and second-line mCRPC with a crossover design at progres-
sion (NCT02125357 and NCT02254785)16,30; and (2) a prospective
province-wide plasma cfDNA biobanking program at the Vancouver
Prostate Centre and BC Cancer70 (Supplementary Fig. 1). All samples

were collected between October 2014 and October 2020, and time of
last follow-up (for longitudinal clinical outcomes) was frozen in
October 2021. All patients had histologically-confirmed prostatic
adenocarcinoma (high-grade neuroendocrine and/or small-cell com-
ponents were permitted), radiographic evidence of metastatic disease
by conventional imaging (CT or bone scintigraphy), and castration-
resistant prostate cancer defined as biochemical (PSA) or imaging
progression despite castration levels of testosterone (PCWG3
criteria)10. Patients with active concurrent malignancy were excluded.
Chemotherapy and/or AR targeted therapy administered in the
castration-sensitive setting was permitted. Sex and/or gender are not
relevant for any findings in this study and were therefore not incor-
porated into study design, clinical data collection, nor execution of
specific analyses. Prostate cancer only affects people bornasbiological
males, and our cohort includes peoplewith aggressive prostate cancer
irrespective of gender identity. All samples are de-identified at time of
collection, and all researchers are blind to patient gender identity and
gender presentation.

Plasma cfDNA samples must have been collected within 31 days
prior to initiation of first, second, or third-line mCRPC treatment but
not during active concurrent treatment18,50,71,72. This collection interval
was selected (1) to minimize the confounder of treatment-induced
ctDNA% suppression, since ctDNA abundance rapidly declines after
the initiation of effective treatment formetastatic disease but typically
recovers at time of progression; (2) to ensure the relevancy of our
findings to a highly clinically-significant decision point, where patients
are terminating prior therapy and being clinically re-evaluated to
determine next line of therapy; (3) such that timing ofmatched cfDNA
and routine clinical variables was approximately time-matched and
standardized between patients. This 31-day period achieved an
appropriate balance between facilitating considerations #2 and #3
whilemaintaining broad inclusivity to patients in our real-world ctDNA
biobank (where ctDNA collections are more variably timed compared
to the clinical trial cohorts). All patients must have provided at least a
first-line mCRPC sample (Supplementary Fig. 1). An exception was
made for patients enrolled in NCT02254785 who were permitted to
receiveoneprior course ofdocetaxel for treatment-naivemCRPCprior
to trial enrollment and two patients enrolled in NCT02125357 who did
not have a cfDNA sample associated with first line treatment. These
patients only provided cfDNA samples associated with second- and/or
third-line treatment.

Audited clinical characteristics and outcomes data are published
for the two randomized clinical trials (NCT02125357 and
NCT02254785)16,21,30. For NCT02125357, wherever patients consented,
medical records were manually reviewed for clinical data associated
with subsequent post-protocol lines of therapy (i.e., not collected as
part of the original trial). For the provincial cfDNA biobank program,
clinical data was retrieved from manual review of electronic medical
records. Clinical data for all three cohorts included patient demo-
graphics, clinical, pathological and laboratory features at the time of
prostate cancer diagnosis and prior to each documented line of ther-
apy, aswell as time-to-event outcomes (SupplementaryData 1). Clinical
endpoints evaluated in this study were OS, prostate-specific antigen
(PSA) progression-free survival (PFS) and PSA response rate. PSA
response was defined as ≥50% PSA decline from baseline pretreatment
measurement, calculated using the on-treatment PSA nadir (standard
PCWG2 criteria). PSA-PFS (on first, second or third-line mCRPC ther-
apy) was defined as the time from start of therapy to PSA progression
or death. PSA progression was defined as an increase of at least 2 µg/L
and ≥25% from nadir. For patients with no PSA decline, PSA progres-
sion was defined as an increase of ≥2 µg/L and ≥25% from baseline.
Calculation of PSA progression did not require a subsequent con-
firmatory PSA measurement collected 2 weeks following initial PSA
rise, although if a subsequent appropriatemeasurement was available,
an additional PSA increase was required in order to meet progression.
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OS was defined as time from therapy initiation to time of death from
any cause or last follow-up.

Approval for collection and profiling of patient samples was
granted by the University of British Columbia Research Ethics Board
(certificate numbers H18-00944, H16-00934). The study was con-
ducted in accordance with the Declaration of Helsinki, and written
informed consent was obtained from all patients prior to enrollment.
Patients were not compensated for their participation in our study.

Blood sample processing, library preparation, and sequencing
Blood samples collected from 292 patients who participated in two
completed randomized multicenter phase II trials (NCT02125357 and
NCT02254785) were processed and sequenced as previously
described16,20,21. New blood samples from 199 patients enrolled in the
prospective province-wide cfDNA biobanking program were pro-
cessed using the same protocols as NCT02125357 and NCT02254785.
Briefly, whole blood was collected in either 4 × 6ml EDTA tubes
(2014–2016; BD, USA) or 2 × 9mL Streck Cell-Free DNA BCT tubes
(2016–2022; Streck, USA). Samples collected in EDTA tubes were
centrifuged at 1600× g for 2 × 10min at 4 °Cwithin 1–2 h of collection,
and the plasma and buffy coat fractions were separated and stored at
−80 °Cprior toDNAextraction. Samples collected in Streck tubeswere
maintained at room temperature prior to and during processing.
Streck tubes were centrifuged at 1600× g for 15min, buffy coat was
aliquoted, and plasma was transferred to a new tube and spun for ten
additionalminutes at 5000× g (ormaximumattainable speed). Patient
matched buffy coat and plasma were obtained simultaneously and
stored at −80 prior to DNA extraction.

CfDNA was extracted from up to 6mL of plasma with the Qiagen
(Germany) Circulating Nucleic Acids kit, and quantified using the
Quantus Fluorometer and QuantiFluor ONE dsDNA system (Promega,
USA) orQubit 2.0 Fluorometer andQubit dsDNAHSAssay Kit (Thermo
Fisher Scientific, USA). Matched germline DNA (gDNA) was extracted
from thebuffy coat fractionusing theQiagen (Germany)DNeasyBlood
and Tissue Kit, or the Maxwell® RSC Blood DNA Kit and Maxwell® RSC
Instrument (Promega, USA). Extracted gDNA was quantified with a
NanoDrop spectrophotometer.

Targeted DNA sequencing of all cfDNA and gDNA samples was
carried out using customRocheNimbleGen SeqCapEZChoice capture
panels (Roche, Switzerland) comprised of ~72 mCRPC genes, as pre-
viously described16,21,50,70. Final enriched library pools were sequenced
on Illumina MiSeq (2 × 300bp), NextSeq (2 × 150 bp), or HiSeq 2500
(2 × 125 bp) instruments. Sequence alignment and somatic variant
calling was performed using an established validated pipeline as pre-
viously described65,70

Estimation of ctDNA fraction
For all samples in our metacohort, we utilized a standardized hier-
archical approach for estimating ctDNA fraction (ctDNA%) predicated
on (1) somatic mutation variant allele frequencies (corrected for sta-
tistical outliers and potential concurrent loss-of-heterozygosity; LOH),
and (2) germline heterozygous single nucleotide polymorphism allele
frequency (HSAF) deviation from 50% heterozygosity in genes with
evidence of LOH. Our established published approach for estimating
ctDNA% from targeted panels shows high analytical concordance to
ctDNA% estimates from whole-exome (via copy number model fitting
and somatic mutation allele frequencies)20,21 and deep whole-genome
sequencing data (via copy number model fitting using a bespoke
pipeline [code available; see Data availability], as well as application of
accepted tools ASCAT and Battenberg)65,73,74. Prior validation includes
both whole-exome and deep whole-genome sequencing of a subset of
cfDNA samples also analyzed herein (i.e., samples procured from
NCT02125357).

Specifically, mutation-based ctDNA% was calculated from the
variant allele fractions (VAF) of autosomal somatic mutations on non-

amplifiedgenes (log-ratio <0.2). Sincemutant allele fraction is elevated
during concurrent loss of the other wildtype allele (i.e., LOH) which
may not be possible to detect when ctDNA% is low, we conservatively
assumed that all somatic mutations could be associated with LOH. In
regions of LOH, mutation VAF and ctDNA% (both as variables with
lower and upper bounds of 0 and 1, respectively) are mathematically
related as ctDNA%= 2/(VAF−1 + 1). To account for sampling noise, we
modeled the mutant read count as arising from a binomial distribu-
tion, and conservatively calculated what the true VAF would be if the
highest observed VAF was a 95% quantile outlier21. After calculating a
ctDNA% estimate for each somatic mutation, the highest estimate was
adopted as the overall estimate for the sample under the assumption
that this mutation was the most likely to be truncal to the metastatic
lineage. Germline variants, stereotypical sequencing and alignment
artifacts, and clonal-hematopoiesis of indeterminate potential can
confound somatic mutation-based estimation of ctDNA% (i.e., mas-
querade as tumor-derived variants resulting in false-positive
estimates)26,33. Importantly, these potential confounders are largely
eliminated through our parallel deep sequencing of patient-matched
white blood cells and paired variant calling strategy.

For internal validation of ctDNA%, we also applied an orthogonal
copy number-based approach for measuring ctDNA% leveraging HSAF
deviation from heterozygosity in genes with LOH. Germline SNPs were
identified from paired normal white blood cell samples as any variant
present in the ExAC, Kaviar, or gnomAD databases with sufficient
coverage. We determined all heterozygous intragenic SNPs located on
genes with evidence for a single-copy deletion (log-ratio between −0.3
and −0.7). Genes were excluded from ctDNA% calculation if they
contained <4 unique SNPs. We calculated the median major allele
frequency (i.e., |0.5 - VAF| + 0.5) of SNPs within each gene and propa-
gated this value through ctDNA%= 2 - VAF−1. Because copy number-
based approaches for estimating ctDNA% are not ideally suited for
narrow targeted panels, we defaulted to ctDNA% values produced by
the mutation-based approach except in three samples that lacked eli-
gible mutations (but contained copy number evidence of quantifiable
ctDNA%). Finally, there were 27 samples where bothmutation- or copy
number-based ctDNA% estimates were uninformative (mainly false-
positive or -negative ctDNA% estimates based on inconsistent and/or
low-quality evidence for prostate cancer derived ctDNA). In these
samples, we provided a conservative qualitative estimate of ctDNA%
based on the average log-ratios of genes harboring putative hetero-
zygous deletions or low-level copy gains. In 6 samples, no eligible
mutations or copy number changes were detected except for an iso-
lated AR gain, and the ctDNA% of these samples was heuristically set at
5%. The detection of an AR gain in this context rules out the possibility
of ctDNA< 2%, and we selected 5% ctDNA since this represents the
approximate minimum ctDNA% limit of detection for a ~7–8 copy AR
gain (i.e., the average AR copy number in mCRPC samples with evi-
dence of an AR gain from log-ratio evaluation20). All somatic variants,
sample copy number profiles, and ctDNA% estimates were manually
evaluated (mutations inspected using Integrated Genomics Viewer
2.12.3)75.

ctDNA% prognostic risk categories of high (30–100%), low
(2–30%), and undetectable (<2%) were predefined16,30. Category
thresholds were heuristically selected to (1) achieve an approximately
balanced dichotomization of patients commencing first-line therapy
formCRPC (within the range of quantifiable ctDNA% as dictated by our
methodology; i.e., 2–100% ctDNA), and (2) mirror the typical ctDNA
limit of detection for single-copy deletions (30%) in current
commercially-available genotyping assays (i.e., so that the thresholdof
30% is simultaneously meaningful for biomarker evaluation).

Machine-learning prediction models
We leveraged two established supervised learning techniques to
predict ctDNA% from clinical variables: gradient boosting
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(XGBoost version 1.7.0) and K-nearest-neighbors (KNN) (for
orthogonal validation of our primary gradient boosting frame-
work). Both sets of models were trained on the n = 463 baseline
mCRPC patients (with time-matched ctDNA%). Although we col-
lected data from subsequent lines of therapy that theoretically
could have been used for model training and evaluation (to
augment our cohort size), we restricted training to baseline
samples to ensure all measurements reflect unique patients (i.e.,
such that the dataset is independent and identically-distributed).

The XGBoost models were trained using various subsets of 17
clinical variables including diagnostic variables, pre-mCRPC clinical
outcomes, and laboratory and radiographic variables measured as
initiation of first-line mCRPC therapy (Supplementary Data 6). Feature
pre-selection was not performed for the XGBoost models, instead
allowing XGBoost to independently infer the importance of each
variable. Known markers of tumor burden (e.g., PSA, LDH, ALP, and
cfDNA concentration) were constrained to a monotonic relationship
with ctDNA% (predicated on our biological observations in Fig. 2) after
testing that these constraints did not negatively impact the model’s
accuracy. Other clinical variables with a less clear relationship with
ctDNA% (e.g., patient age) were not monotonically constrained. No
feature normalization techniques were applied (given that XGBoost is
invariant to feature scaling). Missing values in training and validation
sets were separately imputed using KNN imputation (with K = 3 after
scaling all dimensions to have a standard deviation of 1). Simple
median imputation was rejected because it biases samples with miss-
ing data towards the cohort average. XGBoost’s built-in sparsity-aware
split finding method for handling missing data was similarly rejected
because its results are unpredictable in situations where an input
variable is dense in the training data, but sparse during model use (a
common scenario for our website implementation of this model).
Furthermore, XGBoost’s built-in missing data handling assumes that
the underlying causes and correlates of missing data are the same in
the training data as when the model is used, which is not
necessarily true.

The XGBoost models were optimized for binary logistic classi-
fication of ctDNA<2%or ≥2%. This classification threshold is based on
the approximate ctDNA% limit of detection for common commercial
and laboratory-based ctDNA genotyping assays which are widely
used in prostate cancer. Our targeted ctDNA assay has an approx-
imate conservative lower limit of detection for somatic mutations of
~0.5–1%VAF, corresponding to ~1-2% ctDNA% (assuming themutation
is clonal), mirroring the performance characteristics of established
ctDNA companion diagnostic tests. Model training, hyperparameter
tuning, and generalized accuracy evaluation was performed via
nested cross-validation (i.e., K*L-fold cross-validation). Briefly, we
split the n = 463 patients into training and validation sets using 20-
fold cross-validation. The outer training dataset was used for
hyperparameter tuning by subdividing it into inner training and
validation sets using 5-fold cross-validation. We employed an adap-
tive grid search with num_round ∈ [10, 20, 50, 100, 200, 500],
max_depth∈ [2, 3, 4, 5, 6, 7, 8], eta ∈ [0.005, 0.01, 0.02, 0.05,
0.1], and subsample ∈ [0.25, 0.5, 0.75] using identical
training-validation set splits for every tested hyperparameter com-
bination, thereby ensuring that the performance of each hyper-
parameter set was not affected by unnecessary random sampling.
After each iteration of the adaptive grid search, we eliminated the
50%of hyperparameter candidates that achieved the lowest accuracy
(quantified via AUC), and in the next iteration doubled the number of
cross-validation rounds for the remaining hyperparameter candi-
dates, thereby ranking the hyperparameters by accuracy with
increasing precision. Hyperparameters colsample_bytree and
colsample_bylevelwere fixed to the same value as subsample, to
manage the size of the hyperparameter space.

To interpret how individual clinical variables affect the 17-feature
XGBoost model’s predicted probabilities, we used the Python package
shap 0.41.0 to calculate SHAP (SHapley Additive exPlanation) scores,
which quantify how much a clinical variable’s value in a given sample
impacted the predicted probability76. The scores were visualized as a
barplot showing the average SHAP score of a specific clinical variable
category or quartile across all samples (Fig. 3C).

For our ctDNA%-prediction web tool available at https://www.
ctDNA.org, we selected 8 clinical variables with high SHAP scores
(Fig. 3C) and anticipated generalizability across clinical contexts, and
trained a separate XGBoost classification model for every possible
combination of missing input data (i.e., n = 255 combinations). This
strategy for handling missing input data is more robust to scenarios
where users provide highly incomplete data (e.g., only a single clinical
variable), since in such scenarios the predictions would be almost
entirely basedon the imputation algorithmand the proven accuracy of
gradient boosting would be lost. These models were trained on all
738 samples in the cohort, using the automated training procedure
described in the previous paragraph. For thefinal full 8-variablemodel,
the automated hyperparameter tuning procedure selected the para-
meters num_round= 500, max_depth= 5, eta= 0.02, sub-
sample= 0.25, colsample_bytree= 0.25, and
colsample_bylevel=0.25.

We also trained an XGBoost regression model optimized for
predicting sample ctDNA fraction as a continuous variable for use on
ourwebsite (the classification and regression results are both shown to
the user after inputting a patient’s clinical data). This model was
trained using the same cohort and automated procedure, but was
optimized for mean absolute error. For the final full 8-variable model,
the hyperparameters num_round=200, max_depth= 2, eta=
0.005, subsample= 0.75, colsample_bytree= 0.75, and col-
sample_bylevel= 0.75were selected by the automated procedure.

To validate that our gradient boosting prediction model out-
performs simpler models, we also trained a dimensionally-weighted
K-nearest neighbor model (with K = 20) for predicting ctDNA% (as a
continuous variable) and for estimating the probability that
ctDNA>2% in a given sample. To predict ctDNA%, we calculated the
median ctDNA% of 20 nearest neighbors. To predict P(ctDNA>2%),
we calculated the fraction of 20 nearest neighbors with ctDNA > 2%.
Dimensional weights minimizing mean absolute error between pre-
dicted and true ctDNA% for the KNN model were learned via Nelder-
Meadoptimization using the training set. Accuracy of the KNNmodel
was evaluated using leave-one-out cross-validation. Missing input
variables were simply omitted when calculating dimensionally-
weighted Euclidean distances to find nearest neighbors.

External validationof theparsimonious8-variableXGBoost ctDNA%
prediction model was performed using two external clinical trial
datasets with documented sequencing-based ctDNA% estimates. For
both cohorts, plasma cfDNA was collected prospectively prior to
mCRPC treatment initiation and time-matched to clinical data (mea-
sured and assembled independently by the respective trial investiga-
tors). OPT/ILU cohort: 84 plasma cfDNA samples collected from 84
patients with mCRPC across two prospective multi-center observa-
tional studies in the Netherlands (NCT02426333 [OPTIMUM];
NCT02471469 [ILUMINATE]). Patients were initiating first-line treat-
ment with abiraterone acetate plus prednisolone or enzalutamide50.
ProBio cohort: 307 plasma cfDNA samples collected from 307 patients
with mCRPC at screening to determine eligibility for the multi-center,
multi-arm biomarker-driven ProBio platform trial open in four Eur-
opean countries (NCT03903835 [ProBio])77,78. Screened samples used
for validation include those with undetectable ctDNA (even though
patients with ctDNA-negative samples are excluded from subsequent
trial enrollment). All plasma samples were collected, processed,
sequenced, and bioinformatically analyzed by the ProBio investigators
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using different preanalytical and bioinformatic methodology than
what was used for our original metacohort.

Statistical analyses and reproducibility
Statistical tests and data analyses were conducted in Python 3.7 (using
pandas 0.25.0, numpy 1.16.4, scipy, and statsmodels). Visualizations
were generated using matplotlib (Python). All boxplots are centered at
the median and display interquartile ranges (IQR) and minima and
maxima extending to 1.5× IQR (per convention). Human Figure (Fig. 1A)
was obtained and modified from Wikimedia Commons (original
authors: Patrick J. Lynch (medical illustrator); C. Carl Jaffe, MD (cardi-
ologist); Yale University Center for Advanced Instructional Media)
available under a Creative Commons Attribution 2.5 generic license
(https://commons.wikimedia.org/wiki/File:Skeleton_whole_body.svg).
Descriptive statistics were used for post hoc exploration of baseline
clinical characteristics and ctDNA%. Survival functions for time-to-event
outcomes (e.g., PSA-PFS andOS)were estimatedusing theKaplan-Meier
method. Hazard ratios were calculated using univariable and multi-
variable Cox proportional hazards models via lifelines v0.26.4, and
p-values reflect the Wald test of a single parameter. All hypothesis tests
were two tailed and required a 5% significance threshold. Correction for
multiple hypothesis testing was not performed. Sample size and a sta-
tistical analysis plan (including power calculations) was not formally
prespecified for this retrospective exploratory study. Imputation for
missing data for traditional statistical analyses was not performed (due
to the high overall completeness of our data (Fig. 1B); patients with
missing data were excluded from relevant descriptive analyses). For all
multivariable Cox proportional hazards models, patients with ≥1 cov-
ariate with missing data are omitted. The statistical framework for
evaluating the relationships between ctDNA%, clinical variables, and
survival outcomes is outlined in Supplementary Fig. 9. This retro-
spective meta-analysis did not directly incorporate randomization,
although the constituent clinical trials (NCT02125357 and
NCT02254785) from which patients were accrued did involve random
treatment assignment. Random permutation sampling was performed
in the context of nested cross-validation for developing our ctDNA-
fraction prediction tool. Investigators were not blinded to any patient
data, patient allocation during experiments, or outcomes assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The human reference genome hg38 was downloaded from UCSC.
Germline variant population frequency is available at gnomAD v3.0
(https://gnomad.broadinstitute.org/). De-identified sequencing data
from patients included in this study have been deposited to the Eur-
opean Genome-Phenome Archive (EGA) database under the accession
code EGAS50000000211 (available at: https://ega-archive.org/studies/
EGAS50000000211). Sequencing data are available indefinitely for
research use only under standard EGA controlled access: data access
inquiries should be directed to A.W.W. (awwyatt@mail.ubc.ca). Time-
frame for data access will be subject to EGA policy and process. All
other data supporting the findings of this study are availablewithin the
article (including its Supplementary Data and Source Data
files). Source data are provided with this paper.

Code availability
Custom computer code utilized for our machine-learning models is
available on GitHub at https://github.com/annalam/ctdna-prediction-
manuscript. Our complete ctDNA somatic variant calling pipeline is
also available on GitHub (https://github.com/annalam/cfdna-wgs-
manuscript-code) and is described in detail in a prior publication65.
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