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1  |  INTRODUC TION: PPAR ISOFORMS IN 
HE ALTH AND DISE A SES

Peroxisome proliferator-activated receptors (PPARs) are transcrip-
tion factors that belong to the nuclear receptor family, they can 
be activated by endogenous unsaturated and saturated fatty acids 
or synthetic ligands.1–4 PPAR-α, the first isoform of PPAR, was 

successfully cloned from the mouse liver in 1990 and is a new nu-
clear receptor that plays a key role in triglyceride and cholesterol 
homeostasis.2,5 Two years later, all three PPAR isoforms, namely 
PPAR-α, PPAR-β/δ and PPAR-γ, were isolated from the ovary and 
liver of Xenopus laevis.5,6 Since then, 30 years of in-depth research 
on PPAR has gradually unveiled its mystery. The expression of each 
PPAR isoform was found to be tissue specific. PPAR-α is mainly 
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Abstract
Peroxisome proliferator-activated receptors (PPARs) are transcription factors be-
longing to the nuclear receptor family. There are three subtypes of PPARs, including 
PPAR-α, PPAR-β/δ and PPAR-γ. They are expressed in different tissues and act by 
regulating the expression of target genes in the form of binding to ligands. Various 
subtypes of PPAR have been shown to have significant roles in a wide range of bio-
logical processes including lipid metabolism, body energy homeostasis, cell prolifera-
tion and differentiation, bone formation, tissue repair and remodelling. Recent studies 
have found that PPARs are closely related to tumours. They are involved in cancer cell 
growth, angiogenesis and tumour immune response, and are essential components in 
tumour progression and metastasis. As such, they have become a target for cancer 
therapy research. In this review, we discussed the current state of knowledge on the 
involvement of PPARs in cancer, including their role in tumourigenesis, the impact 
of PPARs in tumour microenvironment and the potential of using PPARs combina-
tional therapy to treat cancer by targeting essential signal pathways, or as adjuvants 
to boost the effects of current chemo and immunotherapies. Our review highlights 
the complexity of PPARs in cancer and the need for a better understanding of the 
mechanism in order to design effective cancer therapies.
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expressed in liver, kidney and tissues involved in lipid oxidation. 
PPAR-γ are found in macrophages, adipose tissue, vascular smooth 
muscle and tumours of various organ origins. Different from PPAR-α 
and PPAR-γ, the expression of PPAR-β/δ has been reported in skele-
tal muscle, adipose tissue, heart, etc.4,7 After ligand binding, PPARs 
form a heterodimer with nuclear receptor and regulate target gene 
expression by binding to specific consensus DNA sequences in 
the promoter, namely peroxisome proliferator response elements 
(PPREs) (Figure  1).4,8 The function of PPARs is primarily accom-
plished through ligand binding. In the repressed state, the heterodi-
mer binds to corepressor proteins, forming multi-protein complexes 
containing histone deacetylase activity, which ultimately represses 
target gene transcription. Upon ligand binding, the heterodimer 
undergoes a conformational change, releasing the corepressor 
and enhancing the coactivator binding.9 Additionally, various post-
translational modifications (PTMs) also regulate the functions of 
PPARs. These modifications include phosphorylation, SUMOylation, 
ubiquitination, acetylation and O-GlcNAcylation, which are found at 
multiple modification sites. The addition of these PTMs can have a 
wide spectrum of consequences on protein stability, transactivation 
function and co-factor interaction. Furthermore, specific PTMs in 

PPAR proteins have complex roles in cancer and metabolism, as de-
scribed in detail in this review.10

Currently, it has been established that PPAR isoforms are import-
ant in metabolism and body energy homeostasis.11 PPAR-α regulates 
genes involved in fatty acid uptake, β-oxidation and ω-oxidation. It 
not only downregulates apolipoprotein C-III, which regulates lipo-
protein lipase hydrolysis, but also regulates genes involved in reverse 
cholesterol transport, such as apolipoprotein A-I and apolipoprotein 
A-II.12 PPAR-δ activation can regulate HDL cholesterol levels and af-
fect glycaemic control.13 Activation of PPAR-δ significantly improves 
glucose tolerance and insulin resistance.14 PPAR-γ is a major regula-
tor of adipocyte differentiation, but recent studies have shown that 
its activation is also associated with the expression of many import-
ant genes that affect energy metabolism, including TNF-α, leptin and 
adiponectin.15 PPAR-γ can also induce cell cycle arrest by inhibiting 
cyclin-dependent kinase activity in several tumour cell lines.16

PPAR agonists have been used in clinical practice for various 
purposes. For example, PPAR-α agonists, such as fibrates, are used 
clinically to lower lipids and prevent atherosclerosis and cardio-
vascular disease,11,17 whereas PPAR-γ agonists, such as thiazoli-
dinediones, reduce blood glucose levels mainly in skeletal muscle 

F I G U R E  1 Activation of peroxisome proliferator-activated receptors (PPARs). Upon activation, PPARs form heterodimers with nuclear 
receptors by binding to their ligands. The heterodimers then bind to peroxisome proliferator response elements (PPREs) in the promoter 
region, which regulates the expression of downstream target genes. These genes play crucial roles in various biological processes, such as 
lipid metabolism, body energy homeostasis and tumourigenesis. Figure was generated with BioRender.
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and adipose tissue by increasing insulin sensitivity.18 In addition, 
recent studies have found that PPAR isoforms are also crucial in 
a broad spectrum of biological processes, including cell prolif-
eration and differentiation, signalling pathways involving fatty 
acid and eicosanoid, bone formation, tissue repair and remod-
elling.19 Therefore, the PPAR agonists have gained considerable 
interest as potential therapeutic candidates for neurodegenera-
tive diseases,20 psychiatric disorders such as addiction and de-
pression,21–23 liver24,25 and kidney diseases26,27 and autoimmune 
and inflammatory diseases.28–30 Furthermore, PPARs are closely 
related to cancer. Increasing evidence indicates that PPARs are 
involved in cancer cell growth, angiogenesis and tumour immune 
response and are essential in tumour progression and metastasis. 
In the scope of this review, we explored the effects and possible 
mechanisms of PPAR agonists in tumourigenesis and the tumour 
microenvironment (TME), we also analysed the latest evidence on 
the co-administration of PPAR agonists with chemo, immune or 
other therapies and conducted a critical assessment of the exist-
ing knowledge gaps and progress in this area.

2  |  ROLES OF PPARs IN TUMOURIGENESIS

Tumourigenesis is the process by which normal cells undergo a 
transformation and gain the malignant properties of proliferation, 
differentiation and metastasis.31 PPARs have been recognized as 
potential cancer therapies due to their key roles in metabolism and 
proliferation. Notably, different isoforms of PPARs play distinct roles 
in tumour progression across various cancer types. For example, 
the role of PPAR-β/δ is controversial in multiple studies under dif-
ferent condition-based disease types and research models. PPARs 
are widely involved in abnormal metabolism progress and could 
potentially act as a therapy option in various cancer types through 
versatile strategies. Here, we mainly focus on the roles of PPARs in 
cancer, specifically on cancer proliferation, metabolism and metas-
tasis (Figure 2).

2.1  |  PPARs involve tumourigenesis through 
metabolism reprogramming

The dysregulated metabolism has been recognized as the hallmark 
of cancer32 and it has been shown that the fatty acid biosynthetic 
pathway is involved in an early stage of tumour progression.33 As 
nuclear receptors, PPARs involve in metabolic progress, which 
regulate the energy level and cell fate. Based on the different iso-
form and cancer type, PPARs exert a dual function in tumour pro-
gression, and the function of PPARs are determined by the various 
cancer types and research models. For example, a study using the 
orthograft prostate cancer model demonstrated that PPAR-γ acti-
vation could stimulate the AKT-PGC1 axis, resulting in increased 
ATP levels and enhanced mitochondrial biogenesis activities. The 
elevated ATP levels create an energetically favourable environment 

for tumour growth and metastasis.34 Moreover, in combination 
therapy, the co-administration of PPAR-α and PPAR-γ agonists 
was found to inhibit activator protein-1 (AP-1), leading to reduced 
expression of cyclooxygenase-2 (COX-2) and vascular endothelial 
growth factor (VEGF). This combination of agonists was shown 
to reduce angiogenesis and induce apoptosis in a mouse model of 
OVCAR-3 ovarian tumours. The activation of PPAR-α and PPAR-γ 
could also suppress the progression of solid ovarian tumour.35 In 
addition, PARA-γ could support the cancer growth through the 
metabolism reprogramming of cancer-associated fibroblasts (CAFs) 
and adipocytes.5

PPARs regulate multiple metabolic pathways which may further 
impact the cellular proliferation and promote metastasis in cancer 
progress. For example, activated PPAR-α is deeply involved in the 
regulation of lipid metabolism in many healthy organs.36 Under the 
context of cancer, PPAR-α regulates proliferation and cell cycles 
of tumour cells through inhibition of the prostaglandin biosynthe-
sis and arachidonic acid metabolic pathway-related enzyme COX-2 
and 5-lipoxygenase (5-LO).37 Similarly, in non-small cell lung cancer, 
the activation of PPARα ligand reduced the production of proangio-
genic epoxyeicosatrienoic acids (EET) and increased the hydroxyl 
11-hydroxyeicosatetraenoic acids (11-HETE) through Cyp2c44-
EETs system, thus inhibiting tumour progression and metastasis 
(Figure 2A).38 More details on how PPARs involve tumourigenesis 
on these two aspects are as below.

2.2  |  Effects of PPARs in tumourigenesis involve 
tumour cell proliferation and survival

The abnormal proliferation is another hallmark of cancer. Cellular 
proliferation is a fundamental function of cells, enabling them to 
perform essential roles and support organ survival.39 During tu-
mourigenesis, normal cells acquire malignant properties, including 
fast proliferation.40 PPARs, as transcription factors, play a role in cell 
proliferation and the dysregulation of apoptosis, consequently lead-
ing to tumourigenesis41; however, the isoform of PPARs contribute 
to tumour progression in different aspects.

PPAR-α has been reported as a tumour promoter for the regu-
lation of proliferation and cell death through lipid metabolic mod-
ulation in a breast cancer cell.42 Papi et al. reported the activation 
of PPAR-α promoted multi-signalling pathways, including nuclear 
receptor κB (NF-κB)/interleukin-6 (IL-6) axis, and resulted in clonal 
expansion of breast cancer mammospheres.43 The dual role of 
PPAR-γ in tumour survival is more complex than PPAR-α. The anti-
proliferative and pro-apoptotic properties of PPAR- γ have been 
widely reported in colon, oesophageal, breast, lung and prostate 
cancer.44–46 As a differentiation-promoting factor, PPAR-γ has been 
found as an antitumour target in breast cancer, although it is also 
associated with poor prognosis patients with Cox-1 negative primary 
breast cancers.47,48 Many studies have shown that the existing an-
tidiabetic drug thiazolidinediones (TZDs), also a synthetic agonists 
of PPAR-γ, exert a beneficial effect on breast cancer treatment in 
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both a pre-clinical mouse models and clinical trials.49 For instance, 
Khandekar et al. found PPAR-γ ligands can induce cell death through 
accumulated DNA damage, which sensitize cancer cells to cytotoxic 
chemotherapy.50 However, in a Phase II clinical trial involving thy-
roid cancer, rosiglitazone, another member of the TZD family, did 
not show any relationship with the expression of PPAR-γ.51 Simi-
larly, PPAR-γ play a dual role in prostate cancer and it may relate 
with complex factors including the research models and different 
stage of cancer progression. For example, PPAR-γ was considered 
as a tumour suppressor due to its ability52 to inhibit tumour cell pro-
liferation. However, it has been shown that a high level of PPAR-γ 
expression is associated with late-staged or high-graded prostate 
cancer, suggesting its role in promoting prostate cancer.53 Further-
more, PPAR-γ antagonists have also shown the anticancer effects in 
various epithelial cancer. The selective PPAR-γ antagonists, T007, 
has been demonstrated the anticancer effect in breast cell lines MD-
231 and MCF-7. It has also been shown that T007 is involved the 
apoptotic pathways in hepatocellular carcinoma cells in a certain 
concentration.54

3  |  PPARs INVOLVE TUMOUR 
DE VELOPMENT THROUGH META STA SIS

Metastasis is the process that cancer cells move from the primary 
site to form a new tumour in other parts of the body, which is usu-
ally associated with late-stage cancer.55 In colon cancer, PPAR-α 
promoted metastasis by inhibiting the expression of Cox-2 and 
VEGF and TGF-induced matrix metalloproteinase (MMP)-9, both 
factors are highly implicated in metastasis promotion.56,57 A study 
in melanoma revealed that the activation of PPAR-γ is involved 
in the melanoma cell invasiveness through regulating thioredoxin-
interacting protein (TXNIP), integrin alpha-v/beta-3 and the tissue 
inhibitors of metalloproteinases (TIMP)-2, all of which promoted 
the progression of metastasis in melanoma cancer (Figure 2B).58 
It has been shown that both PPAR-α and PPAR-γ are widely in-
volved in the late-stage of cancer and promote metastasis. Es-
pecially, PPAR-γ has been recognized as a therapeutic target for 
tumour angiogenesis and metastasis in multiple steps. For exam-
ple, PPAR-γ agonists could inhibit angiogenetic factors including 

F I G U R E  2 Roles of peroxisome proliferator-activated receptors (PPARs) in tumourigenesis. Act as nuclear receptor, PPARs regulate 
lipid metabolism and are involved in tumour progression. (A) The isoform PPAR-α regulates nuclear receptor NF-κB and COX-2-related 
metabolism progression. PPAR-α mainly plays an antitumour role during tumour progression. (B) The isoform PPAR-γ increases ATP level 
through AKT involved signalling and reduces the expression of COX-2/vascular endothelial growth factor (VEGF) by inhibiting AP-1. 
PPAR-γ mainly acts as a tumour promoter during tumour progression. (C) The isoform PPAR-β/δ affects AKT mediated signalling and plays 
controversial roles in tumourigenesis. Figure was generated with BioRender.



    |  5 of 17WANG et al.

FGF2 and VEGF, thus inducing endothelial cell apoptosis in several 
cancer cell lines.52

Many studies have shown that PPAR-β/δ is associated with the 
progression of tumour metastasis across different cancer types. The 
activation of PPAR-β/δ receptor has been widely shown to have a 
pro-tumourigenic role in colon cancer progression, especially the 
APC mutation-driven colorectal cancer progression59 (Figure 2C). A 
study showed that overexpression of PPAR-β/δ is associated with 
poor prognosis colorectal cancer with potent of distant liver me-
tastases.60 One possible explanation is that the PPAR-β/δ receptor 
may be involved in cell proliferation. For example, the knock down 
of PPAR-β/δ promotes the growth of colon cancer by reducing the 
differentiation and accelerating the proliferation in cell lines and xe-
nograft mouse model.61,62 Besides that, overexpression of PPAR-β/δ 
can also increase migration and metastasis in breast cancer through 
elevated expression of antioxidant proteins and AKT-mediated sig-
nalling, which are involved in the survival of breast cancer cells.63 
In addition, PPAR-β/δ receptor can stimulate the activation of β-
catenin and enhance invasiveness through PDGFR β, AKT1, EIF4G1 
and CDK1 pathways.64,65 Another explanation could be that the ac-
tivation of PPAR-β/δ receptor involves in the proinflammatory mod-
ulating and proangiogenic molecules across different cancer types.59

4  |  THE ROLE OF PPARs TME

The TME comprises nonmalignant cells including fibroblasts, en-
dothelial cells, immune cells, as well as the acellular components 
like extracellular matrix, secreted chemokines, cytokines and cell 
metabolites. Over the past decades, the role of TME in tumour pro-
gression and the therapeutic resistance have become evident. In-
creasing appreciation gradually raised in the regulations of PPARs in 
TME cells which directly and indirectly exerted certain impacts on 
cancer progression.

4.1  |  PPARs in cancer stromal microenvironment

Under the paracrine influences of cancer cells, stromal cells such 
as CAFs and tumour-associated endothelial cells can become the 
nutrients donor of tumour cells, providing fuels such as glutamine, 
L-lactate, fatty acids and ketone bodies. PPARs govern many pro-
cesses involved in the metabolic remodelling of stromal cells and 
further influent tumour cells.

4.1.1  |  Fibroblast

As energy regulators, PPARs interact closely with metabolic regu-
lator elements to reprogram the cell metabolism, and cell fate of fi-
broblasts. The PPARs-regulated metabolic reprogramming in CAFs 
is correlated to tumour initiation, proliferation and progression 
through the epithelial–mesenchymal communication (Figure 4A). 

Clinically, the expression of PPAR-γ is significantly upregulated in 
CAFs of cutaneous skin squamous cell carcinoma and colon adeno-
carcinoma.66 Avena et al. reported the overexpression of PPAR-γ 
reprogrammed CAFs to the autophagic and glycolytic metabo-
lism, which accelerates tumour growth in breast cancer xenograft 
mouse model when co-implanted with transgenic PPAR-γ-high fi-
broblasts.67 PPAR-β/δ in CAFs controls the redox homeostasis and 
affects tumourigenesis through stromal-epithelial crosstalk. In 
skin tumour mouse model, Tan et al. showed, PPARβ/δ-knockout 
fibroblasts remarkably increased the H2O2 production in the ad-
jacent epidermis, subsequently triggering an RAF/MEK-mediated 
NRF2 activation that elicits a strong antioxidant and cytoprotec-
tive response, which resulted in fewer and smaller skin tumours 
when comparing to wild-type mice exposed to topical carcino-
gens.68 The expression of LRG1was upregulated by PPAR-β/δ in 
fibroblasts. LRG1 interferes with TGF-β1-dependent redox home-
ostasis, resulting in oncogenic transformation in the surrounding 
epithelium.69–71

4.1.2  |  Endothelium

Rapid tumour growth often induces hypoxic regions with poor 
oxygen perfusion and insufficient nutrients from the existing vas-
culature. This can be mitigated by secreted pro-angiogenic factors 
which is promoted by PPAR-β/δ, but inhibited PPAR-α (Figure 4B). 
The pro-angiogenic effects of PPAR-β/δ activation have been re-
vealed in previous studies. In PPAR-β/δ knockout mouse model, 
the endothelial cells formed the immature microvessels in the tu-
mours, leading to abnormal microvasculature and restricted blood 
flow into the tumours.72 The activation of PPAR-β/δ in endothe-
lial resulted in upregulated biosynthesis of VEGF, PDGFR and c-
KI, which accelerated endothelial cell proliferation and vascular 
formation.73 Beside conventional growth factors, other potential 
PPAR-β/δ-dependent angiogenic mediators include CDKN1C,73 
IL-8,74 CLIC4 and CRBP1.75 In contrast to PPAR-β/δ, PPAR-α is 
an anti-angiogenic nuclear receptor. Activated PPAR-α in stro-
mal cells attenuated tumour angiogenesis and tumour xenograft 
growth by upregulating the expression of anti-angiogenic factors, 
including thrombospondin-1 and endostatin, which suppress en-
dothelial cell proliferation and neovascularisation.76–78 PPAR-γ 
was reported to maintain endothelium homeostasis through the 
interaction with key regulators of DNA repair signalling. Activated 
PPAR-γ binds to DNA damage sensor MRE11-RAD50-NBS1 (MRN) 
and the E3 ubiquitin ligase UBR5, which promote ATM activation 
and DNA repair.79

4.2  |  PPARs in inflammation and cancer immune 
microenvironment

PPARs and their endogenous ligand lipids are closely related 
to the anti-inflammation and immuno-suppressive phenotype 
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transformation of tumour-infiltrated immune cells, which can be 
modulated either directly through regulating immunomodulatory 
gene expression or indirectly by altering lipid metabolism.

4.2.1  |  Inflammation

As transcription factors, activated PPARs bind to their recognition 
sequences and regulate the expression of genes involved in inflam-
mation (Figure 3A). PPAR-γ could stimulate the trans-repression on 
proinflammatory genes like NF-κB through a type of PTM called 
SUMOylation or through the conjugation with small ubiquitin-like 
modifier (SUMO).80 Similarly, PPAR-α could also downregulate in-
flammation by gene transrepression. It was found that PPARα di-
rectly bound key transcription factors of IL-6, the NF-κB subunit 
p65, c-Jun and c-AMP response element-binding protein-binding 
protein (CBP).81 To note, unlike the other two subtypes, PPAR-β/δ li-
gand repress the inflammatory genes indirectly. Bartish et al showed 
activation of PPAR-β/δ released BCL-6 and trans-repress the expres-
sion of inflammatory genes like CCL12, IL-1β, TNFα, IL-6.82

As receptors of fatty acid-derived signals, PPARs are capable 
of transducing lipid-mediated inflammatory signalling events83,84 
(Figure 3B). PPARs can directly modify the intracellular and extracel-
lular lipid pool and alter the lipid microenvironment to initiate further 
inflammatory regulatory processes. It is noted that three subtypes of 
PPARs regulate lipid homeostasis in different ways. PPAR-α provides 
energy from lipid catabolism during starvation, PPAR-γ is activated 
in well-fed state and initiate the synthesis of fatty acids, while PPAR--
β/δ regulates fatty acids level to ensure enough energy for muscles.85 
Therefore, their regulations on inflammation are distinct. Many stud-
ies reported that activation of PPAR-α and PPAR-β/δ regulated the in-
flammatory process.86 For instance, low-density lipoprotein (LDL) can 
release hydroxyoctadecadienoic acids (HODEs), known as PPAR-α ag-
onists, further reversing the proinflammatory responses of LDL.87 The 
proinflammation role of PPAR-δ in tumours has been studied by vari-
ous groups, especially in relation to lipid signalling like prostaglandin E2 
(PGE2) induced inflammation process.88 Activation of PPAR-δ in colon 
cancer cell lines upregulated COX-2 expression and PGE2 production, 
subsequently increasing macrophage production of proinflammatory 
cytokines including CXCL1, CXCL2, CXCL4 and IL-1β.89

F I G U R E  3 Role of peroxisome proliferator-activated receptors (PPARs) in tumour inflammation. (A) PPARs serve as transcriptional 
regulators directly or indirectly repressing the expression of proinflammatory genes. Top, PPAR-γ binds NF-κB thus affect the transcription 
of the genes regulated by NF-κB; middle, PPAR-α binds transcription factors thus interfere the expression of IL-6, the NF-κB subunit 
p65, c-Jun and c-AMP response element-binding protein-binding protein (CBP); bottom, ligands activated PPAR-β/δ releases BCL-6 
thus transrepress the expression of inflammatory genes. (B) PPARs are activated by lipid ligands further regulating the production of 
inflammatory factors. PPAR-α is activated by FAs then translocate to nuclear repress the transcription of proinflammatory genes. In contrast, 
FAs activated PPAR-δ induced the production of COX2 and PEG2 thus promoted the inflammation. Figure was generated with BioRender.
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4.2.2  |  Cancer immune microenvironment

Myeloid
Activation of PPARs in macrophages favours an anti-inflammatory 
tumour-associated macrophage (TAM) phenotype (Figure  4C).90 
PPARs regulated the phenotypic changes of TAMs by gene transcrip-
tomic modulation and enhanced fatty acid oxidation. In macrophages, 
PPAR-α agonist and PPAR-γ agonist-induced M2 macrophage trans-
formation by enhancing the expression of ARG1, Ym1 mannose re-
ceptor, TGF-β and increasing phagocytic capacity.91 In primary human 
monocyte-derived macrophages, PPAR-δ ligands were reported to 

repress inflammation-associated NF-κB and signal transducer and ac-
tivator of transcription 1 (STAT1)-targeted genes, including CXCL8 and 
CXCL1, yielding the M2-like macrophage phenotype.92 Recent stud-
ies have shown PPAR-γ and PPAR-δ primes M2 macrophage transfor-
mation by improving FAs metabolism and insulin sensitivity.93,94 High 
concentrations of linoleic acid, arachidonic acid and lipid droplets in 
the TME can activate PPAR-δ and polarize the pro-tumoural TAMs in 
breast cancer and ovarian cancer.95,96 Tumour-infiltrating DCs (TIDCs) 
are critical in orchestrating antitumour immunity. DCs are more prone 
to adapt OXPHOS and FAO regulated by PPARs. Abnormal lipid ac-
cumulation is one of the emerging features of immune dysfunction of 

F I G U R E  4 Role of peroxisome proliferator-activated receptors (PPARs) in tumour microenvironment. (A) PPARs reprogram the 
metabolism of fibroblasts. overexpression of PPAR-γ reprogrammed cancer-associated fibroblasts to the autophagic and glycolytic 
metabolism, which accelerates tumour growth. PPAR-β/δ activate LRG1 which interferes with TGF-β1-dependent redox homeostasis, 
resulting in oncogenic transformation in the surrounding epithelium. (B) In the endothelial cells, PPAR-α exhibits an anti-angiogenic effect 
by promoting anti-angiogensis genes and inhibiting pro-angiogenesis factors, while PPAR-β/δ is more pro-angiogenic, promoting endothelial 
proliferation and vascular maturation. (C) PPARs prime anti-inflammatory M2-like macrophage polarisation which causes anti-inflammatory 
response; PPARs regulate DCs lipid metabolism, resulting in immune dysfunction. (D) PPARs involve in activation, differentiation, metabolic 
reprogramming of T cell and B cell. Figure was generated with BioRender.
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TIDCs. Yin et al. report that multitypes of tumour cells can activate 
PPAR-α in TIDCs by secreting FA-containing exosomes, resulting in 
lipid accumulation and FAO metabolic shift in TIDCs, ultimately lead-
ing to DC immune dysfunction.97

T and B lymphocyte
PPARs have been shown to regulate the activation, proliferation and 
differentiations in T cell and B cell.98 Unlike the dominant expression 
of PPAR-γ in myeloids, PPARα is mainly found to express in T and B 
lymphocytes. It was reported that ligand activation of lymphocyte 
PPAR-α antagonized NF-κB and cytokine production then inhibited T-
cell activation.99 In addition, Wang et al. revealed that CD36–PPAR-β 
signal orchestrates metabolic adaptation to lactate utilisation, which 
sustains survival and functional fitness of intra-tumoural Treg cells, 
promoting survival of intra-tumoural.100 Furthermore, activation of 
PPAR-α and PPAR-γ induced CD4+CD25− T  cells differentiated to 
functional Tregs by TGF-β.101 PPARα signalling was reported to pre-
serve cytotoxic function of tumour infiltrating CD8+ T cells through 
FAs catabolism under hypoglycaemic and hypoxic TME.102 Compared 
to T cells, the role of PPARs in B cells is not well explored. PPAR-γ 
activation enhanced B-cell proliferation and significantly stimulated 
plasma cell differentiation as well as Ab production.103 In contrast, 
Wejksza et al. reported that in breast cancer, PPAR-α could be acti-
vated by tumour lipid metabolites, inducing immunosuppressive reg-
ulatory B cells and finally leading to distant metastasis (Figure 4D).104

5  |  PPARs COMBINATIONAL THER APY TO 
TRE AT C ANCER

Despite the promising preclinical evidence, over the decade, monother-
apy of PPARs agonists has not yielded exciting results for the treatment 
of advanced cancer, as many clinical trials showed mixed results. For ex-
ample, troglitazone monotherapy showed little to no improvement on 
metastatic colon cancer and breast cancer,105,106 and rosiglitazone had 
no or minimum effects on clinical Phase II studies for prostate107 and 
thyroid cancers.108 However, the use of PPAR agonists in combination 
with chemotherapy or other compounds has shown more promise. In 
this paper, we reviewed the potential of PPAR agonists to target signal-
ling pathways and receptors for the treatment of cancer (Figure 5), as 
well as their potential for use in combination with immunotherapy and 
other cancer treatments to improve therapeutic efficacy. We also dis-
cussed how PPAR modulator could be combined with immunotherapy 
and other cancer treatments to boost the therapeutic efficacy (Table 1).

5.1  |  PPARs combinational therapy with targeted 
cancer essential signal pathways

5.1.1  |  PI3K/AKT/mTOR pathway

The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target 
of rapamycin (mTOR) signalling pathway is essential in regulating 

cell proliferation, growth, metabolism, motility and cell size.139 The 
phosphatase and tensin homologue (PTEN) promoter is a natural in-
hibitor of PI3K/AKT pathway, and studies have shown that targeting 
PPARs can induce tumour regression by inducing PTEN expression. 
Two putative PPAR binding sites have been identified within PTEN 
promotor, suggesting that PPAR agonists may be able to modulate 
the PI3K/AKT/mTOR pathway and potentially have antitumour ef-
fects.140 A recent study suggests that Balaglitazone, a PPAR-γ ago-
nist, can reverse P-glycoprotein-mediated multidrug resistance by 
upregulating PTEN in a in leukaemia cell.109 The use of celecoxib, a 
COX-2 inhibitor, has been shown to upregulate PTEN gene by acti-
vation of PPAR-γ, leading to the inhibition of AKT and disruption of 
hepatocellular carcinoma expansion.110 Similarly, in a mouse model 
of breast cancer, the combination of celecoxib and the PPAR-γ 
agonist N-(9-fluorenyl-methyloxycarbonyl)-l-leucine (F-L-Leu) sig-
nificantly delayed the tumour progression.112 Some clinical trials 
have been conducted to test the efficacy of PPAR-γ as an adjuvant 
agent in treating patients with refractory or advanced cancer. For 
instance, a combinational of trofosfamide, rofecoxib (a COX-2 inhibi-
tor) and pioglitazone was found to have exerted encouraging results 
in patients with chemo-refractory melanoma, soft tissue sarcoma, 
as well as advanced vascular malignancies, leading to stabilisation 
and remission.114,115 Besides inducing PTEN expression, pioglitazone 
also intensified the tumour-killing effect of arsenic trioxide (ATO) in 
leukaemia via the suppression of PI3K/AKT pathway,113 and mTOR 
inhibitor rapamycin has been shown to enhance the effects of rosigl-
itazone in inhibiting non-small cell lung carcinoma (NSCLC) cell pro-
liferation in vivo.111

In addition to PPAR-γ, activation of PPAR-α by its agonist clo-
fibrate has also been shown to downregulate the inflammatory 
activity of COX-2 and 5-LO, and inhibits cell cycle-related kinases 
and breast cancer cell survival.37 Another study in ovarian cancer 
showed that the combination of clofibric acid and pioglitazone sig-
nificantly decreased the expression of COX-2 and VEGF, leading 
to reduced tumour angiogenesis, tumour growth and induction of 
apoptosis through the inhibition of AP-1.35

5.1.2  |  STAT5

STAT5 proteins are recognized as major drivers in the develop-
ment and/or maintenance of chronic myeloid leukaemia (CML).116 
The development of tyrosine kinase inhibitors such as imatinib 
mesylate has revolutionized the treatment of CML; however, some 
patients do not respond well to this treatment due to high levels 
of STAT5 expression. Activation of PPAR-γ by glitazones can re-
sensitize imatinib-resistant CML to treatment by downregulating 
STAT5 expression and its downstream targets HIF2a and CITED2, 
two key guardians involved with quiescence and stemness of 
CML leukaemia stem cells. In a small trial, when pioglitazone was 
given temporarily to CML patients in chronic residual disease de-
spite continuous treatment with imatinib, all of them achieved 
sustained complete molecular response even after withdrawal 
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of the drug.117–119 The initial clinical Phase 1/2 trial investigating 
the combination of pioglitazone and imatinib in the treatment of 
CML patients was proven to be feasible and safe, although the 
efficacy of this therapy is being evaluated120 (Clinicaltrials.gov: 
NCT02852486).

5.1.3  |  Retinoid X receptor/retinoic acid receptor

Many studies have shown that combination therapy using reti-
noid X receptor (RXR) agonist and PPAR-γ agonist holds promise 

as novel therapy against cancers. In a study on colon cancer cell 
lines, the RXR agonist rexinoid 6-OH-11-O-hydroxyphenantrene 
(IIF) potentiated the antitumoural properties of PPAR-γ agonist 
ciglitazone and pioglitazone in inhibiting cell growth and inducing 
apoptosis.121 The combination of IIF and pioglitazone also mark-
edly reduced proliferation and induced apoptosis in three glioma 
cell lines, and reduced tumour volume and proliferation in a mu-
rine glioma in vivo model.122 PPAR-γ ligation alone and in combi-
nation with either RXR agonist like LG100268 or a retinoic acid 
receptor agonist like all-trans-retinoic acid, has been shown to 
inhibit growth and enhance differentiating in myeloid cells (U937 

F I G U R E  5 Schematic overview of the interaction of peroxisome proliferator-activated receptor (PPAR) agonists with key signalling 
pathways. PPAR-γ agonist enhance the expression of PTEN, which subsequently inhibits PI3K/AKT/mTORC1 pathway, resulting reduced 
tumour expansion and progression. Additionally, PPAR-γ agonist can also downregulate the expression of STAT5 expression and its 
downstream targets, HIF2a and CITED2, promoting tumour quiescence. When combined with RXR agonist, PPAR-γ agonist can potentiate 
their effects, leading to decreased cell proliferation and increased apoptosis by regulating the transcriptional activity of genes controlling 
these processes. On the other hand, PPAR-α agonist, contribute to anticancer activity by elevating reactive oxygen species levels and 
inhibiting IGF-I receptor signalling, thereby hindering tumour growth. Figure was generated with BioRender.
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TA B L E  1 Summary of peroxisome proliferator-activated receptors (PPAR) combinational therapies.

Pathway Subtypes PPARs agonists Combination Cancer cells/function Citation

PI3K/AKT/mTOR 
pathway

PPAR-α Clofibrate Breast cancer cell [37]

Clofibric acid Pioglitazone Ovarian cancer [35]

PPAR-γ Balaglitazone Celecoxib Hepatocellular carcinoma expansion [109,110]

Rosiglitazone mTOR inhibitor rapamycin Non-small cell lung carcinoma cell [111]

N-(9-fluorenyl-
methyloxycarbonyl)-l-
leucine (F-L-Leu)

Celecoxib N1-S1 cells, breast cancer, Huh7 cells [110,112]

Pioglitazone Arsenic trioxide Leukaemia [113]

Pioglitazone Trofosfamide, rofecoxib (a 
COX-2 inhibitor)

Chemo-refractory melanoma, soft 
tissue sarcoma, advanced vascular 
malignancies

[114,115]

STAT5 PPAR-γ Glitazones Imatinib mesylate Chronic myeloid Leukaemia [116–120]

Retinoid X 
receptor/
retinoic acid 
receptor

PPAR-γ Ciglitazone, pioglitazone Rexinoid 6-OH-11-O-
hydroxyphenantrene (IIF)

Colon cancer cell lines [121]

Pioglitazone IIF Glioma cell lines, a murine glioma in 
vivo model

[122]

Rosiglitazone, 
15-deoxy-Delta 
12,14-prostaglandin J, 
triterpenoid 2-cyano-
3,12-dioxooleana-1,9-
dien-28-oic acid

RXR agonist: LG100268 U937 and HL-60; and lymphoid cells, 
including Su-DHL, Sup-M2, Ramos, 
Raji, Hodgkin's cell lines

[123]

2-cyano-3,12-dioxooleana-
1,9-dien-28-oic acid

Bcl-2 inhibitor HA14-1 Bcl-2-overexpressing chronic 
lymphocytic leukaemia cells

[123]

Insulin-like growth 
factor

PPAR-α Fenofibrate Medulloblastoma cell line [124]

Fenofibrate Glioma cells [125]

Immunotherapy PPAR-α Fenofibrate PD-1 blocker Reprogramming the metabolism of 
effector T cells

[102]

PPAR-γ Bezafibrate Increase fatty acid oxidation and 
mitochondrial respiratory capacity 
in CD8+ T lymphocytes

[126]

Ciglitazone Lovastatin, phenylbutyrate Trigger TNF-α-related apoptosis [127]

Chemotherapy PPAR-γ Pioglitazone Cisplatinum Orthotopic xenograft (PDOX) models 
of osteosarcoma

[128]

Efatutazone Paclitaxel Advanced anaplastic thyroid carcinoma [100,129]

Troglitazone Tamoxifen MCF-7 cells [130]

Troglitazone Lovastatin DBTRG 05 MG (glioblastoma) and 
CL1-0 (lung)

[131]

Troglitazone Aspirin Lung cancer CL1-0 and A549 cells [132]

Troglitazone Radiation Cervix cancer cells [133]

Troglitazone Lovastatin Human anaplastic thyroid cancer cell 
Line. Mouse xenograft model

[134]

Troglitazone TNF-related apoptosis inducing 
ligand (TRAIL)

Breast cancer cell [135]

Troglitazone Heregulin Breast cancer cell [136]

Ciglitazone TRAIL Ca Ski cells containing HPV type 16 [137]

Pioglitazone Prevent radiation-induced cognitive 
decline (RICD)

[138]
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and HL-60) lymphoid cells (Su-DHL, Sup-M2, Ramos, Raji, Hodg-
kin's cell lines) and primary chronic lymphocytic leukaemia cells, 
by activating the transcriptional activity of target genes control-
ling apoptosis and differentiation in leukaemias.123

5.1.4  |  Insulin-like growth factor

It is now widely accepted that dysregulation of insulin-like growth 
factor (IGF) signalling is involved in cancer development, progres-
sion and resistance. This signalling pathway involves the autocrine/
paracrine production of IGFs (IGF-I and IGF-II) and overexpression 
of their cognate receptors (IGF-I receptor, IGF-insulin receptor (IR) 
and IR).141–144 Fenofibrate, a PPAR-α agonist, exerts an anticancer 
effect by accumulating reactive oxygen species (ROS) and inhibit-
ing IGF-I receptor signalling in glioma cells in vitro.125 It also at-
tenuates IGF-I-induced phosphorylation of IRS-1, AKT, ERKs and 
GSK3beta, and inhibits tumour growth in medulloblastoma cell 
lines.124 These findings suggest that the combination therapies of 
PPAR agonists may be effective in targeting IGF signalling in the 
treatment of cancer.

5.2  |  Combination of PPARs modulator with 
immunotherapy

In the recent decades, the cancer treatment era has been revo-
lutionized by immunotherapy through modulating immune re-
sponses against tumour cells to overcome insufficient therapy 
such as radiotherapy and chemotherapy.145 However, there are 
still limitations to the use of immunotherapy. For example, while 
PD-1 blockade can restore the function of effector T cells, these 
cells can still die from terminal differentiation and energy restric-
tion in the tumour microenvironment. To address this, researchers 
have suggested combining drugs that modulate T cell metabolism 
with anti-PD-1 immunotherapy to enhance the antitumour activ-
ity of immunotherapy.146–149 As a key regulator in tumour me-
tabolism, PPAR agonists are good candidates for adjuvant to be 
used with immunotherapy to enhance their antitumour activity of 
active T cells, even in an immunosuppressive TME. Studies have 
shown that the PPAR-α agonist fenofibrate can work synergisti-
cally with PD-1 blockers in the immunotherapy of cancer by re-
programming the metabolism of effector T cells.102 Bezafibrate, 
an agonist of the PPAR-γ coactivator 1α (PGC-1α)/PPAR complex, 
has been shown to increase fatty acid oxidation and mitochondrial 
respiratory capacity in CD8+ T lymphocytes. This leads to an in-
crease in mitochondrial oxidative phosphorylation and glycolysis, 
which can enhance antitumour immunity during PD-1 blockade.126 
Moreover, the co-administration of ciglitazone, the first thiazo-
lidinediones with drugs such as lovastatin and phenylbutyrate, 
which are not traditionally used as cancer medications, can trigger 
TNF-α-related apoptosis inducing-ligand, enhance the effects of 
gamma-radiation and lead to a decreased cancer cell viability,127 

suggesting that these drug combinations could potentially be used 
as a treatment approach for cancer.

5.3  |  Other PPAR combinational therapies

PPAR agonists have been shown to have synergic effects when 
used in combination with chemotherapy, radiotherapy or even 
prevent side effects of these treatment regimens. Chemotherapy 
agents that induce the production of ROS have been shown to 
have higher efficacy when combined with a PPAR agonist. For 
example, in a patient-derived orthotopic xenograft model of os-
teosarcoma, a combination of cisplatinum (CDDP)–pioglitazone 
(PIO) resulted in the greatest reduction in tumour volume and the 
most necrosis observed in histological sections.128 A recent Phase 
I clinical trial using efatutazone, a highly selective PPAR-γ ago-
nist,129 in combination with the microtubule inhibitor paclitaxel, 
demonstrated positive results in terms of safety, disease control 
and disease stability in patients with advanced anaplastic thyroid 
carcinoma (Clinicaltrials.gov: NCT00603941).150 Troglitazone has 
also been shown to have synergistic effects when used in combi-
nation with the lovastatin, nonsteroidal anti-inflammatory drugs 
such as aspirin, the oestrogen modulator tamoxifen and x-ray 
therapy in the treatment of thyroid, glioblastoma, lung, breast and 
cervix cancers.130–134 The combined administration of cell signal-
ling molecules, such as TNF-related apoptosis-inducing ligand and 
troglitazone achieved promising apoptotic results synergistically 
in ovarian and breast cancer cell lines that are resistant to conven-
tional therapies.135–137 Furthermore, the PPAR agonist pioglitazone 
has also been studied for its ability to prevent radiation-induced 
cognitive decline in non-diabetic patients undergoing radiother-
apy in a Phase I clinical trial (Clinicaltrials.gov: NCT01151670),138 
suggesting huge potentials of PPAR agonist as an adjuvant when 
combined with other therapies for improving the effectiveness 
and reducing the side effects of cancer treatments.

6  |  CONCLUSION AND FUTURE 
PERSPEC TIVE

In this paper, we review the basic understanding of PPARs and re-
cent research on their roles in tumourigenesis and microenviron-
ment. Recent development of cancer therapies such as chemo, radio 
and immunotherapy have significantly improved cure rates for many 
patients. Nevertheless, for some patients who are less responsive 
to these established therapies, the clinical response rate remains 
unsatisfactory and this is where the potential of PPARs modulators 
becomes particularly relevant.

It is worth noting that monotherapies of PPARs agonist have 
yield a mixed results and are not used in the clinic. For instance, 
studies on patients with tenosynovial giant cell tumour treated with 
PPAR-γ agonist zaltoprofen (UMIN-CTR: UMIN000025901)151 or 
patients with metastatic colon cancer and breast cancer treated with 
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TGZ105,106,152 have shown little to no improvement. The reasons for 
the failed response to PPAR modulators are complex, and one pos-
sible explanation is that many of the patients enrolled in these trials 
are heavily treated with many other chemo or biological therapies, 
making it difficult to evaluate the clinical effects of PPARs thera-
pies.105 In addition, PPAR modulators may have more of a preventive 
than a therapeutic role in cancer. For example, a study suggests that 
PPAR- γ may play a role in the prevention of APC-related colorectal 
carcinogenesis.153

Although PPAR modulators alone have shown limited efficacy, 
the co-administration of PPAR agonists with chemotherapy or im-
munotherapy could open up new possibilities for increasing the ef-
fectiveness and accountability of cancer treatment. Here, we also 
illuminated how PPARs, when used as an adjuvant or in combina-
tion with other conventional cancer therapies, can exert antitumour 
effects.

Many PPAR agonists have strong safety profiles and have been 
widely used for a long time, making them convenient candidates 
for repurposing as cancer treatments. However, there are some 
limitations to their use as adjuvant in cancer treatment. Current 
studies have revealed conflicting results on the role of the differ-
ent isoforms of PPARs in different types of tumours. For exam-
ple, pioglitazone has been shown to potentially increase the risk 
of bladder cancer in patients with type II diabetes with a strong 
dosage effect.154–158 Therefore, more studies and clinical trials 
are needed to assess their efficacy and safety in different kinds 
of cancers. Additionally, PPARs agonists are often combined with 
many other therapeutics in cancer treatment,159 making it difficult 
to delineate the specific contribution of each component to the 
overall effect. To address this, it will be necessary to use biomark-
ers or more robust analysis methods to target the effects of PPAR 
agonists and determine whether they have additive or synergistic 
effects in combination therapy, which may also provide insights 
for future trial designs.160 Moreover, safety profiles of PPARs 
combinational therapy should be carefully examined before and 
during any trials, given the potential for increased adverse effects 
with combinational therapy.161
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