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Abstract

In this study, we introduce a novel approach for the analysis and interpretation of 3D 

shapes, particularly applied in the context of neuroscientific research. Our method captures 2D 

perspectives from various vantage points of a 3D object. These perspectives are subsequently 

analyzed using 2D Convolutional Neural Networks (CNNs), uniquely modified with custom 

pooling mechanisms.

We sought to assess the efficacy of our approach through a binary classification task involving 

subjects at high risk for Autism Spectrum Disorder (ASD). The task entailed differentiating 

between high-risk positive and high-risk negative ASD cases. To do this, we employed brain 

attributes like cortical thickness, surface area, and extra-axial cerebral spinal measurements. We 

then mapped these measurements onto the surface of a sphere and subsequently analyzed them via 

our bespoke method.

One distinguishing feature of our method is the pooling of data from diverse views using our 

icosahedron convolution operator. This operator facilitates the efficient sharing of information 

between neighboring views. A significant contribution of our method is the generation of gradient-

based explainability maps, which can be visualized on the brain surface. The insights derived from 

these explainability images align with prior research findings, particularly those detailing the brain 

regions typically impacted by ASD. Our innovative approach thereby substantiates the known 

understanding of this disorder while potentially unveiling novel areas of study.
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1 Introduction

Autism Spectrum Disorder (ASD) is a condition related to the development of the brain 

that causes differences in neurological functioning. Subjects with ASD have deficits in 

social communication skills and behavior, the presence of repetitive behavior, restricted 

interests, hyper- or hypo-sensitivity to sensory stimuli, and an insistence on sameness or 

strict adherence to routine [23, 26].

Diagnosis of ASD is difficult as there is no medical/lab test to reliably assess the condition. 

Various studies have found the average age of diagnosis to be 3 years, although the vast 

majority of children manifest developmental problems between 12 and 24 months, with 

some showing abnormalities before 12 months[3]. Early diagnosis of ASD before 2.5 

years of age is associated with considerable benefits for children who may “outgrow” the 

condition through therapy[12].

Detecting ASD bio-markers from neuroimaging data is a challenging task owing to the 

considerable variability in cortical shape and functional organization across individuals, 

which hinders the ability to make accurate comparisons of brains[16, 13]. There is a clear 

need for precision analysis tools that are robust to these factors and the discovery of distinct 

features to characterize ASD.

The main contribution of this paper can be summarized into two key aspects. Firstly, it 

introduces a new deep-learning framework for general shape analysis that utilizes a multi-

view approach. Secondly, it incorporates an explainability component that identifies crucial 

brain regions at the vertex level and visualizes them on the cortical surface highlighting 

relevant brain regions for the classification task.

The proposed method was evaluated using Precision, Recall, F1-score, and Accuracy metrics 

through five 5-fold cross-validation experiments on a cohort of High-Risk Positive (HR+) 

ASD versus High-Risk Negative (HR−) ASD patients. We implement different pooling 

layers for our model and compare them against Spherical-U-Net[37] and Spectformer [2], 

methods designed for brain shape analysis and spectral analysis respectively. We also 

test our approach against a Random Forest classifier that uses learned shape features and 

demographic information combined.

2 Related work

2.1 ASD Classification

Several studies have addressed the question of ASD classification using Machine Learning 

(ML) models. The majority of studies used the ABIDE I/II [15] data set which includes 

resting state functional (rsfMRI), structural T1/T2 (sMRI) Magnetic Resonance Images, and 

Diffusion (dMRI) Magnetic Resonance Images. This data set contains data from individuals 

with autism spectrum disorder (ASD) and typically developing individuals. We point the 

reader to [21, 10] for a comprehensive review of the literature on ASD classification. It 

has been demonstrated that different machine learning models can effectively distinguish 

between individuals with typical development and those with ASD. However, the data used 
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in our study differs, as it includes HR subjects who have not yet developed the condition. 

This adds a layer of complexity to the analysis, as it requires the identification of biomarkers 

that can reliably predict ASD in the future.

2.2 3D shape analysis

Among the different approaches for shape analysis, learning-based methods are currently the 

most sophisticated ones. There are mainly 4 types of learning-based methods: multi-view, 

volumetric, parametric, and multi-layer-perceptrons (MLP).

Multi-view approaches adapt state-of-the-art 2D CNNs to work on 3D shapes as the 

arbitrary structures of 3D models, which are usually represented by point clouds or 

triangular meshes, are incompatible with convolutional operators that require regular grid-

like structures. By rendering 3D objects from different viewpoints, features are extracted 

using 2D CNNs[33, 20]. On the other hand, volumetric approaches use 3D voxel grids to 

represent the shape and apply 3D convolutions to learn shape features[35, 29]. Parametric 

methods require shapes with spherical topology and the convolution is applied directly to the 

spherical representation of the shape[17, 37]. Finally, other approaches consume the point 

clouds directly and implement multi-layer-perceptrons and/or transformer architectures[25, 

34].

Our method falls in the multi-view category. We render the object and capture 2D images 

from different viewpoints following an icosahedron subdivision. The multiple captures 

ensure coverage of the whole object. One of the primary benefits of multi-view approaches 

is their ability to operate on surfaces with any topology, including those with missing data 

or holes. Our method is tested on spheres derived from brain cortical gray/white matter 

surfaces.

2.3 Explainable Artificial Intelligence

ML systems are becoming increasingly ubiquitous and they outperform humans on a variety 

of specific tasks. There is increasing concern related to the deployment of such complex 

applications that have a direct impact on human lives. Such systems must be able to 

explain the basis for their decision to any impacted individual in terms understandable 

to a layperson, this is especially the case in the field of medical imaging. Explainability 

methods fall into 3 categories: visualization, model distillation, and intrinsic[27]. To the best 

of our knowledge, we found 2 methods for cortical surface analysis and explainability. 

First, a perturbation-based method for geometric deep learning of retinotopy through 

systematic manipulations of the input data and measurement of changes in the model’s 

output [28]. Second, NeuroExplainer [36] a method that uses spherical surfaces of the 

brain hemispheres with cortical attributes (thickness, mean curvature, and convexity), and 

a spherical convolution block in an encoder/decoder architecture that propagates the vertex-

wise attributes and captures fine-grained explanations for a classification task.

Our explainability model is agnostic to the input data and does not require systematic 

perturbations to produce explanations. Moreover, it does not require subsampling the input 

data through encoder/decoder architectures and does not require shapes with a spherical 
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topology or specialized operators such as spherical convolutions. In our experiments, we use 

spheres of +160000 vertex at full resolution.

3 Materials

Infants at high and low familial risk for ASD were enrolled at four clinical sites (University 

of North Carolina, University of Washington, Washington University, and Children’s 

Hospital of Philadelphia) [31, 14]. HR infants had an older sibling with a clinical diagnosis 

of ASD, corroborated by the Autism Diagnostic Interview–Revised [19]. LR infants had a 

typically developing older sibling and no first- or second-degree relatives with intellectual/

psychiatric disorders [11]. Infants were assessed at 6, 12, and 24 months with magnetic 

resonance imaging (MRI) scans and a behavioral battery that included measures of cognitive 

development [22] and adaptive functioning[32]. DSM-IV-TR criteria [1] and the Autism 

Diagnostic Observation Schedule–Generic [18] were administered to all participants at 24 

months. The Autism Diagnostic Interview–Revised was administered at 24 months to all 

parents of high-risk infants and to all low-risk infants with clinical concerns. At 24 months, 

infants were classified as having ASD based on expert clinical judgment and all available 

clinical information.

In our experiments, we use a subset of HR infants only and compare a group of 760 

HR+ v.s. 202 HR−. We include demographic data in our analysis by combining image 

features and demographics through a separate branch that concatenates with the output of 

the features computed by the NN.

The demographics include gender, visit age for MRI, volume measurements for subcortical 

structures (amygdala, hippocampus, lateral ventricles), intracranial volume (ICV), and 

cerebrum and cerebellum volume.

4 Method description

4.1 Rendering the 2D views

The Pytorch3D6 framework allows rendering and training in an end-to-end fashion. The 

rendering engine provides a map that relates pixels (pix2face) in the images to faces in the 

mesh and allows rapid extraction of point data as well as setting information back into the 

mesh after inference. We use pix2face to extract values for the 3 brain features namely: 

extra-axial cerebral spinal fluid (EA-CSF), surface area (SA), and cortical thickness. The 

EACSF features are precomputed via a probabilistic brain tissue segmentation, cortical 

surface reconstruction, and streamline-based local EA-CSF quantification[8]. SA and CT are 

precomputed via CIVET [6]. The pix2face map allows us to extract the vertex information 

and map them into 2D images set to 224px resolution. These images are then fed to the NN 

for feature extraction.

6 https://pytorch3d.org/ 
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4.2 Architecture

We developed a novel NN architecture called BrainIcoNet and perform extensive 

experiments with a variety of feature extraction layers and IcoConv operators.

Figure 1 shows the general architecture of our approach which consists of a feature 

extraction step followed by our IcoConv operator. Figure 2 shows the different IcoConv 

operators.

In our experimental setup, we change the number of views, evaluating both 12 and 42 

perspectives, and alter the radius of the icosahedron to adjust the proximity to the 3D object. 

A smaller radius sets the view closer to the 3D object thereby restricting the breadth of the 

captured view but acquiring finer detailed information.

The captured views are then fed to the feature extraction layer. We use two distinct 

branches, each dedicated to a specific hemisphere. The assumption is that the left and right 

hemispheres exhibit unique features that should be treated separately.

Each branch uses resnet18 or a SpectFormer block for feature extraction. The features are 

then arranged and passed to the IcoConv block. We experiment with 2D/1D Convolutions 

and a Linear layer. The IcoConv2D operator was designed to allow sharing of information 

across adjacent views only. As demonstrated by the results, the explainability maps are 

localized and corroborate previous findings about brain regions affected by ASD.

Finally, we use a linear layer for the binary classification task.

Additional experiments were conducted including demographic information which is 

normalized and concatenated to the left/right brain hemispheres. We train a random forest 

classifier and perform a feature importance analysis.

4.3 Training the models

We perform a 5 fold cross-validation training for every model. We use a series of 

augmentation techniques including random rotations of the input sphere, a dropout layer 

with p = 20% just before our linear layer for classification, and Gaussian noise applied on 

each image as well as the coordinates of the sphere points, i.e., a small perturbation which is 

then normalized back on the spherical surface.

Training is done on an NVIDIA RTX6000 GPU with a batch size of 10, learning rate 1e−4, 

the AdamW optimizer, and use the early stopping criteria to stop training automatically 

(patience 100) and keep the best performing model. To account for the highly imbalanced 

nature of our dataset classes during training, we utilize a sampling approach and ensure that 

each batch is balanced during training.

4.4 Explainability maps

To find out what are the relevant areas for the classification task we use GradCam [30]. This 

technique utilizes the gradients of the classification score with respect to the final feature 

map, thus, identifying which regions of the image contribute to the final classification 
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score. We project each explainability map back to the 3D-object/sphere and apply a median 

filter with neighboring vertices to remove noise. The projection of these maps onto the 

spherical surface enables the visualization of explainability maps directly on the inflated 

cortical surfaces. This approach simplifies the task of identifying the regions impacted by 

the condition under study. By utilizing this 3D spatial representation, we are effectively able 

to correlate the intricate details from our explainability maps with specific locations on the 

brain’s surface, providing a clear illustration of affected areas.

5 Results

The results in this section are computed using the test set from each fold and are reported for 

the whole population.

Table 1 shows the mean and standard deviation for precision, recall, f1-score, and accuracy 

for the 5 folds.

We perform extensive experiments with S-Unet, each IcoConv operator, different feature 

extraction layers namely resnet18 and SpectFormer, and increasing the number of views and 

reducing the radius to capture finer details.

The task of classifying HR+ v.s. HR− subjects presents a challenge. This is largely due 

to the fact that at this early stage, the brains of the subjects often do not exhibit explicit 

or easily distinguishable characteristics associated with the condition. Consequently, subtle 

nuances and variations may be critical in this classification task, underscoring the need for 

advanced and sensitive analytical methods.

We underscore that this dataset is highly imbalanced and achieving a high recall ensures that 

the model does not merely predict the majority class and miss the minority class instances.

The best performing model is the IcoConv2D with 42 views and the explainability maps are 

generated with it.

The explainability maps are shown in Figure 3. Interestingly, the model favors features 

from the right hemisphere over the left ones. Furthermore, our findings support previous 

research[14] that highlights the significance of similar brain regions sensitive to this 

classification task.

We use the Desikan parcellation [9] to identify the affected brain regions that appear in 

our explainability maps. Similar activation maps appear on both hemispheres centered on 

the entorhinal spreading to the parahippocampal, temporal pole, and fusiform. The right 

hemisphere present higher activity in the lingual and occipital lobe, with some activation in 

the right and left for the inferior parietal and superior frontal regions. These specific areas 

have been reported in previous studies, the entorhinal cortex, lingual and fusiform have been 

reported respectively by [5, 7, 24] to be areas impacted by ASD.

Finally, we test the feature importance with a random forest classifier trained using scikit-

learn version 1.1.1. Figure 4 shows that gender is the most important demographic and 

amygdala is the most important if the gender is removed from the analysis.
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6 Conclusion

In conclusion, we have created a framework for shape analysis and explainability that is 

agnostic to the neural network model and the shape topology of the input meshes.

Our first contribution is a novel approach for shape analysis that does not require shapes 

with specific spherical topology or any form of subsampling of the mesh. Our shape analysis 

framework offers a significant advantage as it can handle meshes that are not in spherical 

topology or have holes, which is a requirement for S-Unet. We demonstrate this crucial 

feature by performing an experiment using subject specific inflated cortical surfaces.

Our second contribution is the visualization of explainability maps on complex shapes 

such as cortical surfaces. We tested our approach on a challenging classification task using 

subjects with high risk of developing autism and comparing HR+ v.s. HR−.

Our study utilized distinct neural networks for each hemisphere of the brain. Our results 

reveal that certain characteristics in the right hemisphere of the brain play a significant 

role in the classification of ASD. Our approach has identified brain regions and corroborate 

previous findings [5, 7, 24] of ASD-affected brain regions.

Finally, our approach allows including demographic information and highlights the 

amygdala volume as an important predictor for ASD. This finding also been corroborated in 

a previous study [4].

In future work, we will extend our analysis to other neuro-psychiatric disorders such as 

schizophrenia, attention deficit hyper-activity disorder, and bipolar.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgment

This work was supported by grants R01EB021391, P50HD103573, and the Foundation of Hope.

References

1. Association AP, et al.: Diagnostic and statistical manual of mental disorders, text revision (dsm-iv-
tr®) (2010)

2. Badri Narayana Patro VPN, Agneeswaran VS: Spectformer: Frequency and attention is what you 
need in a vision transformer (2023)

3. Barbaro J, Dissanayake C: Autism spectrum disorders in infancy and toddlerhood: a review of the 
evidence on early signs, early identification tools, and early diagnosis. Journal of Developmental & 
Behavioral Pediatrics 30(5), 447–459 (2009) [PubMed: 19823139] 

4. Bellani M, Calderoni S, Muratori F, Brambilla P: Brain anatomy of autism spectrum disorders 
ii. focus on amygdala. Epidemiology and psychiatric sciences 22(4), 309–312 (2013) [PubMed: 
23815810] 

5. Blatt GJ: The neuropathology of autism p. 6 (2012)

6. Boucher M, Whitesides S, Evans A: Depth potential function for folding pattern representation, 
registration and analysis. Medical image analysis 13(2), 203–214 (2009) [PubMed: 18996043] 

Rodriguez et al. Page 7

Shape Med Imaging (2023). Author manuscript; available in PMC 2024 February 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7. Chandran VA, Pliatsikas C, Neufeld J, O’Connell G, Haffey A, DeLuca V, Chakrabarti B: Brain 
structural correlates of autistic traits across the diagnostic divide: A grey matter and white matter 
microstructure study. NeuroImage: Clinical 32, 102897 (2021) [PubMed: 34911200] 

8. Deddah T, Styner M, Prieto J: Local extraction of extra-axial csf from structural mri. In: Medical 
Imaging 2022: Biomedical Applications in Molecular, Structural, and Functional Imaging. vol. 
12036, pp. 29–34. SPIE (2022)

9. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale 
AM, Maguire RP, Hyman BT, et al. : An automated labeling system for subdividing the human 
cerebral cortex on mri scans into gyral based regions of interest. Neuroimage 31(3), 968–980 (2006) 
[PubMed: 16530430] 

10. Eslami T, Almuqhim F, Raiker JS, Saeed F: Machine learning methods for diagnosing autism 
spectrum disorder and attention-deficit/hyperactivity disorder using functional and structural mri: a 
survey. Frontiers in neuroinformatics 14, 575999 (2021) [PubMed: 33551784] 

11. Estes A, Zwaigenbaum L, Gu H, St John T, Paterson S, Elison JT, Hazlett H, Botteron K, Dager 
SR, Schultz RT, et al. : Behavioral, cognitive, and adaptive development in infants with autism 
spectrum disorder in the first 2 years of life. Journal of neurodevelopmental disorders 7(1), 1–10 
(2015) [PubMed: 25972975] 

12. Gabbay-Dizdar N, Ilan M, Meiri G, Faroy M, Michaelovski A, Flusser H, Menashe I, Koller J, 
Zachor DA, Dinstein I: Early diagnosis of autism in the community is associated with marked 
improvement in social symptoms within 1–2 years. Autism 26(6), 1353–1363 (2022) [PubMed: 
34623179] 

13. Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, 
Beckmann CF, Jenkinson M, et al. : A multi-modal parcellation of human cerebral cortex. Nature 
536(7615), 171–178 (2016) [PubMed: 27437579] 

14. Hazlett HC, Gu H, Munsell BC, Kim SH, Styner M, Wolff JJ, Elison JT, Swanson MR, Zhu H, 
Botteron KN, et al. : Early brain development in infants at high risk for autism spectrum disorder. 
Nature 542(7641), 348–351 (2017) [PubMed: 28202961] 

15. Heinsfeld AS, Franco AR, Craddock RC, Buchweitz A, Meneguzzi F: Identification of autism 
spectrum disorder using deep learning and the abide dataset. NeuroImage: Clinical 17, 16–23 
(2018) [PubMed: 29034163] 

16. Kong Y, Gao J, Xu Y, Pan Y, Wang J, Liu J: Classification of autism spectrum disorder by 
combining brain connectivity and deep neural network classifier. Neurocomputing 324, 63–68 
(2019)

17. Liu M, Yao F, Choi C, Sinha A, Ramani K: Deep learning 3d shapes using alt-az anisotropic 
2-sphere convolution. In: International Conference on Learning Representations (2018)

18. Lord C, Risi S, Lambrecht L, Cook EH, Leventhal BL, DiLavore PC, Pickles A, Rutter 
M: The autism diagnostic observation schedule—generic: A standard measure of social 
and communication deficits associated with the spectrum of autism. Journal of autism and 
developmental disorders 30(3), 205–223 (2000) [PubMed: 11055457] 

19. Lord C, Rutter M, Le Couteur A: Autism diagnostic interview-revised: a revised version of a 
diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. 
Journal of autism and developmental disorders 24(5), 659–685 (1994) [PubMed: 7814313] 

20. Ma C, Guo Y, Yang J, An W: Learning multi-view representation with lstm for 3-d shape 
recognition and retrieval. IEEE Transactions on Multimedia 21(5), 1169–1182 (2018)

21. Moridian P, Ghassemi N, Jafari M, Salloum-Asfar S, Sadeghi D, Khodatars M, Shoeibi A, 
Khosravi A, Ling SH, Subasi A, et al. : Automatic autism spectrum disorder detection using 
artificial intelligence methods with mri neuroimaging: A review. arXiv preprint arXiv:2206.11233 
(2022)

22. Mullen EM, et al. : Mullen scales of early learning. AGS Circle Pines, MN (1995)

23. Nietzel M, Wakefield J: American psychiatric association diagnostic and statistical manual of 
mental disorders. Contemporary psychology 41, 642–651 (1996)

24. Pierce K, Redcay E: Fusiform function in children with an asd is a matter of “who” (2008)

Rodriguez et al. Page 8

Shape Med Imaging (2023). Author manuscript; available in PMC 2024 February 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



25. Qi CR, Su H, Mo K, Guibas LJ: Pointnet: Deep learning on point sets for 3d classification and 
segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 
pp. 652–660 (2017)

26. Rahman MM, Usman OL, Muniyandi RC, Sahran S, Mohamed S, Razak RA: A review of 
machine learning methods of feature selection and classification for autism spectrum disorder. 
Brain sciences 10(12), 949 (2020) [PubMed: 33297436] 

27. Ras G, Xie N, van Gerven M, Doran D: Explainable deep learning: A field guide for the 
uninitiated. Journal of Artificial Intelligence Research 73, 329–397 (2022)

28. Ribeiro FL, Bollmann S, Cunnington R, Puckett AM: An explainability framework for cortical 
surface-based deep learning. arXiv preprint arXiv:2203.08312 (2022)

29. Riegler G, Osman Ulusoy A, Geiger A: Octnet: Learning deep 3d representations at high 
resolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 
pp. 3577–3586 (2017)

30. Selvaraju RR, Das A, Vedantam R, Cogswell M, Parikh D, Batra D: Gradcam: Why did you say 
that? arXiv preprint arXiv:1611.07450 (2016)

31. Shen MD, Kim SH, McKinstry RC, Gu H, Hazlett HC, Nordahl CW, Emerson RW, Shaw D, 
Elison JT, Swanson MR, et al. : Increased extra-axial cerebrospinal fluid in high-risk infants who 
later develop autism. Biological psychiatry 82(3), 186–193 (2017) [PubMed: 28392081] 

32. Sparrow S, Balla D, Cicchetti D: Vineland scales of adaptive behavior, survey form manual. Circle 
Pines, MN: American Guidance Service (1984)

33. Su H, Maji S, Kalogerakis E, Learned-Miller E: Multi-view convolutional neural networks for 3d 
shape recognition. In: Proceedings of the IEEE international conference on computer vision. pp. 
945–953 (2015)

34. Wu W, Qi Z, Fuxin L: Pointconv: Deep convolutional networks on 3d point clouds. In: Proceedings 
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9621–9630 (2019)

35. Wu Z, Song S, Khosla A, Yu F, Zhang L, Tang X, Xiao J: 3d shapenets: A deep representation 
for volumetric shapes. In: Proceedings of the IEEE conference on computer vision and pattern 
recognition. pp. 1912–1920 (2015)

36. Xue C, Wang F, Zhu Y, Li H, Meng D, Shen D, Lian C: Neuroexplainer: Fine-grained 
attention decoding to uncover cortical development patterns of preterm infants. arXiv preprint 
arXiv:2301.00815 (2023)

37. Zhao F, Xia S, Wu Z, Duan D, Wang L, Lin W, Gilmore JH, Shen D, Li G: Spherical u-net on 
cortical surfaces: methods and applications. In: Information Processing in Medical Imaging: 26th 
International Conference, IPMI 2019, Hong Kong, China, June 2–7, 2019, Proceedings 26. pp. 
855–866. Springer (2019)

Rodriguez et al. Page 9

Shape Med Imaging (2023). Author manuscript; available in PMC 2024 February 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Architecture for the ASD classification task. To initiate our analysis, we begin by capturing 

views of the unique characteristics of each cerebral hemisphere - the left and the right - 

as they are projected onto the spherical surface. The vantage point follow an icosahedron 

subdivision. We use a feature extraction network (resnet18, SpectFormer) on each individual 

view. We experiment with different IcoConv (IcoConv for icosahedron and convolution) 

operators that pool the information from all views. Finally, we concatenate the left/right 

outputs and normalized demographics. We perform a final linear layer for the classification.
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Fig. 2. 
Different IcoConv operators. IcoConv2D arranges the features extracted from adjacent views 

in 3×3 grid and performs an additional 2D Convolution. IcoConv1D aranges the features 

and performs a 1D Convolution followed by Average/Max pooloing. IcoLinear stacks the 

features and performs a Linear layer.
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Fig. 3. 
Left, posterior, right views for the left hemisphere above and right hemisphere below. The 

gradcam maps are generated using only the correctly classified HR+ subjects and using HR+ 

as the target class. It indicates that features from the right hemisphere are preferred over the 

left ones. The name of the area are based on this labeling map [9]
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Fig. 4. 
The top left figure shows a plot of importance for features concatenated with normalized 

demographic values. The bottom left is only demographics to highlight that gender is the 

most important feature for the Random Forest classifier. The right plot shows an experiment 

with the gender removed from the analysis and shows that the amygdala is the most 

important feature in the demographics for the classification task.
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Table 1.

Classification report for the 5 folds. We report the mean and standard deviation for each metric. 42V = 42 

views (icoshedron subdivision level 2). MAR = Macro Average Recall.

Approach Class Precision Recall FI Score MAR Accuracy

S-Unet No ASD 0.83 ± 0.02 0.88 ± 0.05 0.85 ± 0.02

ASD 0.37 ± 0.13 0.29 ±0.07 0.33±0.08 0.585 ±0.04 0.76 ±0.03

IcoCo2D No ASD 0.83 ± 0.01 0.88 ±0.05 0.86±0.03

ASD 0.38±0.19 0.28 ±0.07 0.32±0.11 0.58 ±0.05 0.76±0.04

IcoColD No ASD 0.84 ± 0.02 0.87± 0.05 0.85±0.03

ASD 0.374= 0.15 0.32± 0.11 0.34± 0.11 0.595 ±0.05 0.76± 0.05

IcoCoLinear No ASD 0.84 ± 0.03 0.84± 0.04 0.84± 0.01

ASD 0.374= 0.12 0.37±0.17 0.37± 0.13 0.605± 0.07 0.75± 0.02

IcoCoLinearinf No ASD 0.85 ±0.01 0.85 ± 0.04 0.85± 0.02

ASD 0.39± 0.11 0.39± 0.07 0.39± 0.09 0.62±0.04 0.75± 0.03

Spcct 42V No ASD 0.84 ±0.03 0.86±0.05 0.85± 0.02

ASD 0.38± 0.12 0.35±0.07 0.36±0.05 0.605±0.02 0.76±0.03

SpcctICo 42V No ASD 0.85± 0.02 0.83±0.05 0.84±0.02

ASD 0.37±0.1 0.41± 0.05 0.39±0.05 0.62 ±0.02 0.74± 0.03

IcoCo2D 42V No ASD 0.85± 0.03 0.86± 0.05 0.85±0.02

ASD 0.42± 0.08 0.41± 0.1 0.42± 0.06 0.635±0.04 0.77±0.02
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