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Over the last ten years, there has been considerable progress in using digital behavioral phenotypes,
captured passively and continuously from smartphones and wearable devices, to infer depressive
mood. However, most digital phenotype studies suffer from poor replicability, often fail to detect
clinically relevant events, and use measures of depression that are not validated or suitable for
collecting large and longitudinal data. Here, we report high-quality longitudinal validated assessments
of depressive mood from computerized adaptive testing paired with continuous digital assessments
of behavior from smartphone sensors for up to 40 weeks on 183 individuals experiencing mild to
severe symptoms of depression.We apply a combination of cubic spline interpolation and idiographic
models to generate individualized predictions of future mood from the digital behavioral phenotypes,
achievinghigh prediction accuracy of depression severity up to threeweeks in advance (R2≥ 80%)and
a 65.7% reduction in the prediction error over a baseline model which predicts future mood based on
past depression severity alone. Finally, our study verified the feasibility of obtaining high-quality
longitudinal assessments of mood from a clinical population and predicting symptom severity weeks
in advance using passively collected digital behavioral data. Our results indicate the possibility of
expanding the repertoire of patient-specific behavioral measures to enable future psychiatric
research.

Major depressive disorder (MDD) affects almost one in five people1 and is
now the world’s leading cause of disability2. However, it is often undiag-
nosed: only about half of those with MDD are identified and offered
treatment3,4. In addition, for many people, MDD is a chronic condition
characterized by periods of relapse and recovery that requires ongoing
monitoring of symptoms. MDD diagnosis and symptom monitoring is
typically dependent on clinical interview, a method that rarely exceeds an
inter-rater reliability of 0.75,6. Furthermore, sufferers are unlikely to

volunteer that they are depressed because of the reduced social contact
associatedwith lowmoodandbecauseof the stigmaattached to admitting to
being depressed. Developing new ways to quickly and accurately diagnose
MDD or monitor depressive symptoms in real time would substantially
alleviate the burden of this common and debilitating condition.

The advent of electronic methods of collecting information, e.g.,
smartphone sensors or wearable devices, means that behavioral measures
can now be obtained as individuals go about their daily lives. Over the last
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ten years there has been considerable progress in using these digital beha-
vioral phenotypes to infermood and depression7–15. Yet,most digitalmental
health studies suffer fromone ormore of the following limitations16–18. First,
many studies are likely underpowered to meet their analytic
objectives10,12,19,20. Second, most studies do not follow up subjects long
enough to adequately capture changes in signal within an individual over
time10,11,19,21,22, even though such changes are highly informative for clinical
care. The few studies with longitudinal assessments use ecological
momentary assessments19,20,23 to measure state mood, rather than a psy-
chometrically validated symptom scale for depression. Furthermore, they
examine associations between behavior and mood at a population level23.
This nomothetic approach is limited by the fact that both mood and its
relationship to behavior can vary substantially between individuals. Last,
many of the existing studies focus on healthy subjects, thus prohibiting
evaluation of how well digital phenotypes perform in predicting
depression24.

Here, we overcome these limitations by using a validated measure of
depression from computerized adaptive testing25 to obtain high-quality
longitudinal measures of mood. Computerized adaptive testing is a tech-
nology for interactive administration of tests that tailors the test to the
examinee (or, in our application, to the patient)26. Tests are ‘adaptive’ in the
sense that the testing is driven by an algorithm that selects questions in real-
time and in response to the on-going responses of the patient. By employing
item response theory to select a small number of questions from a large
bank, the test provides a powerful and efficient way to detect psychiatric
illness without suffering response fatigue.We also use smartphone sensing27

to passively and continuously collect behavioral phenotypes for up to
40 weeks on 183 individuals experiencing mild to severe symptoms of
depression (3,005 days with mood assessment and 29,254 days with beha-
vioral assessment). To account for inter-individual heterogeneity and pro-
vide individual-specific predictors of depression trajectories we use an
idiographic (or, personalized) modeling approach. Ultimately, we expect
that this approach will provide patient-specific predictors of depressive
symptom severity to guide personalized intervention, as well as enable
future psychiatric research, for example in genome and phenome-wide
association studies.

Results
Study participants and treatment protocol
Participants (N = 437; 76.5% female, 26.5% white) are University of
California Los Angeles (UCLA) students experiencing mild to severe
symptoms of depression or anxiety enrolled as part of the Screening and
Treatment for Anxiety and Depression28 (STAND) study (Supple-
mentary Fig. 1). The STAND eligibility criteria and treatment protocol
are described extensively elsewhere29. Briefly, participants are initially
assessed using the Computerized Adaptive Testing Depression
Inventory30 (CAT-DI), an online adaptive tool that offers validated
assessments of depression severity (measured on a 0–100 scale). After
the initial assessment, participants are routed to appropriate treatment
resources depending on depression severity: those with mild
(35 ≤ CAT-DI < 65) to moderate (65 ≤ CAT-DI < 75) depression at
baseline received online support with or without peer coaching31 while
those with severe depression (CAT-DI ≥ 75) received in-person care
from a clinician (see Methods).

STAND enrolled participants in two waves, each with different
inclusion criteria and CAT-DI assessment and treatment protocol (Sup-
plementary Fig. 2a). Wave 1 was limited to individuals with mild to mod-
erate symptoms at baseline (N = 182) and treatment lasted for up to
20weeks.Wave 2 included individualswithmild tomoderate (N = 142) and
severe (N = 124) symptoms and treatment lasted for up to 40 weeks. Eleven
individuals participated in both waves. Depression symptom severity was
assessed up to every other week for the participants that received online
support (bothwaves), i.e., thosewithmild tomoderate symptoms, and every
week for the participants that received in-person clinical care, i.e., thosewith
severe symptoms (see Methods).

Adherence to CAT-DI assessment protocol
Overall, participants provided a total of 4,507 CAT-DI assessments (out of
11,218 expected by the study protocols). Participant adherence to CAT-DI
assessments varied across enrollment waves (Likelihood ratio test [LRT] P-
value < 2.2 × 10−16), treatment groups (LRT P-value < 2.2 × 10−16), and
during the follow-up period (LRT P-value = 1.29 × 10−6). Specifically, par-
ticipants that received clinical care were more adherent than those which
only received online support (Supplementary Fig. 2b). Attrition for parti-
cipants which received clinical care was linear over the follow-up period,
with 1.7% of participants dropping out CAT-DI assessments within two
weeks into the study. Attrition for participants that received online support
was large two weeks into the study (33.5% of Wave 1 and 37.3% of Wave 2
participants) and linear for the remaining of the study.

Participant adherence to CAT-DI assessments variedwith sex and age.
Among participants that received online support, men were less likely to
complete all CAT-DI assessments in wave 1 (OR= 0.86, LRT P-
value = 2.9 × 10−4) but more likely to complete them in wave 2 (OR = 1.31,
LRT P-value = 3.1 × 10−11). Participant adherence did not vary with sex for
those receiving clinical support. In addition, among participants that
received online support in wave 2, older participants were more likely to
complete all CAT-DI assessments than younger participants (OR = 1.13,
LRT P-value < 2.2 × 10−16). Participant adherence did not vary with age for
participants in wave 1 or those receiving clinical support in wave 2.

For building personalized mood prediction models, we focus on 183
individuals (49 from Wave 1 and 134 from Wave 2) who had at least five
mental health assessments during the study (see Methods). For these
individuals we obtained a total of 3005 CAT-DI assessments with a median
of 13 assessments, 171 follow-up days, and 10 days between assessments per
individual (Fig. 1a–c).

Computerized adaptive testing captures treatment-related
changes in depression severity
We assessed what factors contribute to variation in the CAT-DI severity
scores (Fig. 1e, see Methods). Subjects are assigned to different treatments
(online support or clinical care) depending on their CAT-DI severity scores,
so not surprisingly we see a significant source of variation attributable to the
treatment group (10.3% of variance explained, 95%CI: 8.37–12.68%). Once
assigned to a treatment group, we expect to see changes over time as
treatment is delivered to individuals with severe symptoms at baseline. This
is reflected in a significant source of variation attributable to the interaction
between the treatment group and the number of weeks spent in the study
(8.54%of variance explained, 95%CI: 5.92–10.4%) and the improved scores
for individuals with severe symptoms at baseline as they spendmore time in
the study (Supplementary Figure 3). We found no statistically significant
effect of the COVIDpandemic, sex, and other study parameters. The largest
source of variation in depression severity scores is attributable to between-
individual differences (41.78% of variance explained, 95% CI:
38.31–42.02%), suggesting that accurate prediction of CAT-DI severity
requires learning models tailored to each individual.

Digital behavioral phenotypes capture changes in behavior
We set out to examine how digital behavioral phenotypes change over time
for each person and with CAT-DI severity scores. For example, we want to
know how hours of sleep on a specific day for a specific individual differs
from the average hours of sleep in the previous week, or month. To answer
these questions, we extracted digital behavioral phenotypes (referred to
hereinafter as features) captured fromparticipants’ smartphone sensors and
investigated which features predicted the CAT-DI scores. STAND partici-
pants had the AWARE framework27 installed on their smartphones, which
queried phone sensors to obtain information about a participant’s location,
screen on/off behavior, and number of incoming and outgoing text mes-
sages and phone calls. We processed these measurements (see Methods) to
obtain daily aggregate measures of activity (23 features), social interaction
(18 features), sleep quality (13 features), and device usage (two features). In
addition, we processed these features to capture relative changes in each
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measure for each individual, e.g., changes in average amount of sleep in the
last week compared to what is typical over the last month. In total, we
obtained 1,325 features.Missing daily feature values (Supplementary Fig. 4)
were imputed using two different imputation methods, AutoComplete30

and softImpute32 (see Methods), resulting in 29,254 days of logging events
across all individuals.

Several of these features map onto the DSM-5 MDD criteria of
anhedonia, sleep disturbance, and loss of energy (see Methods; Sup-
plementary Figure 5).We computed correlations between these features
and an individuals’ depression severity score and found that these
features often correlate strongly with changes in depression (Fig. 2a).
For example, for one individual, the number of unique locations visited
during the day shows a strong negative correlationwith their depression
severity scores during the study (Pearson’s ρ =−0.65, Benjamini-
Hochberg [BH]-adjusted P-value = 2.50 × 10−20). We observed a lot of
heterogeneity in the strength and direction of the correlation of these
features with depression severity across individuals. For example, fea-
tures related to location entropy are positively (Pearson’s ρ = 0.40, BH-
adjusted P-value = 3.55 × 10−11) correlated with depression severity for
some individuals but negatively (ρ =−0.59, BH-adjusted P-
value = 1.11 × 10−22) or not correlated (ρ =−3.92 × 10−04, BH-adjusted
P-value = 0.995) for others. Finally, as expected from the large hetero-
geneity in these correlation between individuals, the correlation of these

features with depression severity scores across individuals was very
poor, the strongest correlation was observed for the wake-up time
(ρ = 0.07, BH-adjusted P-value = 2.47 × 10−03).

Figure 2b illustrates an individual with severe depressive symptoms for
whom we can identify a window of disrupted sleep that co-occurred with a
clinically significant increase in symptom severity (from mild to severe
CAT-DI scores). Subsequently, a return to baseline patterns of sleep coin-
cided with symptom reduction. Quantifying this relationship poses a
number of issues, which we turn to next.

Predicting CAT-DI scores from digital phenotypes
To predict future depression severity scores using digital behavioral phe-
notypes, we considered three analytical approaches. First, we applied an
idiographic approach, whereby we build a separate prediction model for
each of the participants. Specifically, for each individual, we train an elastic
net regression model using the first 70% of their depression scores and
predict the remaining 30% of scores. Second, we applied a nomothetic
approach that used data from all participants to build a single model for
depression severity prediction using the same analytical steps: we train an
elastic net regressionmodel using the first 70% of depression scores of each
individual and predict the remaining 30% of scores (see Methods). The
result of this nomothetic approach was a single elastic net regressionmodel
that makes predictions in all participants.

10

20

30

40

Wave 1 
 Online support

(N=13)

Wave 2 
 Online support

(N=21)

Wave2 
 Clinical care

(N=44)

# 
as

se
ss

m
en

ts

10

20

30

40

50

Wave 1 
 Online support

(N=7−14)

Wave 2 
 Online support

(N=14)

Wave2 
 Clinical care

(N=7)

A
ss

es
sm

en
t F

re
q

100

200

Wave 1 
 Online support

(N=140)

Wave 2 
 Online support

(N=280)

Wave2 
 Clinical care

(N=280)

F
ol

lo
w

−
up

 d
ay

s

0

10

20

30

40

Individual

Treatment group

Study week

Treatment group x Study week
Season

Year
COVID Age

Sex

Residuals

C
I−

D
I s

ev
er

ity
 v

ar
ia

nc
e 

ex
pl

ai
ne

d 
(in

 %
)

a

b

c

d

Fig. 1 | Overview of CAT-DI assessment frequency and source of variation in
CAT-DI. a–c Box plot of the observed number of CAT-DI assessments (a), median
number of days between assessments (b), and follow-up time in days (c) for each
wave and treatment group. The numbers in the parentheses indicate the expected
values for each of thesemetrics according to study design (Sup Fig. 2). The dark black
line represents the median value; the box limits show the interquartile range (IQR)
from the first (Q1) to third (Q3) quartiles; the whiskers extend to the furthest data

point within Q1-1.5*IQR (bottom) and Q3+ 1.5*IQR (top). d Proportion of CAT-
DI severity variance explained (VE) by inter-individual differences and other study
parameters with 95% confidence intervals. The proportion of variance attributable
to each source was computed using a linear mixed model with the individual id and
season (two multilevel categorical variables) modeled as random variables and all
other variables modeled as fixed (see Methods).
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The main difference between the nomothetic and idiographic
approach is that the nomothetic model assumes that each feature has
the same relationship with the CAT-DI scores across individuals, for
example, that a phone interaction is always associated with an increase
in depression score. However, it is possible, and we see this in our data,
that an increase in phone interaction can be associated with an increase
in symptom severity for one person, but a decrease in another (Fig. 2a).
The idiographic model allows for this possibility by using a different
slope for each feature and individual. In addition, we know that large
differences exist in average depression scores between individuals (Fig.
1e). To understand the impact of accounting for these differences in a
nomothetic approach, we also applied a third approach (referred to as
nomothetic*) which includes individual indicator variables in the

elastic net regression model in order to allow for potentially different
intercepts for each individual. All three models include stay day as a
covariate.

To assesswhetherdigital behavioral phenotypespredictmood,wehave
to deal with the problem that digital phenotypes are acquired daily, while
CAT-DI are usually administered every week (and often much less fre-
quently, on average every 10 days). We assume that the CAT-DI indexes a
continuously variable trait, but what can we use as the target for our digital
predictions when we have such sparsely distributedmeasures?We can treat
this as a problem of imputation, in which case the difficulty reduces to
knowing the likely distribution of missing values. However, we also assume
that both CAT-DI and digital features only imperfectly reflect a fluctuating
latent trait of depression. Thus, our imputation is used not only to fill in

Fig. 2 | Overview of correlation between depression severity scores and features.
a Heatmap for Pearson’s correlation coefficient (color of cell) between CAT-DI
scores and behavioral features (y-axis) across individuals (first column) and within
each individual (x-axis). Correlation coefficients with BH-adjusted p-values > 0.05
are indicated by x. For plotting ease, we limit to untransformed features (N = 50, see
Methods). Rows and columns are annotated by feature type and by each individual’s
wave and treatment group. Rows and columns are ordered using hierarchical

clustering with Euclidean distance. b Example of identifying window of potential
sleep disruption using sensor data related to phone usage and screen on/off status.
The top panel shows estimated hours of sleep for an individual during the study
while the bottom panel shows the depression severity scores during the same period.
The dotted lines indicate the dates at which a change point is estimated to have
occurred in the estimated hours of sleep as estimated using a change point model
framework for sequential change detection (seeMethods). BHBenjamini Hochberg.
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missing data points but also to be a closer reflection of the underlying trait
that we are trying to predict, namely, depressive severity.

We interpolate the unmeasured estimates of depression by modeling
the latent trait as a cubic spline with different degrees of freedom (Fig. 3a).
For many individuals, CAT-DI values fluctuate considerably during the
study, while for others less so. To accommodate this variation, we alter the
degrees of freedom of the cubic spline: the more degrees of freedom, the
greater the allowed variation. For each individual, we usedcubic splineswith
four degrees of freedom, denoted by CS(4df), degrees of freedom corre-
sponding to the number of observed CAT-DI categories in the training set,
denoted by CS(2-4df), and degrees of freedom identified by leave-one-out
cross-validation in the training set, denoted by CS(cv). For comparison
purposes, we also used a last-observation-carried- forward (LOCF)
approach, a naive interpolationmethod that does not apply any smoothness
to the observed trait. In addition, we also include results from analyses done
without interpolating CAT-DI but rather modeling the (bi)weekly mea-
surements. Because spline interpolation will cause data leakage across the
training-testing split and upwardly bias prediction accuracy, we train our
predictionmodels using cubic spline interpolation on only the training data
(first 70% of time series of each individual) and assess prediction accuracy
performance in the testing set (last 30%) using the time series generated by
applying cubic splines to the entire time series (Fig. 3b).

We evaluated the prediction performance of each model and for each
latent trait across and within participants. We refer to the former as group
level prediction and the later as individual level prediction. Looking at group
level prediction performance, compared to within each participant

separately, allows us to compute prediction accuracy metrics, e.g., R2, as a
function of the number of days ahead we are predicting and test for their
statistical significance across all predicted observations.

We first evaluated group level prediction accuracy. Figure 4 shows
group level prediction performance for each latent trait using the nomo-
thetic, nomothetic*, and idiographicmodelwhen the featureswere imputed
with Autocomplete and CAT-DI was modeled using a logistic elastic net
regression. We observed that across all latent traits the nomothetic model
shows lower prediction accuracy (mean absolute percentage error [MAPE]
= 25–28% and R2 < 5% for all latent traits), compared to the nomothetic*
(MAPE = 18–25% and R2 = 30–46%) or idiographic (MAPE= 16–23% and
R2 = 37–66%)models (Fig. 4a, b). This is in line with the large proportion of
depression scores variance explained by between-individual differences
(Fig. 1e) which get best captured by the nomothetic* and idiographic
models. The idiographic model also showed higher prediction accuracy
than the nomothetic(*) model when the features were imputed using
softImpute or when CAT-DI was modeled using a linear elastic net
regression (Supplementary Fig. 6a, b) as well as whenCAT-DIwasmodeled
at the (bi)weekly level without interpolation to get daily level data (Sup-
plementary Fig. 8a, b).

We also compared the prediction performance for each of the different
latent traits. As expected, we achieve a higher prediction accuracy for the
morehighlypenalizedcubic spline latent traits compared to theLOCF latent
trait, as the latter has, by default, a larger amount of variation left to be
explained by the features. For example, for the idiographic models, we
obtained anR2 = 66.4% for CS(2-4df) versus 36.9% for LOCF, implying that
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weekly patterns of depression severity, which are more likely to be captured
by the LOCF latent trait, are harder to predict than depression severity
patterns over a couple of weeks or months, which are more likely to be
captured by the cubic spline latent traits with smallest degrees of freedom.

To understand the effect of time on prediction accuracy, we assessed
prediction performance as a function of the number of weeks ahead we are

predicting from the last observation in the training set (Fig. 4c). The idio-
graphic models achieved high prediction accuracy for depression scores up
to three weeks from the last observation in the training set, e.g., R2 = 84.2%
and73.2% for theCS(2-4df) latent trait topredict observationsoneweekand
four weeks ahead, respectively. Prediction accuracy falls below 80% after
four weeks.
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models and latent depression traits. The dotted line in B indicates 70% prediction
accuracy and bars indicate 95% confidence intervals of R2. c R2 versus the number of
weeks ahead we are predicting from the last observation in the training set. The
dotted line indicates 70% prediction accuracy. Bars indicate 95% confidence inter-
vals of R2. d, e log2 fold change in CAT-DI prediction accuracy, as measured by
MAPE (d) and R2 (e), of feature-basedmodel over the baselinemodel. Negative log2

fold change inMAPE and positive log2 fold change in R2mean that the feature-based
model performs better than the baseline model. A log2 fold change in MAPE of−1
means that the prediction error of the baseline model is twice as large as that of the
feature-based model. The dotted line indicates the log2 fold change for the best and
worst performing model/latent trait combination. Features were imputed with
Autocomplete and CAT-DI was modeled using a logistic elastic net regression.
MAPE: mean absolute percent error. LOCF last observation carried forward.
CS(xdf) Cubic spline with x degrees of freedom. CS(cv) best-fitting cubic spline
according to leave-one-out cross-validation.
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To quantify the contribution of features on group-level prediction
accuracy, we assessed to what extent the features improve the prediction of
each model above that achieved by a baseline model that includes just the
intercept and study day. Figure 4d, e shows the log2 fold change in CAT-DI
prediction accuracy, as measured by MAPE and R2, of the feature-based
model over the baseline model. The baseline nomothetic model often pre-
dicts the same value, i.e., training set intercept, so we cannot compute R2.
The feature-based idiographic model achieved the greatest improvement in
prediction accuracy over the corresponding baseline model, resulting in
65.7% reduction in the MAPE and 7.1% increase in R2 over the baseline
model for the CS(2-4df) latent trait. The idiographic model also showed
higher prediction accuracy than the corresponding baselinemodelwhen the
features were imputed using softImpute or when CAT-DI was modeled
using a linear elastic net regression (Supplementary Fig. 6c, d) as well as
when CAT-DI was modeled at the (bi)weekly level (Supplementary Fig. 8c,
d). These results suggest that the passive phone features enhance prediction,
over and above past CAT-DI and study day, for most individuals in
our study.

Wenext evaluated individual level prediction accuracy (Fig. 5). For this
analysis, in order to be able to assess the statistical significance of our
prediction accuracywithin each individual, we only keep individuals with at
least fivemental health assessments in the test set (N = 143). In line with the
group level prediction performance, the idiographic model outperformed
the other models at the individual level (Fig. 5a; median MAPE across
individuals for all latent traits = 13.3–18.9% versus 20.1–23% for the
nomothetic and 14.5–20.4% for the nomothetic* model). Using an idio-
graphic modeling approach, we significantly predicted the future mood for
79.0% of individuals (113 out of 143 with R > 0 and FDR < 5% across
individuals) for at least one of the latent traits (Fig. 5b), compared to 58.7%
and 65.7% of individuals for the nomothetic and nomothetic* model,
respectively. The median R2 value across significantly predicted individuals
for the idiographic models was 47.0% (Fig. 5c), compared to 23.7.% and
28.4% for the nomothetic and nomothetic*model, respectively. In addition,
for 41.3% of these individuals, the idiographic model had prediction accu-
racy greater than 70%, demonstrating high predictive power in inferring
mood fromdigital behavioral phenotypes for these individuals, compared to
6.2% and 9.7% for the nomothetic and nomothetic* model, respectively
(Fig. 5c). The idiographic model also outperformed the nomothetic(*)
model when the features were imputed using softImpute or when CAT-DI
was modeled using a linear elastic net regression (Sup Fig. 7a) as well as
whenCAT-DIwasmodeled at the (bi)weekly level (Supplementary Fig. 8e).

Next, we compared individual-level prediction accuracy of eachmodel
against the corresponding baseline model that includes just the intercept
and study day. Figure 5d and Supplementary Fig. 7c, d show the distribution
across individuals of the log2 fold change in CAT-DI prediction accuracy of
the feature-based model over the baseline model. In accordance with the
group level prediction performance, the feature-based idiographic model
achieved the greatest improvement in prediction accuracy over the corre-
sponding baseline model, resulting in a median of over two-fold reduction
in the MAPE (Fig. 5d; median MAPE of feature-based model across indi-
viduals for all latent traits = 13.3–18.9% versus 40.1–41.4% for the baseline
model). The idiographic model also showed greatest improvement in pre-
diction accuracy over the corresponding baseline model than the nomo-
thetic(*) model when CAT-DI was modeled at the (bi)weekly level
(Supplementary Fig. 8f).

To identify the features that most robustly predict depression in each
person we extracted top-feature predictors for each individual’s best-fit
idiographic model. We limit this analysis to the 113 individuals which
showed significant prediction accuracy for at least one of the latent traits. As
expected, the study day was predictive of the mood for 63% of individuals
and was mainly associated with a decrease in symptom severity (median
odds ratio [OR] = 0.86 across individuals). Although no behavioral feature
uniformly stood out, as expected by the high correlation between features
and heterogeneity in correlation between features and CAT-DI across
individuals (Fig. 2a), the variationwithin the last 30days in theproportionof

unique contacts for outgoing texts and messages (a proxy for erratic social
behavior), the time of last (first) interaction with the phone after midnight
(in the morning) (a proxy for erratic bedtime [wake up time] and sleep
quality), and the proportion of time spent at home during the day (a proxy
for erratic activity level) were among the top predictors of future mood and
were often associatedwith an increase in symptomseverity (OR = 1.05–1.23
across features and individuals). The heatmap display of predictor impor-
tance in Fig. 6 highlights the heterogeneity of passive features for predicting
the future across individuals. For example, poor mental health, as indicated
by high CAT-DI depression severity scores, was associated with decreased
variation in location entropy in the evenings (a proxy for erratic activity
level) in the past 30 days for one individual (OR = 0.94) while for another
individual it was associated with increased variation (OR = 1.20).

Factors associated with prediction performance
Using digital behavioral features to predict future mood was useful for
74–77% of our cohort and the contribution of the features to the prediction
performance varies across these individuals. What might contribute to this
variation? Identifying the factors involved might allow us to develop addi-
tional models with higher prediction accuracy. To identify factors that are
associated with prediction performance, we computed the correlation
between accuracymetrics (predictionR2 andMAPE of feature-basedmodel
and difference in MAPE between feature-based and baseline models) with
different study parameters e.g., treatment group, sex, etc. (Fig. 7).

Increasedvariability indepression scoresduring the study, asmeasured
by the number of unique CAT-DI categories for each individual, were
correlated with poorer prediction performance of the feature-based model,
asmeasured byMAPE (Spearman’s ρ = 0.49 and 0.23, p-value = 2.25 × 10−2

and 9.79 × 10−4 for LOCF and CS(4df) latent traits, respectively). In addi-
tion, larger differences in median depression scores between the training
and test set for each individual were correlated with poorer prediction
performance, as measured by MAPE (Spearman’s ρ = 0.32, p-
value = 9.11 × 10−4 for the CS(4df) latent trait). This suggests that, for some
individuals in the study, the trainingdepression scores arehigher/lower than
the test depression scores (as expected by Supplementary Fig. 4) and that
adding the study day or digital phenotypes as a predictor does not com-
pletely mediate this issue. The size of the training and test set as well as
demographic variables were not strongly correlated to prediction
performance.

While we had poorer prediction performance for individuals whose
mood shows greater variability during the course of the study, these are also
the individuals for which using a feature-based model improves prediction
accuracy compared to a baseline model that predicts based on past
depression severity and study day alone. Specifically, larger variability in
depression scores for each individual was correlated with better prediction
performance of a feature-based model than a baseline model, as measured
by difference inMAPE between the twomodels (Spearman’s ρ =−0.54 and
−0.49, p-value = 5.96 × 10−4 and p-value = 4.46 × 10−3 for the CS(4df) and
CS(2-4df) latent traits, respectively).

Discussion
In this paper, we showed the feasibility of longitudinally measuring
depressive symptoms over 183 individuals for up to 10 months using
computerized adaptive testing and passively and continuously measuring
behavioral data captured from the sensors built into smartphones. Using a
combination of cubic spline interpolation and idiographic prediction
models, we were able to impute and predict a latent depression trait on a
hold-out set of each individual several weeks in advance.

Our ability to longitudinally assess depressive symptoms and behavior
withinmany individuals and over a long period of time enabled us to assess
how far out we can predict depressive symptoms, how variable prediction
accuracy can be across different individuals, and what factors contribute to
this variability. In addition, it enabled us to assess the contribution of
behavioral features to prediction accuracy above and beyond that of prior
symptom severity or study day alone.We observed that prediction accuracy
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droppedbelow70%after fourweeks. In addition, prediction accuracy varied
considerably across individuals as did the contribution of the features to this
accuracy. Individuals with large variability in symptom severity during the
course of the study (such as those in clinical care) were harder to predict but
benefited the most from using behavioral features. We expect that pairing
digital phenotypes from smartphones with behavioral phenotypes from
wearabledevices,which areworncontinuously andmightmeasurebehavior

with less error, as well as addition of phenotypes, like those from electronic
health records, could help address some of these challenges.

Our results are consistent with other studies that predict dailymood as
measured by ecological momentary assessments or a short screener (i.e.,
PHQ217) and confirm the superior prediction performance of idiographic
models over nomothetic ones. Our study goes further, by exploring if the
superior prediction accuracy of idiographic models is a result of better
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Fig. 5 | Idiographic models achieve higher individual level prediction accuracy
than nomotheticmodels. aBox plots of distribution ofMAPE across individuals for
different models and latent depression traits. The dashed line indicates the median
MAPEof the best performingmodel/latent trait combination, i.e., idiographicmodel
and CS(2-4df) spline. b Bar plots of the proportion of individuals with significantly
predicted mood (R > 0 at FDR < 5% across individuals) for each latent trait and
prediction model. c Prediction accuracy (R2) with 95% CI across all individuals and
latent traits. d Box plot of log2 fold change in CAT-DI prediction accuracy, as
measured by MAPE, of feature-based model over the baseline model. Negative log2

fold change in MAPE mean that the feature-based model performs better than the
baselinemodel. All plots are based on individuals with at least five assessments in the
test set (N = 143). Features were imputed with Autocomplete and CAT-DI was
modeled using a logistic elastic net regression. In (a, d), the dark black line represents
the median value; the box limits show the interquartile range (IQR) from the first
(Q1) to third (Q3) quartiles; the whiskers extend to the furthest data point within
Q1-1.5*IQR (bottom) and Q3+ 1.5*IQR (top). LOCF: last observation carried
forward. CS(xdf) cubic spline with x degrees of freedom, CS(cv) best-fitting cubic
spline according to leave-one-out cross-validation.
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modeling the relationship between features and mood or simply of better
modeling the baselinemood of each individual.We show that a large part of
the increase in prediction performance of idiographic models is due to the
latter, as indicated by the increase in prediction performance between the
nomothetic and modified nomothetic models.

High-burden studies over long time periods may result in drop-out,
particularly for depressed individuals33. In our case, we observed that
attrition for CAT-DI assessment was linear over the follow-up period,
except for the first twoweeks duringwhich a large proportion of individuals
which received online support dropped out (typical of online mental health
studies34). In addition, participants which received clinical care were more
adherent than those which received online support, despite endorsingmore
severe depressive symptoms. These participants had regular in-person
treatment sessions during which they were instructed to complete any
missing assessments emphasizing the importance of using reminders or
incentives for online mental health studies.

There are several limitations in the current study. First, the idiographic
models that we use here are fit separately for each individual andmight not
thus maximize statistical power. In addition, they assume a (log-)linear
relationship between behavioral features and depression severity andwill fit
poorly if this assumption is violated. One potential alternative is to employ
mixedmodels that jointly model data from all individuals using individual-
specific slopes and low-degree polynomials. However, due to the high
dimensionality of our data, such models are hard to implement. Second,
while it is well established that Computerized Adaptive Testing can be
repeatedly administration to the samepersonover timewithout response set
bias due to adaptive question sets25, extended use over months might still
lead to limited response bias35. Third, the adaptive nature of CAT-DI, which
might assess different symptoms for different individuals, frustrates joint
analyses. Fourth, the imputation method used for imputing digital beha-
vioral features assumes data to be missing at random (MAR), meaning
missingness depended on observed data36.While this assumption is hard to
test, MAR seems quite plausible in our study given that the data is missing
more often for participants that did not receive regular reminders. In

addition, research has shown that violation of the MAR assumption does
not seriously distort parameter estimates37. Finally, the age and gender
distribution in our participantsmay limit the generalizability of ourfindings
to the wider population.

In conclusion, our study verified the feasibility of using passively col-
lecteddigital behavioral phenotypes fromsmartphones topredict depressive
symptoms weeks in advance. Its key novelty lies in the use of computerized
adaptive testing, which enabled us to obtain high-quality longitudinal
assessments of mood on 183 individuals over many months, and in the use
of personalized prediction models, which offer a much higher predictive
power compared to nomothetic models. Ultimately, we expect that the
methodwill lead to a screening anddetection system thatwill alert clinicians
in real-time to initiate or adapt treatment as required. Moreover, as passive
phenotyping becomes more scalable for hundreds of thousands of indivi-
duals, we expected that thismethodwill enable large genome andphenome-
wide association studies for psychiatric genetic research.

Methods
Study participants and treatment protocol
Participants are University of California Los Angeles (UCLA) students
experiencing mild to severe symptoms of depression or anxiety enrolled as
part of the STAND program29 developed under the UCLA Depression
GrandChallenge38 treatment arm. All UCLA students aged 18 or older who
had internet access and were fluent in English were eligible to participate.
STAND enrolled participants in two waves. The first wave enrolled parti-
cipants fromApril 2017 to June 2018. The secondwave of enrollment began
at the start of the academic year in 2018 and continued for three years,
during which time, fromMarch 2020, a Safer-At-Home order was imposed
in Los Angeles to control the spread of COVID-19. All participants are
offered behavioral health tracking through the AWARE27 framework and
had to install the app in order to be included in the study. All participants
provided written informed consent for the study protocol approved by the
UCLA institutional review board (IRB #16-001395 for those receiving
online support and #17-001365 for those receiving clinical support).

Fig. 7 | Factors associated with prediction performance of CAT-DI severity
scores. Correlation between prediction accuracy of an individual (metrics on the y-
axis) and the number of CAT-DI assessment available in the training and test set, the
difference in median CAT-DI severity between the training and test set, the number

of the unique CAT-DI categories (normal to severe) observed (total and in training
and test sets), age, sex, wave, and treatment group (a proxy for depression severity).
MAPE: mean absolute percentage error.
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Depression symptom severity at baseline and during the course of the
study was assessed using the Computerized Adaptive Testing Depression
Inventory25 (CAT-DI), a validated online mental health tracker. Compu-
terized adaptive testing is a technology for interactive administration of tests
that tailors the test to the patient26. Tests are ‘adaptive’ in the sense that the
testing is driven by an algorithm that selects questions in real-time and in
response to the ongoing responses of the patient. CAT-DI uses item
response theory to select a small numberofquestions froma large bank, thus
providing a powerful and efficient way to detect psychiatric illness without
suffering response fatigue.

Participants were classified into treatment groups based on their
depression and anxiety scores at baseline, which indicated the severity of
symptoms in thosedomains. Individualswhoarenot currently experiencing
symptoms of depression (CAT-DI score <35) or anxiety are offered the
opportunity to participate in the study without an active treatment com-
ponent by contributingCAT-DI assessment.These individuals are excluded
from our analyses as they do not show any variation in CAT-DI. Partici-
pants that exhibited scores below the moderate depression range (CAT-DI
score < 74) were offered internet-based cognitive behavioral therapy, which
includes adjunctive support provided by trainedpeers or clinical psychology
graduate students via video chat or in person. Eligible participants with
symptoms in this range were excluded if they were currently receiving
cognitive behavioral therapy, refused to install the AWARE phone sensor
app, or were planning an extended absence during the intervention period.
Participants that exhibited scores in the range of severe depression symp-
toms (CAT-DI score 75–100) or who endorsed current suicidality were
offered in-person clinical carewhich included evidence-based psychological
treatment with option for medication management. Additional exclusion
criteria were applied to participants with symptoms in this range, which
included clinically-assessed severe psychopathology requiring intensive
treatment, multiple recent suicide attempts resulting in hospitalization, or
significant psychotic symptoms unrelated to major depressive or bipolar
manic episodes. These criteria were determined through further clinical
assessment. Participants with symptoms in this range were also excluded if
they were unwilling to provide a blood sample or transfer care to the study
team while receiving treatment in the STAND program.

Depression symptom severity was assessed up to every other week for
the participants that received online support (both waves), i.e., those with
mild to moderate symptoms, and every week for the participants that
received in-person clinical care, i.e., those with severe symptoms (Supple-
mentary Fig. 2a). Participants that received in-person care had also four in-
person assessment events, at weeks 8, 16, 28, and 40, prior to theCOVID-19
pandemic. Thus, Wave 1 participants can have a maximum of 13 CAT-DI
assessments while Wave 2 participants can have a maximum of 21 (online
support) or 44 assessments, depending on severity and excluding initial
assessments prior to treatment assignment.

CAT-DIwas assessed at least one time for 437 individuals that installed
the AWARE app. Here, we limit our prediction analyses to individuals that
have at least five CAT-DI assessments (N = 238; since we need at least four
points to interpolate CAT-DI in the training set), have at least 60 days of
sensor data in the same period for which CAT-DI data is also available
(N = 189), and show variation in their CAT-DI scores in the training set
(N = 183), which is necessary in order to build prediction models.

Adherence toCAT-DI assessment protocol and factors affecting
adherence
To assess if participant adherence to CAT-DI assessments varied across
enrollment waves and treatment groups, we used a logistic regression with
the proportion of CAT-DI assessments a participant completed as the
dependent variable and the enrollment waves or treatment groups as
independent variables. A similarmodel was used to assess impact of sex and
age on participant adherence (results presented in the Supplement). To
assess if participant adherence varied with time in the study, we used a
logistic regression random effectmodel, as implemented in the lmerTest39 R
package,with an indicator variable for the individual remaining in the study

for each required assessment as the dependent variable and a continuous
studyweek as an independent variable.An individual-specific randomeffect
was used to account for repeatedmeasurement of each individual during the
study.A likelihood ratio testwasused to test for the significant of the effect of
each independent variable against the appropriate null model.

Variance partition of CAT-DI metrics
We calculate the proportion of CAT-DI severity variance explained by
different study parameters using a linear mixed model as implemented in
the R package variancePartition40 with the subject id, study id, season, sex,
and year modeled as random variables while the day of the study, the age of
the subject, and a binary variable indicating the dates before or after the safer
at home order was issued in California modeled as fixed, i.e.,
y ¼ P

jXjβj þ
P

kZkak þ ϵ, where y is the vector of the CAT-DI values
across all subjects and time points, Xj is the matrix of jth fixed effect with
coefficients βj, Zk is the matrix corresponding to the kth random effect with
coefficients ak drawn from a normal distribution with variance σ2ak . The
noise term, ϵ, is drawn from a normal distribution with variance σ2ϵ . All
parameters are estimated with maximum likelihood41. Variance terms for
the fixed effects are computed using the post hoc calculation
σ̂2βj ¼ varðXjβjÞ. The total variance is σ̂2Total ¼ σ̂2βj þ σ̂2ak þ σ̂

2

ϵ
so that the

fraction of variance explained by the jth fixed effect is σ̂2βj /σ̂
2
Total , by the k

th

random effect is σ̂2ak /σ̂
2
Total , and the residual variance is σ̂

2
ϵ/σ̂

2
Total . Confidence

intervals for variance explained were calculated using parametric bootstrap
sampling as implemented in the R package variancePartition42.

Preprocessing of smartphone sensor data
Each sensor collected through the AWARE framework is stored separately
with a common set of data items (device identifier, timestamp, etc.) aswell as
a set of items unique to each sensor (sensor-specific items such as GPS
coordinates, screen state, etc.). Data from each sensor was preprocessed to
convert Unix UTC timestamps into local time, remove duplicate logging
entries, and remove entries with missing sensor data. Additionally, some
data labels that are numerically coded during data collection (e.g., screen
state) were converted to human-readable labels for ease of interpretation.

Extraction of mobility features
Location data was divided into 24 h windows starting and ending at mid-
night each day. To identify locations where participants spent time, GPS
data were filtered to identify observations where the participants were sta-
tionary since the previous observation. Stationary observations were those
defined as having an average speed of < 0.7 meters per second (approxi-
mately half the averagewalking speed of the average adult). These stationary
observations were then clustered using hierarchical clustering to identify
unique locations in which participants spent time during each day. Hier-
archical clustering was chosen over k-means and density-based approaches
such as DBSCAN due to its ability to deterministically assign clusters to
locations with a precisely defined and consistent radius, independent of
occasional data missingness.

Locations were defined to have a maximum radius of 400m, a suffi-
cient radius to account for noise in GPS observations. Clusters were then
filtered to exclude any location in which the participant spent less than
15min over the day to exclude location artifacts, e.g., a participant being
stuck in traffic during daily commute, or passing through the same area of
campus multiple times in a day. To address data missingness in situations
where GPS observations were not received at regular intervals, locations
were linearly interpolated to provide an estimated location every 3min.

For each day, a home location was assigned based on the location each
participant spent the most time in between the hours of midnight to eight
am. This approach allowed for better interpretation of behavior for parti-
cipants who split time between multiple living situations, for example,
students who return home for the weekend or a vacation. Next, multiple
features were extracted from this location data, including total time spent at
home each day, total number of locations visited, overall location entropy,
and normalized location entropy. Each of these features was additionally
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computedover threedaily non-overlapping timewindowsof equal duration
(night 00:00–08:00, day 08:00–16:00, evening 16:00–00:00), under the
hypothesis that participant behavior may be more or less variable based on
external constraints such as a regular class schedule during daytime hours.

Extraction of sleep and circadian rhythm features
Sleep and circadian rhythm features were extracted from logs of participant
interactions with their phone, following prior work showing that last
interaction with the phone at night can serve as a reasonable proxy for
bedtime, and first interaction in the morning for waketime. The longest
phone-off period (or assumed uninterrupted sleep duration) was tracked
eachnight, aswell as the beginning andend timeof thatwindowas estimates
of bedtime and waketime. To account for participants who may have
interrupted sleep, the time spent using the phone between the hours of
midnight and8 amwas also tracked to account forparticipantswhomayuse
their phone briefly in themiddle of the night but are otherwise asleep for the
majority of thatwindow. Finally, time-varying kernel density estimateswere
derived using the total set of phone interactions, to estimate the daily time
nadir of interactions, as an additional proxy for the time of overall circadian
digital activity nadir.

Extraction of social interaction and other device usage features
Additional social interaction features were extracted from anonymized logs
of participant calls and text messages sent and received from their smart-
phone device. Features extracted from this data include, for example, the
total number of phone calls made, total time spent on the phone, and
percentage of calls connected that were outgoing (i.e., dialed by the parti-
cipant) versus incoming. Due to OS restrictions, sensors needed to extract
text message features are not available on iOS devices and were only com-
puted for the 15 participants with Android devices.

Transformation of features to capture changes in behavior
Considering a participant’s current mental state may be influenced by
patterns of behavior fromdays prior, slidingwindow averages of each of the
daily features were calculated over multiple sliding windows ranging from
three days to one month prior to the current day, i.e., windows of length
three, seven, 14, and30days.The variance of each featurewas also calculated
over these same windows, to estimate whether behavior had been stable or
variable during that time, e.g., were there largefluctuations in sleep timeover
the past week?

In addition, under the hypothesis that recent changes in behavior may
bemore indicative of changes inmental state than absolutemeasures, a final
set of transformations were applied to each feature. These transformations
compared the slidingwindowmeans of two different durations against each
other, to estimate the change in behavior during one window over that of a
longer duration window (the longer window serving as a local baseline for
the participant). This allowed estimates from the raw features of whether,
e.g., the participant had slept less last night than typical over the pastweek or
slept less on average in the last week than typical over the last month. All of
these transformations were applied to the base features extracted from
sensor data and included as separate features fed into subsequent regression
approaches.

In total, 1325 raw and transformed features were extracted and
included in the final analysis.

Imputation of smartphone-based features
To address the missing features problem (Supplementary Fig. 4), we con-
sidered two different imputation methods: matrix completion via iterative
soft-thresholder SVD, as implemented in the R package softImpute, and
AutoComplete, a deep-learning imputation method that employs copy-
masking to propagate missingness patterns present in the data. Both
approaches were applied separately to each individual as follows. First, we
removed features that exhibited> 90%missingness for that individual.Next,
we trained the imputation model on the training split alone. Finally, each
imputationmodel was applied to the training and test dataset to impute the

features for that individual. Before prediction, we normalize all features to
have zero mean and unit standard deviation using mean and standard
deviation estimates from the training set alone.

Mapping of behavioral features to DSM-5 major depressive dis-
order criteria
The set of features described above map onto only a subset of DSM criteria
that are closely associated with externally observable behaviors (Supple-
mentary Fig. 5) - sleep, loss of energy, and anhedonia (to the extent it is
severe enough to globally reduce self-initiated activity). Other DSM criteria
such as weight change, appetite disturbance, and psychomotor agitation/
retardation are in theory also directly observable, but less so with the set of
sensors available on a standard smartphone. For these criteria, other device
sensors - for instance, smartwatch sensors - may be more applicable in the
detection of e.g., fidgeting associatedwith psychomotor agitation. A final set
of DSM criteria include those primarily subjective findings - depressed
mood, feelings of worthlessness, suicidal ideation -which inherently require
self-report to directly assess. Given that only 5 of 9 criteria are required for
the diagnosis ofMDD, an individual patient’s set of symptomsmay overlap
minimally with those symptoms we expect to measure with the features
described above. However, for others, the above features may cover a more
significant portion of their symptom presentation and do a better job
directly quantifying fluctuations in DSM-5 criteria for that individual.

Imputation of CAT-DI severity scores for prediction models
To get daily-level CAT-DI severity scores, we interpolate the scores for each
individual across thewhole time series (ground truth) or only the time series
corresponding to the training set (70% of the time series) bymoving the last
CAT-DI score forward, denoted by LOCF, or by smoothing the CAT-DI
scores using cubic splines with different degrees of freedom (Fig. 3a). Cubic
smoothing spline fittingwas done using the smooth.spline function from the
stats package in R. We consider cubic splines with four degrees of freedom
(denoted by CS(4df) and corresponding to the number of possible CAT-DI
severity categories, i.e. normal, mild, moderate, and severe), cubic splines
withdegrees of freedomequal to thenumberof observedCAT-DI categories
for each individual in the training set (ranging from two to four anddenoted
by CS(2-4df)), and degrees of freedom identified by ordinary leave-one-out
cross-validation in the training set (denoted by CS(cv)).

Nomothetic and idiographic prediction models of future mood
Wesplit the data for each individual into a training (70%of trajectory) and a
test set (remaining 30% of trajectory). To predict the future mood of each
individual in the test set from smartphone-based features in the test set, we
train an elastic net logistic or linear regressionmodel42 in the train set.We set
α, i.e., the mixing parameter between ridge regression and lasso, to 0.5 and
use 10-fold cross-validation to find the value for parameter λ, i.e., the
shrinkage parameter. For the idiographic models, we train separate elastic
net models for each individual while for the nomothetic and modified
nomotheticmodelswe train onemodel across all individuals. To account for
individual differences in the average CAT-DI severity scores in the training
set, the modified nomothetic model fits individual-specific intercepts by
including individual indicator variables in the regression model. This is
similar in nature to a random interceptmixedmodel where each individual
has their own intercept. Note that the test data are the same for all of these
models, i.e., the remaining 30% of each individual’s trajectories. Predictions
outside the CAT-DI severity range, i.e., [0,100], are set to NA and not
considered for model evaluation. We compute prediction accuracy metrics
by computing the Pearson’s product-moment correlation coefficient (R)
between observed and predicted depression scores in the test set across and
within individuals as well as the squared Pearson coefficient (R2). To assess
the significance of the prediction accuracy we use a one-sided paired test for
Pearson’s product-moment correlation coefficient, as implemented in the
cor.test function of the stats41 R package, and a likelihood ratio test for the
significance of R2. We use the Benjamini-Hochberg procedure43 to control
the false discovery rate across individuals at 5%.
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Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The datasets generated and analyzed during the current study are available
from the corresponding author upon reasonable request.

Code availability
The code that supports thefindings of this study is available online at https://
github.com/BrunildaBalliu/stand_mood_prediction.
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