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1  |  INTRODUC TION

Myeloproliferative neoplasms (MPN) are malignant haematological 
disorders that are caused by clonal proliferation of haematopoi-
etic stem cells (HSC) in the bone marrow. There are three classical, 
BCR-ABL-negative MPN: essential thrombocythemia (ET), polycy-
themia vera (PV) and primary myelofibrosis (PMF), which present 
with distinct clinical features. Whereas ET and PV are character-
ized by platelet and erythrocyte overproduction, respectively, PMF 
is marked by aberrant proliferation of cells of the megakaryocytic 
lineage and progressive bone marrow fibrosis.1 All three classical, 
BCR-ABL-negative MPN are initiated by acquired, somatic muta-
tions in HSC. In more than 90% of MPN patients, one of three driver 
mutations in JAK2, CALR or the thrombopoietin receptor MPL are 
present.2–8 Mutations in CALR are responsible for 20%–30% of MPN 
cases and, like the other driver mutations, lead to the constitutive 

activation of Janus kinase–signal transducer and activator of tran-
scription (JAK–STAT) signalling.9

2  |  PATHOGENIC MECHANISMS OF 
MUTANT C ALRETICULIN IN MPN

The majority of MPN driver mutations in CALR are caused by two 
mutations in exon 9 of the CALR gene, typically occurring in a het-
erozygous manner: (i) a 52 bp deletion (type I mutation), present in 
approximately 50% CALR-mutant patients, and (ii) a 5 bp insertion 
(type II mutation), present in approximately 30% CALR-mutant pa-
tients. The majority of the remaining CALR mutations are classified 
as type I-like or type II-like, with these categories defined on the 
basis of the deletion of stretches of negatively charged amino acids 
in the wild-type calreticulin C-terminus.5,6 All MPN-associated 
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Abstract
Mutations in calreticulin are one of the key disease-initiating mutations in myelo-
proliferative neoplasms (MPN). In MPN, mutant calreticulin translates with a novel 
C-terminus that leads to aberrant binding to the extracellular domain of the throm-
bopoietin receptor, MPL. This cell surface neoantigen has become an attractive 
target for immunological intervention. Here, we summarize recent advances in the 
development of mutant calreticulin targeting antibodies as a novel therapeutic ap-
proach in MPN.
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CALR mutations lead to a +1 bp frameshift that results in transla-
tion of an altered C-terminus of the calreticulin protein. The novel 
C-terminus is lacking the endoplasmic reticulum (ER) retention 
signal (KDEL domain) and primarily consists of positively charged 
amino acids. Since its discovery in 2013, the mechanisms by which 
mutant calreticulin causes MPN were elucidated by several groups. 
Mutant calreticulin forms homomultimers via its novel C-terminus 
and acquires a pathogenic binding interaction with MPL in the 
ER.10 Lacking the KDEL domain, the mutant calreticulin-MPL com-
plex is shuttled to the cell surface.11–13 Mutant calreticulin sta-
bilizes trans-membranous MPL, resulting in ligand-independent 
activation of MPL and downstream JAK–STAT signalling pathway 
activation.11,13–17 Consequently, MPL expression is required for cell 
transformation by mutant calreticulin.11,12,16 For MPL binding, mu-
tant calreticulin requires the positive electrostatic charge of the 
novel C-terminus, as well as the lectin-dependent function.11,13,14 
Recent work has provided detailed insights into the protein con-
formation of mutant calreticulin and the formation of a tetrameric 
mutant calreticulin-MPL complex, resulting in MPL dimerization 
and activation.18 Enhanced accessibility of the N-terminal N-glycan 
binding domain of mutant calreticulin facilitates binding to the 
extracellular domain of an immature, partially glycosylated MPL, 
while the mutant C-terminus of mutant calreticulin also interacts 
with MPL via acidic patches (e.g. TFED, PDQEE and WEEP) in the 
extracellular domain of MPL.18 Cell intrinsically, mutant calreticulin 
promotes megakaryocytic differentiation through MPL activation, 
which is consistent with the fact that CALR mutations engender 
MPN with a megakaryocytic lineage phenotype (i.e. ET and PMF).19 
Several groups have shown that wild-type as well as mutant cal-
reticulin are secreted, and become damage-associated molecular 
patterns exhibiting immunomodulatory functions.20,21 Whereas 
secretion of wild-type calreticulin is mainly considered to be a re-
action to ER stress,22 other studies indicate that in MPN, secre-
tion of mutant calreticulin is facilitated by the lack of the KDEL 
domain. Interestingly, the majority of soluble mutant calreticulin 
detectable in the plasma has been found to be secreted from non-
MPL-expressing cells in MPN.23 Circulating mutant calreticulin has 
been shown to have an immunosuppressive role, for example, by 
reducing phagocytosis mediated by CD11c+ bone marrow-derived 
dendritic cells.24

3  |  CURRENT TRE ATMENT OPTIONS FOR 
C ALR- MUTANT MPN

Treatment of MPN relies on cytoreductive agents, including hy-
droxyurea, pegylated interferons, as well as the JAK1/2 inhibitor, 
ruxolitinib. Cytoreductive therapy can reduce blood counts, throm-
botic risk, splenomegaly and improve symptoms.25,26 Despite these 
benefits, none of the current medical treatments for MPN eliminate 
the disease-initiating CALR-mutant HSC clone. Over time, patients 
develop resistance to JAK2 inhibition, further limiting the efficacy 
of ruxolitinib. To date, the only curative treatment for CALR-mutant 

MPN remains allogeneic stem cell transplantation, a procedure as-
sociated with substantial morbidity, in addition to a mortality risk. 
With the presentation of a neoantigen, the development of thera-
peutic antibodies targeting the novel cell surface mutant calreticulin 
C-terminus has become a strategy of great interest for the inhibition 
of pathogenic MPL activation.

4  |  TARGETED THER APY USING MUTANT 
C ALRETICULIN TARGETING MONOCLONAL 
ANTIBODIES

The development of therapeutic, monoclonal antibodies (mAbs) 
for cancer therapy has been successful, broadly speaking (e.g. 
targeting CD20 in non-Hodgkin lymphoma). The progress in un-
ravelling the structural properties and the mechanisms of the 
pathogenic interaction of mutant calreticulin with MPL provides 
the understanding needed to translate this knowledge into effica-
cious treatment. Recent research efforts have therefore centered 
on immunotherapeutic approaches with the goal of targeting the 
mutant calreticulin neoepitope while sparing normal haematopoie-
sis. In 2020, Kihara et al. reported (in abstract form) the genera-
tion of the mouse chimeric monoclonal antibody B3, specifically 
targeting mutant calreticulin.27 In a CALRdel52 ET mouse model, 
treatment with B3 reduced platelets in the peripheral blood and 
numbers of megakaryocytes in the bone marrow of the mice. Soon 
after, Achyutuni and colleagues generated a murine IgG2a raised 
against the human calreticulin neoantigen and treated homozy-
gous CALRdel52 transgenic mice.28 Although treatment with the 
antibody was only for 2.5 days (5 doses total), the platelet count 
rapidly dropped before rising again 24 h after completion of treat-
ment.28 In 2022, Mughal et al. generated and characterized eight 
peptide antibodies recognizing mutant calreticulin. This study pro-
vides important information on essential sites within mutant cal-
reticulin epitopes, however these antibodies have yet to be tested 
in pre-clinical models.29 In the same year, Tvorogov et al. reported 
the development of the monoclonal antibody 4D7, targeting mu-
tant calreticulin on the cell surface.30 4D7 was generated using a 
synthetic peptide corresponding to the novel C-terminus of mu-
tant calreticulin using a hybridoma approach. The antibody is di-
rected against the common C-terminus of both Type I and Type 
II CALR mutations, and it effectively blocked binding of mutant 
calreticulin to MPL, abrogating aberrant JAK–STAT activation. 
Tvorogov and colleagues also showed that 4D7 inhibited TPO-
independent megakaryocyte differentiation in patient-derived 
CALR-mutant CD34+ cells. Treatment with 4D7 did not show any 
inhibitory effect on in vitro haematopoiesis in non-mutated cells. 
The authors further showed that 4D7 has efficacy on ruxolitinib 
resistant cells in vitro, suggesting that treatment with 4D7 might 
be a promising therapeutic approach for patients with an acquired 
ruxolitinib resistance. 4D7 showed beneficial effects on survival 
in cell line xenograft models, both in calreticulin-mutant as well 
as ruxolitinib-resistant cells. The antibody has yet to be tested in 



    |  3 of 5KRAMER and MULLALLY

patient-derived xenograft models or in genetic MPN mouse mod-
els. Another milestone in the development of mutant calreticulin-
targeting antibodies was the generation of the human IgG1 mAb 
INCA033989, introduced by Reis et al. in a plenary abstract at the 
2022 American Society of Haematology (ASH) meeting.31 Based 
on the data presented in the abstract (currently unpublished), 
INCA033989 inhibited mutant calreticulin-induced MPL signal-
ling in murine Ba/F3 cells, but showed no effects on non-mutated 
cells. Reis et al. also reported enhanced efficacy of INCA033989-
ruxolitinib combination in mouse cells in vitro. In patient-derived 
CD34+ cells, treatment with INCA033989 inhibited JAK–STAT 
signalling and proliferation of progenitor cells, an effect not ob-
served in non-mutated or JAK2-mutant cells. In competitive trans-
plant calreticulin-mutant mouse models, 10 weeks of treatment 
with INCA033989 prevented thrombocytosis and significantly 
decreased the numbers of CALR-mutant stem and progenitor cells, 
as well as megakaryocytes in the bone marrow, without affecting 
cellularity of wild-type mice. Secondary transplantation did not 
result in development of MPN in mice, suggesting that treatment 
with INCA033989 successfully targeted the CALR-mutant MPN 
disease-propagating HSC. The expectation is that INCA033989 
will enter Phase 1 clinical trials in patients with CALR-mutant MPN 
in 2023 [verbal communication, Dr. Reis, ASH plenary presenta-
tion 2022].

5  |  FUTURE DIREC TIONS

Research in the last few years has shown immense progress in 
developing a specific, mutant calreticulin targeting treatment 
approach in MPN. Of note, other promising immunological ap-
proaches, such as mutant calreticulin peptide vaccination and T 
cell-directed targeting have been investigated and reviewed else-
where,32,33 and are therefore not the primary focus of this review. 
To date, peptide vaccination targeting the mutant calreticulin 
neoantigen is the immune therapy approach that has advanced 
the furthest clinically. One Phase 1 vaccine trial (NCT03566446), 
using a 36 amino acid peptide vaccine spanning the novel mutant 
calreticulin C terminus, has been completed and the vaccine was 
found to be safe and tolerable.34 While 8/10 patients with MPN 
who received the peptide vaccine showed evidence of T-cell re-
sponses, no patient demonstrated a clinical response.34 There 
are several potential reasons why a mutant calreticulin-directed 
peptide vaccine might not induce an immune response in patients, 
including (i) the patients who received the vaccine may not have 
expressed human leukocyte antigen (HLA) subtypes that present 
the mutant calreticulin neo-epitope with high affinity, (ii) defects 
in major histocompatibility complex (MHC)-mediated presentation 
of the mutant calreticulin neo-epitope, (iii) inadequate immune 
stimulation by the adjuvant and (iv) an immunosuppressive micro-
environment in the context of MPN-related chronic inflammation. 
Two other mutant calreticulin vaccine trials (NCT05444530 and 
NCT05025488) are currently open, with some differences in their 

approaches compared to the published trial and results from these 
ongoing studies are eagerly awaited.

Targeting mutant calreticulin with a cell-surface blocking mAb 
may circumvent some of the challenges of peptide vaccination. 
Recent advances in the development of mutant calreticulin tar-
geting mAb have taken advantage of the blocking properties of 
the antibody binding to the cell surface neoantigen, preventing 
MPL dimerization, activation and thus abrogating aberrant activa-
tion of JAK–STAT signalling. INCA033989, which has been tested 
in pre-clinical models by Reis et al., showed efficacy as an Fc-silent 
IgG1, and the abrogation of JAK–STAT signalling indicates suc-
cessful inhibition of MPL activation. Based on its mechanism of 
action, INCA033989 is expected to inhibit proliferation of CALR-
mutant cells, however it remains to be determined if treatment 
with INCA033989 will preferentially target the mutant CALR 
clone in patients to achieve molecular responses and/or remis-
sions. While the lack of the Fc domain reduces toxicity, it also 
precludes Fc-mediated cell death that could improve therapeutic 
potency of the antibody. Future efforts could therefore be aimed 
at optimizing treatment efficacy by Fc engineering to enable Fcγ 
receptor-mediated antibody-dependent cellular cytotoxicity or 
phagocytosis. Additional approaches to enhance the efficacy 
of the mutant calreticulin mAb may include the development of 
antibody-drug conjugates, and/or integrating the antibody into 
a chimeric antigen receptor (CAR)-T construct. CAR T therapy, a 
significant advance in oncology immunotherapy, has been suc-
cessfully used in ALL and lymphoma.35,36 A constraint of targeting 
mutant calreticulin using therapeutic antibodies could be circulat-
ing mutant calreticulin, potentially acting as decoy for antibody 
binding, thus reducing the availability of the mutant calreticulin 
mAb to bind on the cell surface. Even though it might be advan-
tageous to prevent secreted mutant calreticulin from (i) binding 
extracellularly to the mutant calreticulin-MPL complex on the cell 
surface and (ii) mediating its cell-extrinsic effects as an immuno-
suppressor, the potential therapeutic benefit of blocking secreted 
mutant calreticulin is currently unclear. Developing a bispecific an-
tibody, targeting both mutant calreticulin and MPL in the complex, 
could enhance specificity by selectively targeting the protein com-
plex, and preventing secreted mutant calreticulin from functioning 
as a decoy. A bispecific approach could also be applied to allow 
concomitant binding of mutant calreticulin expressing MPN cells 
and T cells. This approach has been successfully used to target 
CD19 in acute lymphoblastic leukaemia (ALL) through engaging 
CD3 on T-cells.37

6  |  CONCLUSION

MPN are a group of chronic blood cancers that have an unmet need 
for treatment options which eliminate the disease-propagating 
clone. Recent advances in identifying the mechanisms by which 
mutant calreticulin causes MPN paved the path for immunological 
targeting of CALR-mutant MPN cells, and specific mutant calreticulin 
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targeting mAbs have been developed and found to be efficacious 
in preclinical mouse models. The safety and efficacy of these novel 
antibodies have yet to be evaluated in MPN patients.
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