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Abstract

Phytochemicals from functional foods are common ingredients in dietary supplements and 

cosmetic products for anti-skin aging effects due to their antioxidant activities. A proprietary 

red maple (Acer rubrum) leaf extract (Maplifa™) and its major phenolic compound, ginnalin A 

(GA), have been reported to show antioxidant, anti-melanogenesis, and anti-glycation effects but 

their protective effects against oxidative stress in human skin cells remain unknown. Herein, we 

investigated the cytoprotective effects of Maplifa™ and GA against hydrogen peroxide (H2O2) 

and methylglyoxal (MGO)-induced oxidative stress in human keratinocytes (HaCaT cells). H2O2 

and MGO (both at 400 μM) induced toxicity in HaCaT cells and reduced their viability to 59.2 

and 61.6 %, respectively. Treatment of Maplifa™ (50 μg/mL) and GA (50 μM) increased the 

viability of H2O2− and MGO-treated cells by 22.0 and 15.5 %, respectively. Maplifa™ and GA 

also showed cytoprotective effects by reducing H2O2-induced apoptosis in HaCaT cells by 8.0 

and 7.2 %, respectively. The anti-apoptotic effect of Maplifa™ was further supported by the 

decreased levels of apoptosis associated enzymes including caspases-3/7 and −8 in HaCaT cells 

by 49.5 and 19.0 %, respectively. In addition, Maplifa™ (50 μg/mL) and GA (50 μM) reduced 

H2O2− and MGO-induced reactive oxygen species (ROS) by 84.1 and 56.8 %, respectively. 

Furthermore, flow cytometry analysis showed that Maplifa™ and GA reduced MGO-induced total 

cellular ROS production while increasing mitochondria-derived ROS production in HaCaT cells. 
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The cytoprotective effects of Maplifa™ and GA in human keratinocytes support their potential 

utilization for cosmetic and/or dermatological applications.

Graphical Abstract

Keywords

Red maple (Acer rubrum); ginnalin A; keratinocytes; methylglyoxal; antioxidant; skin protection

1. Introduction

Botanical extracts from functional foods are common ingredients found in cosmeceutical 

products. These botanical ingredients are used for topical applications, for e.g. as bioactives 

in cosmetics, as well as for consumable products, such as dietary beauty supplements, i.e. 

as capsules or tinctures.1 It has been reported that several botanical extracts from functional 

foods are included in the top ten list of botanical ingredients in anti-aging creams in 

2010.1 Numerous published studies have also reported that phytochemicals in botanical 

extracts show a wide range of biological activities including antioxidant, anti-microbial, 

anti-inflammation, and anti-glycation effects,2, 3 which contribute to their overall skin 

beneficial effects.

Skin, the largest organ of the human body, is subjected to exposure of intrinsic oxidative 

stress from several intra- and extra-cellular biochemical reactions including oxidation and 

glycation.5 Both extrinsic and intrinsic oxidative stress lead to excessive production of 

cellular reactive oxygen species (ROS), which further lead to the impairment of skin cells by 

triggering cell survival signaling pathways including cell necrosis and apoptosis.4 Another 

contributing factor for the induction of skin cellular oxidative stress is the process of 

glycation, a non-enzymatic reaction involving the metabolism of glucose. In the glycolysis 

pathway, glucose is converted into pyruvate and a group of dicarbonyl compounds, for e.g. 

glyoxal and methylglyoxal (MGO), which are formed as side products.5 These dicarbonyl 

compounds are highly reactive and can interact with biomacro-molecules including protein, 

lipids, and DNA, to form a class of complex and heterogeneous compounds known 
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as advanced glycation endproducts (AGEs). Both AGEs and its precursor, MGO, can 

exacerbate the production of ROS and largely contribute to the occurrence and development 

of many skin disorders including skin aging and inflammation.6 Thus, inhibitors of AGEs 

and scavengers of reactive dicarbonyl species, especially natural antioxidants, such as 

several polyphenols from botanical extracts, are considered as promising management 

strategies for AGEs associated skin complications.6, 7

Our laboratory has had a long interest in investigating the biological effects of 

phytochemicals in functional foods and botanical extracts. During the course of our 

studies, using a combination of in vitro and in vivo assays, we developed an algorithm 

to screen the anti-aging effects of over thirty botanical extracts, several of which showed 

promising neuroprotective effects including antioxidant, MGO scavenging capacity, anti-

glycation, and anti-inflammatory activity.8 In addition, some of the pure constituents from 

these botanical extracts, for e.g. punicalagin and ellagic acid from a pomegranate extract 

(Punica granatum; commercially available as Pomella®), showed anti-glycation effects 

and protected human keratinocytes against ROS-induced cytotoxicity.9 Our group has also 

reported on the development of a proprietary phenolic-enriched botanical extract from red 

maple (Acer rubrum) leaves (known as Maplifa™)10 as a botanical ingredient for dietary 

supplement and cosmeceutical applications. Maplifa™ showed several skin beneficial effects 

including antioxidant, anti-glycation effects, and anti-melanogenic activity.10, 11 However, 

the protective effects of Maplifa™ and its major phenolic compound, ginnalin A (GA), 

against oxidative stress in human keratinocytes remain unexplored. Herein, we aimed 

to investigate the cytoprotective effects of Maplifa™ and GA against hydrogen peroxide 

(H2O2) and MGO-induced oxidative stress in human keratinocytes HaCaT cells.

2. Materials and Methods

2.1. Chemicals and reagents

Maplifa™, a proprietary phenolic-enriched red maple leaf extract, was prepared with 

protocols developed in our laboratory.10 The phytochemical composition of Maplifa™ has 

been extensively studied by our laboratory with over 100 phenolics identified.12 Maplifa™ 

was standardized to ginnalin A (GA) content (c.a. 45%), which is the major phenolic 

compound present in the extract.10 Methylglyoxal (MGO), hydrogen peroxide (H2O2), 

crystal violet powder, Hoechst 33342 staining agent, dimethyl sulfoxide (DMSO), and 2’,7’-

dichlorofluorescin diacetate (DCFDA) were purchased from Sigma Chemical Co. (St. Louis, 

MO, USA). MitoTracker™ Red CMXRos, and Annexin and propidium iodide (PI) staining 

kits were purchased from Thermo Fisher Scientific (Waltham, MA, USA). MCellTiter-Glo® 

(CTG) 2.0 and caspase-Glo® assay kits (caspase- 3/7, −8, and −9) were purchased from 

Promega (Fitchburg, WI, USA).

2.2. Cell culture and sample preparation

Human keratinocytes (HaCaT cells) were purchased from the American Type Culture 

Collection (ATCC, Rockville, USA). HaCaT cells were cultured in Dulbecco’s modified 

Eagle’s medium (DMEM) (Life Technologies, Gaithersburg, MD, USA) supplemented with 

10% fetal bovine serum (FBS; GIBCO™, Grand Island, NY, USA) at 37 °C in the presence 
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of 5% CO2. Stock solution of test samples were prepared in DMSO and diluted with cell 

culture medium without FBS to desired concentrations (6.25–200 μg/mL for Maplifa™ and 

6.25–200 μM for GA). The final percentage of DMSO in the treatments groups was less 

than 0.2% and HaCaT cells in all of the control groups were treated with medium containing 

0.2% of DMSO.

2.3. Measurement of cell viability

The effects of Maplifa™ and GA on the viability of HaCaT cells were determined by 

the CTG 2.0 assay.13 The model for the H2O2−induced cell damage was according to our 

previously reported method with minor modifications.9 In brief, HaCaT cells were seeded 

in 96-well plates at 1×104 cells per well and allowed to attach for 12 h. Media was then 

removed and cells were incubated with test samples for 12 h, following treatment of H2O2 

(400 μM) for 24 h. CTG 2.0 reagent was then added in each well and the plate was kept 

at room temperature for 10 min. Luminescence intensity was recorded using a Spectramax 

M2 plate reader (Molecular Devices, Sunnyvale, CA, USA). The MGO-induced cell damage 

model was constructed similarly with minor modifications. HaCaT cells were seeded in 

96-well plates at 5×103 cells per well and allowed to attach for 12 h. After incubation, the 

cells were treated with test samples for 2 h. The cells were washed with PBS twice and 

treated with MGO (400 μM) for 24 h, and then cell viability was measured using the CTG 

2.0 assay.

2.4. Measurement of reactive oxygen species (ROS)

HaCaT cells were seeded in 96-well plates at 1×104 cells or 5×103 cells per well for 

H2O2-induced or MGO-induced cell damage model, respectively, for 12 h. Next, cells were 

treated with test samples for 12 h (in H2O2-induced model) or 2 h (in MGO-induced model). 

Then cell culture media were removed and cells were washed twice with phosphate-buffered 

saline (PBS). Media containing a fluorescent agent (DCFDA; 20 μM) were added to the 

cells and incubated for 20 mins. Next, HaCaT cells were washed with PBS to remove 

excessive exogenous ROS and cells were treated with H2O2 or MGO (both at 400 μM) for 

1 h or 24 h, respectively. Cellular fluorescence intensity was measured with excitation and 

emission wavelengths of 485 and 525 nm, respectively, using a Spectramax M2 plate reader 

(Molecular Devices, Sunnyvale, CA, USA).

2.5. Detection of cell apoptosis

Flow cytometric assays for the measurements of cell apoptosis were conducted as previously 

reported.9 HaCaT cells were seeded in 6-well plates at 3×105 cells per well and allowed to 

attach for 12 h, followed by the treatment with test samples for 6 h. Cell culture media were 

then removed, and cells were washed twice with PBS. Next, H2O2 (400 μM) was added 

to cells and incubated for 24 h, then cells were harvested and stained with binding buffer 

containing Annexin and PI agents for 15 mins in the dark. Cell suspensions were quantified 

using flow cytometry and data were analyzed using FlowJo software.
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2.6. Measurements of caspases-3/7, −8, and −9

Levels of caspases −3/7, −8, and −9 were measured as previously reported.9 HaCaT cells 

were seeded in 96-well plates at 5×103 cells per well and allowed to attach for 12 h, 

followed by treatment of test samples for 6 h. Media were then removed and cells were 

washed twice with PBS. Next, H2O2 (400 μM) was added and incubated for 24 h followed 

by adding caspase-Glo kit reagents. Plates were then incubated at room temperature for 30 

min and the luminescence intensity of each well was read using a Spectramax M2 plate 

reader.

2.7. Detection of total and mitochondria-derived ROS

In the MGO-induced cell damage model, HaCaT cells were seeded in 6-well plates at 3×105 

cells per well and allowed to attach for 12 h. Cells were then treated with test samples for 

2 h and washed twice with PBS, before adding MGO (400 μM) for 24 h. Cells were then 

harvested and stained with MitoTracker™ Red agents for 15 mins in dark. Cell suspensions 

were quantified using flow cytometry (BD FACSCalibur, San Jose, CA, USA) and data were 

analyzed using FlowJo software (FlowJo, Ashland, OR, USA).

2.8. Statistical analysis

Statistical analyses were performed using GraphPad Prism 6 (GraphPad Software, La Jolla, 

CA, USA). Data are expressed as the mean value ± standard deviation (S.D.) obtained from 

triplicates of experiments. The significance of differences was determined using a two-way 

analysis of variance (ANOVA) followed by a post hoc Student-Newman–Keuls multiple 

comparison test (SNK). P < 0.05, P < 0.01, or P < 0.001 was determined as significant.

3. Results and discussion

3.1. Maplifa™ and GA reduced H2O2− and MGO-induced cytotoxicity in HaCaT

Prior to evaluating the protective effects of Maplifa™ and GA, their range of non-cytotoxic 

concentrations in HaCaT cells were determined by the CTG 2.0 cell viability assay. 

Maplifa™ and GA, at concentrations ranging from 6.25–100 μg/mL and 6.25–100 μM, 

respectively, did not induce cytotoxicity in HaCaT cells (cell viability >96.0%; Fig. 1). 

Next, concentrations of 12.5, 25, and 50 μg/mL (for Maplifa™) and 12.5, 25, and 50 

μM (for GA) were selected for further evaluation. Hydrogen peroxide (H2O2; reactive 

oxygen species) and methylglyoxal (MGO; reactive carbonyl species) were used as oxidative 

inducers and their cytotoxic effects were evaluated in HaCaT cells. H2O2 (at 400 μM) 

induced cytotoxicity by decreasing viability of HaCaT cells to 59.2% (Fig. 2A). Similarly, 

treatment of MGO (400 μM) reduced viability of HaCaT cells to 61.6% (Fig. 2B). Maplifa™ 

and GA showed cytoprotective effects by increasing the viability of HaCaT cells exposed 

to H2O2 (Fig. 2A and B) and MGO (Fig. 2C and D). Both Maplifa™ (12.5, 25, and 50 

μg/mL) and GA (12.5, 25, and 50 μM) increased the viability of H2O2 challenged cells by 

11.1–21.5% and 13.8–21.0%, respectively. Maplifa™, at the highest test concentration (50 

μg/mL), maintained 89.7% viable cells as compared to the control group, while GA at 12.5, 

25, and 50 μM, maintained cell viability at 85.9%, 91.7%, and 93.9%, respectively. The 

ameliorative effect of Maplifa™ and GA in H2O2-treated HaCaT cells was further supported 
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by morphological analysis with crystal violet staining methods (Fig. 2E). Exposure to H2O2 

impaired the integrity of cell nuclei which was shown as deformable shapes of stained nuclei 

whilst the treatment of Maplifa™ (50 μg/mL) and GA (50 μM) redeemed the normal shape 

of cell nuclei. Similarly, exposure to MGO (at 400 μM) led to significant morphological 

changes of HaCaT cells. However, Maplifa™ (50 μg/mL) and GA (50 μM) did not change 

the shape of cell nuclei as compared to the MGO-treated group.

Hydrogen peroxide, one of the most common form of ROS, has been utilized as an 

inducer of oxidative stress and cytotoxicity in experimental models.14 Previously reported 

studies support that H2O2-induced cell death can be ameliorated by dietary hydrolyzable 

tannins including ellagitannins (e.g. punicalagin) and gallotannins (e.g. penta-O-galloyl-β-

D-glucose) in human skin cells.9, 15 MGO, a byproduct formed during the oxidation of 

glucose and a precursor of AGEs, is also considered as a detrimental factor for skin 

cells as it exacerbates oxidative stress induced skin cytotoxicity, which further leads to 

many diabetes related dermatological complications.5 To date, a few studies have shown 

that MGO-induced cell death in human keratinocytes can be alleviated by some synthetic 

compounds,16, 17 but there have been no prior reports to show that natural maple-derived 

phenolics exert protective effects in HaCaT cells. It is possible that Maplifa™ and GA 

counteracted the MGO-induced toxicity in HaCaT cells by their antioxidant capacity. This is 

supported by our previous report that the inhibitory effects of Maplifa™ and GA against 

the formation of MGO-induced glycation were attributed to their antioxidant capacity 

rather than their ability to directly scavenge MGO.11 Therefore, we further evaluated the 

antioxidant activity of Maplifa™ and GA in the HaCaT cells.

3.2. Maplifa™ and GA reduced H2O2− and MGO-induced production of ROS in HaCaT

To further understand the cytoprotective of Maplifa™ and GA in HaCaT cells against 

cellular oxidative stress, we evaluated whether Maplifa™ and GA can diminish H2O2− and 

MGO-induced production of ROS. HaCaT cells responded to the oxidative stimulation of 

H2O2 by producing cellular ROS by 8.2-fold as compared to the control group. Maplifa™ 

(at 12.5, 25, and 50 μg/mL) showed cytoprotective effect in the HaCaT cells by reducing 

the production of H2O2-induced ROS by 81.2, 84.1, and 84.1%, respectively. Similarly, 

treatment of GA (12.5, 25, and 50 μM) effectively reduced the level of ROS in HaCaT cells 

by 78.8, 82.7, and 86.0%, respectively, compared to the H2O2-treated group. In addition, 

the protective effects of Maplifa™ and GA against MGO-induced oxidative stress in HaCaT 

cells were evaluated. MGO (400 μM) elevated the production of ROS in HaCaT cells by 

2.2-fold as compared to the control group (Fig. 3C and D). Treatment with Maplifa™ (12.5, 

25, and 50 μg/mL) alleviated MGO-induced oxidative stress by reducing the level of ROS 

in HaCaT cells by 41.2, 51.3, and 54.7%, respectively, while treatment with GA (12.5, 25, 

and 50 μM) also reduced ROS production by 14.2, 52.4, and 56.8%, respectively. This effect 

was further supported by the morphological analysis of confocal images of cells stained with 

DCFDA agent (Fig. 3E).

Although our laboratory has reported that GA reduced the production of H2O2-induced 

ROS in murine melanoma B16F10 cells,10 this is the first study to show GA’s antioxidant 

effects against ROS-induced stress in human keratinocytes. The cytoprotective effects of 
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red maple phenolics including GA have been associated with its modulation of antioxidant 

related genes and proteins.19 For instance, GA was reported to have chemopreventive effects 

mediated by its activation of antioxidant related signaling pathways including [NAD(P)H 

quinone dehydrogenase 1; (NQO1)], heme oxygenase-1 (HO-1), and nuclear factor erythroid 

2-related factor 2 (Nrf2) in colon cancer cells.20 Notably, the transcription factor, Nrf2, has 

been reported to play a pivotal role in the protective effects of several phenolic compounds 

against oxidative stress21. In addition, Nrf2 has been reported to regulate the antioxidant 

effects of phenolic compounds by the mediation of redox-sensitive anti-inflammatory 

signaling pathways including nuclear factor kappa-light-chain-enhancer of activated B cells 

(NF-κB)22, 23. Therefore, it is possible that GA’s antioxidant activity is attributed to its 

mediation of antioxidant and anti-inflammatory transcription factors including Nrf2 and 

NF-κB. However, further studies are warranted to confirm this.

3.3. Maplifa™ and GA alleviated H2O2-induced apoptosis in HaCaT cells

The cytoprotective effects of Maplifa™ and GA in HaCaT cells against H2O2-induced 

apoptosis were evaluated by flow cytometry analysis. The rate of apoptotic cells in the 

control group was 6.9 %, which was elevated to 21.4 % after exposure to H2O2 (400 μM; 

Fig. 4). Maplifa™ (50 μm/mL) and GA (50 μM) showed anti-apoptosis effects by reducing 

the population of apoptotic cells by 8.0 and 7.2%, respectively, as compared to the H2O2-

treated group (Fig. 4B). The population of viable cells in the control group was reduced 

from 86.8% to 60.8% after exposure to H2O2 (400 μM), and both Maplifa™ (50 μm/mL) 

and GA (50 μM) showed protective effects by increasing the population of viable cells 

to 82.4 and 78.1%, respectively (Fig. 4C). In contrast to the pro-apoptotic effect induced 

by the H2O2 stimulation, no significant increase of apoptotic cells was observed in the 

MGO-treated group (Supplementary Materials; Fig. S1), suggesting that the keratinocytes 

responded to H2O2− and MGO-induced oxidative stress via different pathways. It has been 

observed that MGO can cause apoptosis in HaCaT cells with a longer incubation time (48 

h),16 thus, further studies on the mechanisms of MGO-induced cell death, and whether 

Maplifa™ and GA can mitigate these detrimental effects were explored.

3.4. Maplifa™ down-regulated activity of enzymes caspase-3/7 and −8 in HaCaT cells

The anti-apoptotic effect of Maplifa™ and GA were further investigated by measuring their 

effects on the level of apoptosis-related enzymes, caspases-3/7, −8, and −9 in HaCaT cells. 

Stimulation with H2O2 significantly increased the level of caspases-3/7 (by 1.92-fold) and 

−8 (by 19.5%) as compared to the control group, while not affecting caspase 9 (Fig. 5). 

Maplifa™ counteracted H2O2-induced upregulation of caspases-3/7 and −8 level by 49.5 and 

19.0%, respectively, while GA only reduced caspase-3/7 (by 48.1%). No significant changes 

of caspase-9 were observed in the Maplifa™ and GA treated groups (Fig. 5).

Caspases are checkpoint proteases responsible for the initiation of cell death (apoptosis) and 

their activation can be triggered by H2O2 and other oxidative stress inducers.24 Results from 

our study show that caspases-3/7 and −8, caspase isoforms which mediate cell death via the 

extrinsic pathway of apoptosis, were elevated by the stimulation of H2O2 in HaCaT cells, 

and diminished by the treatment of Maplifa™ and GA. This suggested that Maplifa™ and 

GA may protect HaCaT cells against apoptosis triggered by extracellular ligands binding 
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to cell-surface death receptors.25 This is in agreement with our previously reported study 

showing that punicalagin, the major polyphenol in a pomegranate fruit extract, protected 

HaCaT cells from H2O2-induced apoptosis though the modulation of caspases-3/7 and −8 

level.9 Conversely, caspase-9, the initiator of apoptosis that senses endogenous oxidative 

stress, was not affected by stimulation with H2O2 in the HaCaT cells. Since studies have 

shown that caspase-9 activation is involved in the UV- and ROS-induced apoptosis of human 

keratinocytes,26, 27 further studies are warranted to delineate the signaling pathways of 

oxidative stress induced apoptosis in human keratinocytes.

3.5. Maplifa™ and GA decreased total ROS production but increased mitochondria-
derived ROS production in MGO-stimulated HaCaT cells

It is possible that Maplifa™ and GA protected HaCaT cells against MGO-induced cell death 

via their antioxidant activity, rather than through anti-apoptotic effects. This is because 

MGO did not induce apoptosis in HaCaT cells suggesting that ROS may play a critical 

role in MGO’s cytotoxic effects. Although DCFDA is a common chemical probe used 

for the measurement of ROS as shown in the aforementioned section (Fig. 3), it only 

provides qualitative information on the production of cellular oxidants in the fluorescent 

based assay18. Therefore, we further characterized the antioxidant effects of Maplifa™ and 

GA on MGO-induced production of both total ROS and mitochondria-derived ROS in 

HaCaT cells with quantitative flow cytometry assays. The total cellular ROS was measured 

with fluorescent dye DCFDA and stimulation by MGO (400 μM) significantly increased 

fluorescent intensity by 13.5-fold compared to the control group. Treatment of Maplifa™ 

(50 μg/mL) and GA (50 μM) counteracted MGO-induced total ROS production by 31.2 

and 23.6%, respectively (Fig. 6). In addition, MGO increased specific fluorescent intensity 

for mitochondria-derived ROS by 30.9%, compared to control group. However, Maplifa™ 

and GA did not prevent MGO-stimulated production of mitochondria-derived ROS (Fig. 

6C). In order to confirm this effect, a mitochondria-specific probe, namely, MitoSOX™, 

was applied to assess the levels of mitochondria-derived ROS in HaCaT cells (Fig. 7). ROS 

level, generated from mitochondria, increased by 30.9% in the MGO-treated group and was 

further increased by the treatment of Maplifa™ and GA (by 1.1- and 1.2-fold, respectively). 

Results from detection by both ROS tracker Green and MitoSOX™ methods confirmed that 

Maplifa™ and GA enhanced the production of mitochondria-derived ROS in cells stimulated 

with MGO.

ROS-induced intracellular and extracellular oxidative stress is a key factor for skin cellular 

damage, which leads to skin cell death and greatly contributes to skin aging process.28 

Evidence from extensive studies have demonstrated that antioxidants including many dietary 

natural products exert skin protective effects by reducing ROS production in skin cells.29, 

30 Our previously reported study was in agreement with this proposition as phenolics from 

pomegranate extract alleviated H2O2-induced cytotoxicity in HaCaT cells through reducing 

the production of cellular ROS.9 Similarly, Maplifa™ and GA reduced the production 

of MGO-induced total ROS, which may contribute to their overall cytoprotective effects 

in HaCaT cells. Maplifa™ and GA also increased the levels of specific mitochondria-

derived ROS in MGO-treated cells, which seemed contradictory to the results from the 

measurement of total production of ROS. However, this effect may be justified by the 
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fact that ROS plays complex dual roles in prooxidant and antioxidant pathways. Studies 

have shown that ROS can also serve as a stress signal that triggers various redox-sensitive 

signaling pathways, which may lead to protective functions against oxidative stress in 

microorganism.31 For instance, mitochondria produced ROS is crucial for Caenorhabditis 
elegans to maintain normal lifespan and increased ROS production even prolonged their 

lifespan.32, 33 Therefore, it is possible that treatment of Maplifa™ and GA may boost 

mitochondria oxidative phosphorylation, and consequently trigger signaling pathways as a 

response to simulation by MGO in HaCaT cells. However, further investigations on the 

mechanisms of Maplifa™ and GA’s protective effects against MGO-induced oxidative stress 

are warranted.

In summary, the cytoprotective effects of Maplifa™ and GA against H2O2-and MGO-

induced oxidative stress in human keratinocytes were evaluated. Maplifa™ and GA 

ameliorated H2O2-and MGO-induced cell death and cellular ROS production. Furthermore, 

the cytoprotective effects Maplifa™ and GA were attributed to their anti-apoptotic activity 

by reducing the population of apoptotic cells and downregulating the levels of apoptosis 

related enzymes including caspases-3/7 and −8 in the H2O2-challenged cells. Maplifa™ and 

GA displayed distinct effects in the MGO-induced oxidative stress model as they diminished 

the total ROS production whilst increasing the level of mitochondria-derived ROS. Findings 

from this study support the potential skin beneficial effects of Maplifa™ and GA. To 

develop Maplifa™ and GA as bioactive ingredients for cosmeceutical and/or dermatological 

applications, further investigations on their mechanisms of action are warranted.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Effect of Maplifa™ and GA on viability of HaCaT cells. HaCaT cells were treated with (A) 

Maplifa™ (12.5, 25, 50, and 100 μg/mL) or (B) GA (12.5, 25, 50, and 100 μM) for 24 h. Cell 

viabilities were measured using CTG2.0 assay.
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Fig. 2. 
Effects of Maplifa™ and GA on the viability of HaCaT cells insulted with H2O2 or MGO. 

(A and C) Maplifa™ (12.5, 25, and 50 μg/mL) or (B and D) GA (12.5, 25, and 50 μM) 

was incubated with HaCaT cells for 12 h. Then cells were insulted with H2O2 (400 μM) or 

MGO (400 μM) and further incubated for 24 h. (E) Representative microscopic images of 

H2O2-insulted HaCaT cells treated with Maplifa™ or GA. HaCaT cells were stained with 

crystal violet. ##p < 0.01 and ###p < 0.001 as compared with control group; *p <0.05, **p 
<0.01, and ***p <0.001 as compared with model group.
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Fig. 3. 
Effects of Maplifa™ and GA on the H2O2− and MGO-induced ROS production. Cells were 

treated with (A and C) Maplifa™ (12.5, 25, and 50 μg/mL) for 12 h or (B and D) GA 

(12.5, 25, and 50 μM) for 2 h. Then cells were incubated with DMEM containing DCFDA 

(20 μM) for 20 mins, followed by exposure of H2O2 or MGO (both at 400 μM) for 1 h or 

24 h, respectively. ROS level was measured by cellular fluorescence intensity with excitation 

and emission wavelengths of 485 and 525 nm, respectively. (E) Representative fluorescent 

images of H2O2− and MGO-insulted HaCaT cells treated with Maplifa™ or GA. ##p < 0.01 

and ###p < 0.001 as compared with control group; **p <0.01 as compared with model group.
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Fig. 4. 
Effects of Maplifa™ and GA on H2O2-induced apoptosis in HaCaT cells. (A) Flow 

cytometry graphs showing apoptotic cell populations (annexin V+/PI− and annexin V+/PI+) 

and viable cell populations (annexin V−/PI− ) of HaCaT cells with or without treatments of 

Maplifa™ and GA were quantified by gated patterns in double stains. (B-C) HaCaT cells 

stained with annexin V-FITC/PI and assayed by flow cytometry. The flow cytometry graphs 

show the population of cells from one representative values of three separate experiments. 
##p < 0.01 as compared with control group; *p <0.05 as compared with model group.
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Fig. 5. 
Effects of Maplifa™ and GA on (A) cellular caspase-3/7, (B) caspase-8, and (C) caspase-9 

in HaCaT cells exposed to H2O2. HaCaT cells were incubated with Maplifa™ (50 μg/mL) 

and GA (50 μM) for 12 h before H2O2 induction. #p < 0.05 and ##p < 0.01 as compared with 

control group; *p < 0.05 as compared with model group.
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Fig. 6. 
Effects of Maplifa™ and GA on MGO-induced production of mitochondria-derived ROS. 

HaCaT cells were treated with Maplifa™ (50 μg/mL) or GA (50 μM) for 2 h, followed by 

exposure of MGO (400 μM) for 24 h. Next, the cells were incubated with 20 μM DCFDA 

for 20 mins. After the cells were washed, 5 μM MitoSOX™ reagent working solution was 

added and incubated for 10 mins and the cells were assayed by flow cytometry (A). The 

frequency of ROS positive cells (B) and frequency of mitochondria-derived ROS positive 
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cells were quantified (C) with FlowJo. #p < 0.05 and ###p < 0.001 as compared with control; 

**p < 0.01 as compared with model goup.
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Fig. 7. 
Effects of Maplifa™ and GA on MGO-induced production of mitochondria-derived ROS. 

HaCaT cells were treated with Maplifa™ (50 μg/mL) or GA (50 μM) for 2 h, followed by 

exposure of MGO (400 μM) for 24 h. Next, the cells were incubated with 5 μM MitoSOX™ 

reagent working solution for 10 mins and assayed by flow cytometry (A). Intensity of 

mitochondria-derived ROS measured by Tracker Red were quantified with FlowJo (B). #p < 

0.05 and ###p < 0.001 as compared with control group.
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