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ABSTRACT

Personalized physics-based flow models are becoming increasingly important in cardiovascular medicine. They are a powerful complement
to traditional methods of clinical decision-making and offer a wealth of physiological information beyond conventional anatomic viewing
using medical imaging data. These models have been used to identify key hemodynamic biomarkers, such as pressure gradient and wall shear
stress, which are associated with determining the functional severity of cardiovascular diseases. Importantly, simulation-driven diagnostics
can help researchers understand the complex interplay between geometric and fluid dynamic parameters, which can ultimately improve
patient outcomes and treatment planning. The possibility to compute and predict diagnostic variables and hemodynamics biomarkers can
therefore play a pivotal role in reducing adverse treatment outcomes and accelerate development of novel strategies for cardiovascular disease
management.
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I. INTRODUCTION

The last several decades have witnessed lifestyle modification and
evidence-based interventions to decrease the burden of cardiovascular
diseases (CVDs). Despite the success of these approaches, CVDs con-
tinue to place a large burden on the healthcare system. At present,
there are 92.1 million adults in the United States suffering from some
form of CVD. Therefore, CVDs continue to dominate healthcare costs
and are projected to surpass 1 trillion dollars by 2035, according to the
American Heart Association.1–4 The methods for diagnosis and pre-
vention of CVDs remain largely elusive due to the broad heterogeneity
in patient profiles and clinical outcomes, which thereby necessitate
deeper phenotyping of patient physiology. This gap has paved the way
for personalized cardiovascular computational modeling approaches
in basic and clinical cardiovascular research and practice.5 Such mod-
els are designed to incorporate the unique anatomy and physiology of
a patient used to define model parameters, predict patient outcomes,
and devise optimal treatment strategies. The initial studies incorporat-
ing blood flow simulations to derive pressure loss across an arterial
vessel go back 40 years;6 however, due to the tremendous increase in
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computational power and recent developments in medical imaging
there has been an exponential increase in physics-based flow models
to understand the development and progression of CVDs.7–12 In this
review, we discuss the theory and application of personalized, physics-
based models of cardiovascular dynamics.

The pursuit and clinical acceptance of physics-based models in
cardiovascular medicine have been accelerated in part by the work
found in Refs. 13–19. The underlying reason for clinical acceptance is
the potential wealth of information provided by physiological flow
data, in addition to the anatomic detail provided by the medical diag-
nostic imaging data. Patient physiology provides a powerful comple-
ment to clinical decision-making and helps to uncover the complex
relationship between patient anatomy and outcome. This complex
relationship has been established by several clinical studies that have
demonstrated that anatomy by itself does not reveal the underlying
pathophysiological mechanisms.20–22 The evidence of this complexity
was demonstrated by a sub-study of the Clinical Outcomes Utilizing
Revascularization and Aggressive Drug Evaluation trial, where patients
with similar lesion anatomy (>70% stenosis—narrowing in the vessel)
exhibited conflicting outcomes, such that 32% had severe ischemia
and 40% had mild-to-no ischemia.11,21 Therefore, physiology-guided
interventions have been the cornerstone of modern cardiology prac-
tice. However, interventional procedures are generally invasive and
expensive, which has inhibited the wide-scale use of such
approaches.11,23 Avoidance of an invasive procedure not only reduces
patient discomfort but also lowers the procedural cost and saves physi-
cian time. These reasons have inspired development of physics-based
models being used as a fundamental tool in cardiovascular research,

justifying the efforts being made to integrate such computational
methods into routine cardiovascular practice. There have been a vast
number of physics-based principles of electromechanics, solid
mechanics, and fluid dynamics that are being applied to study the car-
diac electrophysiology, cellular mechanics, and cardiovascular dynam-
ics. However, in this review we restrict our discussion to macroscopic
(>1mm) flow models of the cardiovascular system, and for electro-
physiology and cellular mechanics, refer interested readers to the
works of Roberts et al.,24 Niederer et al.,25 and Trayanova et al.26

Physics-based models hold significant appeal because they can be
used to create a physiological road map for physicians directly from
diagnostic imaging data. They advance the concept of evidence-based
medicine to precision medicine by tailoring interventional procedures
to each individual patient instead of designing procedures for a general
patient population. However, current cardiology practice lies between
this continuum of personalization and generalization.27,28

Personalization of cardiovascular models is attained by integrating
patient-specific imaging data and patient clinical record data as input
parameters to physics-based flow models (Fig. 1). Physics-based flow
models are based on well-established governing equations of mass and
momentum conservation with appropriate initial and boundary con-
ditions. As such, there are several medical imaging modalities and
physics-based models that can be used for developing computational
framework to study cardiovascular flows. We will discuss both these
aspects in Sec. II. Furthermore, in Sec. III, we will discuss the applica-
tion of cardiovascular models in different CVDs for transforming clin-
ical cardiology and cardiovascular research. We will then detail
challenges and limitations of existing modeling approaches in Sec. IV,
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FIG. 1. Overview of cardiovascular modeling workflow. The process involves collecting patient information, medical imaging data, and clinical records, which are then proc-
essed to reconstruct patient-specific three-dimensional geometries and derive personalized boundary and initial conditions. Subsequently, this information is used as input to
numerical solvers, which then solve using mathematical equations of physics-based models using state-of-art computer hardware. Such a computational framework results in
patient-specific physiological flow information, which can be used for model validation against clinical measurements.
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specifically focusing on model parameterization, accuracy, and
robustness.

II. CURRENT METHODS FOR PATIENT-SPECIFIC
MODELING

In this section, we will cover three key areas that together make
up the necessary framework required for developing cardiovascular
flow models: (1) medical imaging modalities commonly used for arte-
rial reconstruction, (2) computational methods for performing cardio-
vascular simulations, and (3) importance of initial and boundary
conditions (Fig. 2).

A. Medical imaging modalities for patient-specific
model reconstructions

An important driver for cardiovascular flow simulations is the
medical imaging data. Advancements in the field of medical imaging
have been attributed to underpin the paradigm shift that is being wit-
nessed with respect to the increasing adoption of mechanistic descrip-
tions of arterial hemodynamics. Furthermore, innovative extension of
established diagnostic imaging techniques, such as magnetic resonance
imaging (MRI), coronary angiography (CA), and computed tomogra-
phy angiography (CTA), have enabled integration with numerical
flow models and helped gain insight into cardiovascular biophysics
that was previously unavailable [Figs. 2(a)–2(d)]. Synergistic overlap
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FIG. 2. Framework for physics-based models to simulate cardiovascular flows. Top panel (a–d) depicts different medical imaging modalities commonly used in cardiovascular
flow models. (a) Computed tomography angiography. (b) Coronary angiography. (c) Magnetic resonance imaging. (d) Intravascular ultrasound. Middle panel [(e)–(g)] depicts
three-dimensional (3D) computational fluid dynamic model. (e) Initial conditions applied to a patient-derived 3D left coronary artery geometry. (f) 3D output data: pressure field.
(g) 3D output data: wall shear stress (WSS). [(h) and (i)] depicts reduced-order flow model. (h) 3D coronary model reduced to one-dimensional coronary tree model with trifur-
cation and terminal branches modeled using a structured tree with feedback pressure. (i) Output data: pressure and flow rate for different coronary vessels. Panels (b) and (c)
reproduced from H. Baccouche, T. Beck, M. Maunz, P. Fogarassy, and M. Beyer, Journal of Cardiovascular Magnetic Resonance 11(1), 1–4 (2009).237 Copyright 2009
Authors, licensed under a Creative Commons Attribution (CC BY) license. Panel (d) reproduced from Y. Rim, D. D. McPherson, and H. Kim, Biomedical Engineering Online
12(1), 115 (2013).29 Copyright 2013 Authors, licensed under a Creative Commons Attribution (CC BY) license. Panels (h) and (i) reproduced from Z. Duanmu, W. Chen, H.
Gao, X. Yang, X. Luo, and N. A. Hill, Frontiers in Physiology 10, 853 (2019).30 Copyright 2019 Authors, licensed under a Creative Commons Attribution (CC BY) license.
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between clinical imaging techniques (CTA, MRI) and mathematical
modeling (numerical solvers) has allowed researchers to interrogate
arterial physiology in novel ways.31–33

Generally, after the acquisition of medical imaging data from var-
ious diagnostic techniques, the data is processed using image segmen-
tation software. Different regions of interest consisting of a particular
anatomic feature are identified along the full stack of image data,
which is followed by mesh discretization, voxel reconstruction, and
three-dimensional (3D) volume rendering to create a patient-specific
3D geometry.33,34 This process of anatomic reconstruction can be per-
formed using various open source and commercial software packages.7

Since geometric reconstruction is generally the first step of computa-
tional modeling, it is also imperative to validate the accuracy of recon-
structed patient geometries with experts in the respective field. As
such, operator-based variations in segmentation and reconstruction
can be seldom avoided and remain inherent; however, double-blinded
experiments, automated segmentation approaches, and uncertainty
quantification can help determine the exact nature of influence on
simulation results.35,36 In addition to the variance and validation of
medical image reconstruction, two important considerations are the
ease and speed of the software.33 To this end, deep learning (DL) algo-
rithms are gaining significant traction for medical image analysis and
segmentation.37–40 Since image segmentation is a fundamental appli-
cation of machine learning (ML), improving the time needed to seg-
ment by automating the reconstruction process and alleviating user-
specific judgment bias can increase the accuracy and availability of
patient-specific segmentation.37–40

With the availability of imaging data from different diagnostic
techniques, there are a range of cardiovascular flow modeling studies
that have used different model reconstructions derived from various
imaging modalities (Table I). CTA has been a forerunner in driving
cardiovascular modeling due to several important features including:
non-invasiveness, high spatial-temporal resolution, perfusion assess-
ment, and characterization of plaque development.31,41,42 CTA-based
computational methods are an excellent demonstration of an end-to-
end non-invasive pipeline for diagnostic assessment of arterial
physiology.11,43–46

Beyond arterial physiology, CTA also enables development of
personalized ventricular models for treatment planning procedures.91

MRI is regarded as the “one-stop-shop”92 for the diagnostic
assessment of cardiac physiology, it can provide information ranging
from anatomy, perfusion, and tissue properties.31,92 As a result, many
cardiovascular studies have employed 3D geometries derived from
MRI.66–68 Additionally, phase-contrast MRI (PC-MRI) or four-
dimensional (4D) MRI can provide information about flow velocity,
which can be used for in vivo validation and setting initial conditions
in cardiovascular simulations.67,68,93 However, long acquisition time
over several cardiac cycles, electrocardiogram gating, and risks to
patients with implanted devices can affect the image resolution and
the quality of flow information derived fromMRI.31,94

CA is the current gold standard for the assessment and diagnosis
of coronary arteries, vessels that supply blood to the heart.95,96 More
than 1.2 million catheterizations are performed each year in the
United States.95 CA also has a higher temporal and spatial resolution
than CTA.96 Similar to CTA, 3D reconstructions from CA can be
derived using commercial software packages (QFR, Angio XA 3D soft-
ware, Medis Medical Imaging System bv, the Netherlands; AngioPlus,

Pulse Medical Imaging Technology, Shanghai, China; CAAS
Workstation, Pie Medical Imaging, Maastricht, the Netherlands) or
complex mathematical reconstruction algorithms.10,97,98

Advancements in CA with adoption of 3D quantitative CA (3D QCA)
and rotational coronary angiography (RoCA) have furthermore made
CA amenable for arterial reconstruction.17,18,97,99–101 However, when
both the aorta and coronary arteries are the vascular region of interest,
other imaging modalities such as CTA or cardiac magnetic resonance
(CMR) are more commonly used. Additionally, when just the coro-
nary arteries are segmented using CA, the inlet boundary conditions,
e.g., coronary flow velocity may require the need of clinical techniques,
such as Doppler velocity calculation, or a literature-derived rather
than patient-specific boundary condition. In contrast, CTA can be
used to directly estimate coronary blood flow using transluminal
attenuation flow encoding.102

Intravascular ultrasound (IVUS) and optical coherence tomogra-
phy (OCT) are also common imaging modalities that have been
employed in computational cardiology.47,48,56,62,63,103,104,240 IVUS has
been used for reliably detecting plaque compositions, but due to the
low spatial resolution (150 lm), it cannot provide a detailed anatomic
view of stented vessel segments and micro-calcification.105,106 OCT
overcomes these limitations by using light waves instead of mechanical
waves (employed in IVUS) and can accurately detect plaque formation
and atherosclerosis in vessel segments at very high resolutions (15
lm).107–109 However, OCT suffers from poor signal penetration and
therefore cannot be used for visualizing entire arterial wall.107–109

Recently, IVUS-OCT based multimodality approaches are being pro-
posed for calculating patient-specific coronary cap thickness and
stress/strain calculations with greater accuracy.110,111

With several state-of-art medical imaging modalities, we note
that the choice of imaging technique used for geometric reconstruction
depends on the research question being interrogated by a specific
study, physical scale of the anatomic feature being investigated, and
the availability of the data. As such, for characterization of plaque
microstructures, OCT is a suitable choice, whereas for vessel segments,
such as coronary arteries, CA and CTA and would be more appropri-
ate.107 Due to the wider availability of CA data, CA can be the imaging
technique of choice to conduct large-scale retrospective population-
based studies.95 MRI and CTA can be useful for understanding the
whole anatomy of the heart, major vessels, ventricle function, and aor-
tic diseases.109,112 Finally, PC-MRI or 4D MRI can be used for direct
evaluation of hemodynamics by determining the velocity field in all
directions of the gradient magnetic field.109,112

B. Computational methods for cardiovascular
simulations

Medical imaging data provides anatomic information, but does
not reveal the underlying patient physiology. Anatomy-physiology
relationships are complex and to gain insight into the physiological
landscape flow metrics, such as pressure and velocity, are needed.
Numerical models can be used to compute these metrics using cardio-
vascular form-function relationships.11,41,113 Such relationships can be
mathematically defined using governing equations of fluid dynamics
applied to the anatomic information attained in the form of 3D
patient-specific geometries.11,41,113 As such, one of the initial imple-
mentations of such a relationship is Murray’s law, which establishes
the mathematical relationship between vessel size and flow Q / dk,
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TABLE I. Physics-based flow model in cardiovascular diseases. (Abbreviations listed below.a)

Computational
Framework General Topic of Study Reference

Imaging modality; CFD model
IVUS, CA, CT; NS Association between wall thickness and ESS promotes atherosclerosis and can lead to ACS

in vivo coronary models
19,47

IVUS and OCT; LBM Understand the impact of the anatomy of coronary lesions on FFR using QCA and IVUS 48
IVUS, CA; NS PROSPECT study: Predict non-culprit MACEs using plaque characteristic and low ESS 49
CTA; NS, FEA Studying adverse conditions during TAVR 50,51
CTA, FSI (Simvascular) CAA hemodynamics in anomalous aortic origin of the right coronary artery 52, 53
CTA; NS Validate on-site algorithm for CCTA-FFR against invasive FFR 13–15, 43 ,54
CTA; LBM Evaluated the diagnostic accuracy of LBM based flow solver for CT-FFR 46
CTA; NS (COMSOL) Using simple boundary conditions to validate CCTA-FFR with invasive FFR 44
CTA; NS (Ansys Fluent) Predictive parameters (f: viscous friction and s: expansion loss) without hyperemic conditions

using idealized models and patient-specific models for initial validation and clinical
validation

55

CTA; NS Accuracy and consistency of CCTA-FFR compared to QCA-FFR in patients with stenoses in
the left coronary artery relative to invasive FFR

45

CA, 3D QCA; NS Simple boundary conditions for virtual hemodynamic assessment of coronary arteries using
routine angiogram data

18

CA, 3D QCA with TIMI;
NS (Fluent)

Efficient computer model to compute non-invasive FFR and determine the functional signifi-
cance of intermediate lesions in obstructed coronary arteries

17

CA, VH-IVUS; NS Examine the difference between physiology and anatomy derived from IVUS and CA 56
CA, OCT, CT; LBM, NS Study the impact of anatomy on TAWSS and volumetric flow in coronary arteries 57–59
OCT, CA, NS and FSI Determine the difference between the FSI and the CFD-based model in calculating local

hemodynamic parameters
60, 61

OCT; NS (Ansys Fluent) Identify vulnerable plaques using frequency-domain OCT-based ESS assessment 62
OCT; NS Validate OCT-based noninvasive FFR against invasive FFR for intermediate lesions

(40%–70% lesions)
63

MRI; NS, FSI Biomechanics in bicuspid aortic valve 64
MRI; NS Study hemodynamic conditions to understand aneurysm thrombosis in Kawasaki disease 65
MRI; NS Compare CFD-derived hemodynamics from MRI and CT for realistic coronary geometries 66
4D MRI; NS Application of blood flow imaging in predictive cardiovascular medicine 67
PC-MRI; NS Coupled application of PC-MRI and fluid-physics model to study blood flow 68

Imaging Modality; Reduced-order model
CCTA; 1D–0D Feasibility of using reduced-order models compared to 3D CFD methods: accuracy and com-

putational time
69

IVUS, CCTA; 1D, 3D Validate 1D models against 3D models in hyperemic conditions and established when prop-
erly tuned, the 1D model provides an exact match to 3D models for diagnosis

70

Idealized reconstructions;
2D, 3D

Compare 2D, semi-3D, and 3D models for FFR computation to study the influence of model
order using parameterized arterial geometries

71

CCTA; 1D–0D, 3D rigid Benchmark study comparing the diagnostic performance of four different reduced-order
models and 3D CFD model

72

Open source 3D geome-
try; 1D multifidelity
parameter inference

Predictive probabilistic model: Uncertainty quantification and Bayesian optimization for a
1D model to compute FFR in coronary artery disease

73

IVUS, CCTA; 1D–0D Impact of flow parameters on fractional flow reserve prediction 74
Medical imaging data; 0D,
1D, 3D

Uncertainty quantification in cardiovascular hemodynamics using multilevel-multifidelity
computational approaches

75

CA; LPM Clinical assessment for the adoption of fast FFR approaches using routine angiogram data 12, 23, 76
CT; LPM Derived FFR and compared LPM to 3D CFD data 77
CT; LPM Accuracy of on-site CT-based FFR assessment relative to CT alone 78
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whereQ is the flow rate through a blood vessel, d is its diameter, and k
is a constant. This relationship is further exemplified by Poiseuille’s
equation, which relates vessel flow rate, Q; vessel diameter, d; fluid vis-
cosity, l; and wall shear stress (WSS), sw, with the following
equation:11

Q ¼ p
32l

swd
3: (1)

WSS can be computed as

sw ¼
rDp
2‘

; (2)

where r is radius of the vessel, ‘ is the length of the vessel, and DP is
pressure gradient.114

Another important relationship is that of pressure, p, and flow
rate,Q, to determine the resistance, R, of flow,115

p ¼ QR: (3)

The physiological behavior of arterial vessels in the cardiovas-
cular system can be recovered through the application of these
equations [Eqs. (1) and (2)]. For example, the inverse relationship
between Q and R implies that vessels with smaller diameters offer
larger resistances to flow. The physiological flow variables of pres-
sure and velocity can be derived from solving the 3D Navier-Stokes
(NS) equations, which are the governing equations of fluid

dynamics. The NS equations account for conservation of mass and
momentum [Eq. (4)],

r � v ¼ 0;

q
Dv
Dt
¼ �rP þ lr2v þ f : (4)

In these equations, v is velocity, q is density, l is viscosity, pressure is
P, and f is the force term.

It is important to note the powerful nature of NS equations,
which can be applied to a range of fluid dynamic applications ranging
from aerodynamic to biological flows. The NS equations are non-
linear partial differential equations that cannot be analytically solved
for a realistic complex patient-specific geometry. Therefore, numerical
methods are needed to solve the NS equations and these collectively
form the specialist field of mathematics and physics, commonly called
computational fluid dynamics (CFD). Besides pressure and velocity,
additional flow variables, WSS, oscillatory shear index (OSI), and vor-
ticity can also be derived from 3D CFD solvers [Figs. 2(e)–2(i)]. OSI
characterizes whether the WSS vector is aligned with the time-
averaged wall sheer stress (TAWSS) vector during the phase of a
cardiac cycle, and vorticity is the magnitude of the curl of the velocity
vector.116–118 Generally, incompressible NS equations are solved for
hemodynamic simulations.9,41 Table I lists different cardiovascular
studies that use CFD solvers based on the NS equations. In these stud-
ies, a common assumption in cardiovascular flow simulation is that

TABLE I. (Continued.)

Computational
Framework General Topic of Study Reference

Imaging modality; Machine learning approach
MRI, CT; NN NN-based cardiovascular framework to reduce manual segmentation 79
Synthetic database CT;
NN

Validate a ML model against conventional physics-based approaches 80

CT; NN Multi-center trial to compare ML with CFD based FFR 81
CT-based virtual and real
patient imaging data;
Feed-forward NN

Compare three ML models of varying complexity for FFR calculation 72

Automatic Image Analysis Interpretation of chest roentgenograms, ecetrocardiographs, angiograms, CT data and echo-
cardiographic parameters

82–86

CT, NN ML-based DOE study to understand the effect of physiological conditions on patient
hemodynamics

87

Multilayer perceptron
neural network and
Gaussian conditional ran-
dom fields

Calculating pro-atherogenic factors such as WSS and TAWSS to reduce computational time 88, 89

Multi-objective
optimization

Optimal stent design to minimize adverse flow conditions and stent failure 90

aAbbreviations—ACS: acute coronary syndrome; MACEs: major adverse cardiac events; FFR: fractional flow reserve; LPM: lumped parameter model; CT: computed tomography;
CA: coronary angiography; CCTA: computed coronary tomography angiography; 3D QCA: three-dimensional quantitative coronary angiography; OCT: optical coherence tomogra-
phy; IVUS: intravascular ultrasound; VH-IVUS: virtual histology intravascular ultrasound; MRI: magnetic resonance imaging; LBM: lattice Boltzmann method; 0D: zero dimen-
sional; FSI: fluid-structure interaction; ML-machine learning; CFD: computational fluid dynamics; NN: neural network; 1D: one-dimensional; 2D: two-dimensional; WSS: wall shear
stress; TAWSS: time-averaged wall shear stress; TIMI: thrombolysis in myocardial infarction; CAA: coronary artery anomaly; TAVR: trans aortic valve replacement.
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the blood is modeled as Newtonian fluid.41,58,99 This assumption is
valid for larger arteries, such as the aorta and coronary arteries; how-
ever, in smaller vessels the shear rates necessitate a non-Newtonian
description.7,119 An alternate to traditional numerical discretization
schemes for NS solvers, such as finite difference and finite volume
methods, is the lattice Boltzmann method (LBM)114,120–123 LBM is
becoming increasingly popular, as it can handle complex geometries
and scales efficiently on parallel architectures due to the low commu-
nication to computation ratio.46,48,124–127 Instead of solving directly for
velocity and pressure, in the LBM, fluid is described by a particle distri-
bution function fiðx; tÞ, which represents the density of particles at
grid point, x, and time, t, traveling with discrete velocity, ci,

fiðx þ ci; t þ 1Þ � fiðx; tÞ ¼ �Xðfiðx; tÞ � f eqi ðx; tÞÞ: (5)

f eqi denotes that equilibrium distribution function, and X denotes the
collision operator.114,128 The left-hand side of Eq. (5) is the non-local
streaming step where particles propagate to their nearest neighbors,
and the right-hand side of Eq. (5) is the local collision step, which is
non-linear and where particles relax to their equilibrium state based
on the local equilibrium distribution rule.114

The non-linearity and complexity of solving the NS equations in
3D using either finite difference or the LBM schemes pose extraordinary
computational demands, and typically to meet those demands, high
performance computing (HPC) and modern computer hardware are
required. As an alternative, researchers have also investigated the use of
reduced-order blood flowmodels, which simplify the spatial dimensions
of the underlying governing equations [(Figs. 2(j) and 2(k)].129,130 Table
I lists several studies that rely on reduced-order models. One-
dimensional (1D) model and 0-dimensional [0D or lumped parameter
models (LPM)] are commonly used in cardiovascular stud-
ies.12,23,69–74,76 Similar to NS equations, the governing equations for 1D
blood flow consist of conservation of mass [Eq. (6)] and momentum
[Eq. (7)], and are derived by integrating the 3D Newtonian and incom-
pressible NS equations over a cross-sectional area,131–134

@A
@t
þ @Q
@x
¼ 0; (6)

@Q
@t
þ @

@x
a
Q2

A

� �
þ A

q
@P
@x
¼ �Cf

Q
A
: (7)

In Eqs. (6) and (7), A is the cross-sectional area, Q is the flow
rate, P is the pressure, and q is the density of blood. The term
Cf ¼ represents friction with dynamic viscosity, �, and a represents
the velocity profile.131–134 Finally, to establish the relationship between
P and A, Eq. (8) is commonly used,135,136

P ¼ Pext þ b
ffiffiffiffi
A
p
�

ffiffiffiffiffiffi
A0

p� �
; b ¼

ffiffiffi
p
p

Eh
ð1� g2ÞA0

: (8)

Here, Pext is the external pressure on the blood vessels, A0 is the
cross-sectional area of the segment when P ¼ Pext , b is a vessel stiff-
ness parameter determined by elastic modulus, E; vessel wall thickness,
h; and Poisson’s ratio, g.135,136

Similar to 1D models, LPMs (or 0D models) are also used to per-
form patient-specific cardiovascular simulations.12,23,70 The essential
difference between 1D and 0D models is the limiting assumption in
0D models that wave propagation is not incorporated, which is an
important component of cardiovascular flows.137 Several works have

extensively compared reduced-order models (1D models or 0D mod-
els) and traditional 3D CFD approaches.70,137–140 1D models capture
pressure and flow wave propagation along the axial direction.136 0D
models treat the arterial network as an electrical circuit and the vessel
segments as resistors.23 This reduction in spatial dimensions lowers
the degrees of freedom significantly, enabling fast computation in
minutes on a single computer core.9,132,133,138 However, the dimen-
sional reduction also results in loss of important hemodynamics flow
variables such as WSS, velocity profile, vorticity, and OSI.116–118

Therefore, there exists a trade-off between the use of 3D models and
reduced-order models. As such, to capture local flow features and
high-fidelity physics, 3D models would be more suitable, although
they come with significant computational cost.116,124

Alongside an increased use of 3D CFD models and reduced-
order models, machine-learning approaches, specifically deep-learning
(DL) algorithms, are gaining traction within cardiovascular medi-
cine.72,79,81–86 Broadly, the application of ML algorithms can be
described in three domains: (1) image-based interpretation/segmenta-
tion, (2) electronic health record (EHR) data using natural language
processing (NLPs), and (3) predicting flow features. We discussed ML
application for image-based interpretation/segmentation in Sec. II B.
Due to the diverse literature on the application of ML methods, such
as use of NLPs in clinical notes and EHR data, the interested reader is
referred to some recent reviews.141–143 In this review, we focus on
studies relying on ML algorithms to predict physiological flow varia-
bles that have been traditionally derived from 3D CFD solvers and
play an important role in the progression of cardiovascular disease.

Trans-stenotic pressure gradient, WSS, and OSI are examples of
flow variables being predicted. A recent CFD study combined machine
learning and design of experiment methodologies to investigate the
effect of physiological conditions (such as flow rate and hematocrit)
on patient hemodynamics.87 Another study with the goal to reduce
computational time needed for performing 3D CFD simulations used
multilayer perceptron and Gaussian conditional random fields to cal-
culate pro-atherogenic factors, such as WSS and TAWSS.88,90

Furthermore, few works have applied ML-based multi-objective opti-
mization in treatment planning of CVDs, for example, to determine
optimal stent design [a stent is an expandable tube-like structure used
for treating a stenosed (narrowed) vessel] that can minimize adverse
flow conditions and stent failure.90 ML methods, such as neural net-
works, have also been applied to compute global hemodynamic-based
diagnostic metrics, such as trans-stenotic pressure gradient, using syn-
thetic datasets and validated on real patient imaging datasets.72,80,81

Such studies underscore that there is an expanding body of literature
in ML applied to cardiovascular flow modeling. While these techni-
ques require further refinement and validation by conducting large
prospective and retrospective clinical evaluations, they show promising
results for a future role in accelerating CVDmodeling research.

C. The importance of boundary conditions

Computational simulations of the entire human cardiovascular
network is time-intensive and poses formidable computational
demand. To address this challenge, simulations are performed only on
specific regions of the cardiovascular system such as, aorta, carotid, or
coronary arteries.93,144–146 As the human cardiovascular system is a
closed loop system, the effect of excluded portions of the cardiovascu-
lar network can be modeled by applying appropriate boundary
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conditions (BC) at the open boundaries: inlets and outlets.93,144,145

Accurate application of BC is important to precisely model the cardio-
vascular network outside of the simulated domain, therefore, BC
bridge the global vascular circulation with the local 3D domain.147,148

Furthermore, the choice of BC has a direct impact on how accurately
in vivo hemodynamics can be captured by CFD models because local
fluid dynamic conditions are determined based on conditions
upstream and downstream of the simulated 3D domain.41,57,58,145

Several studies have demonstrated the importance of realistic BCs by
evaluating quantitative differences in the flow parameters and velocity
fields.145,149,150

In cardiovascular simulations, boundary conditions at the vascu-
lar walls are generally implemented with the no-slip or zero-velocity
boundary conditions.11,144,145 However, the choice for open bound-
aries (inlet and outlet) is not trivial.93,144,149 Several works have investi-
gated the role of different inlet and outlet BC in cardiovascular flow
models.149–151 Generally, inlet boundary conditions are prescribed by
using a pressure or flow waveform in pulsatile simulations, or fixed
velocity or pressure measurements for steady flow simulations.149 If
the waveform is directly applied at the inlet of a vessel segment, such
an implementation is called open loop configuration, and with this
implementation the effects of global circulation cannot be
recovered.144

In the case of outlet BCs, several choices exist. Zero-traction or
zero-pressure BC have the simplest numerical implementation and
can be applied at the boundaries. However, they cannot capture physi-
ologic levels of pressure and are therefore not amenable for patient-
specific cardiovascular simulations.144 A more sophisticated approach
for outlet BC is using the Windkessel circuit, which connects the 3D
NS simulation domain to LPM. The LPM can be explained as an elec-
trical circuit such that the pressure can be modeled with resistors, ves-
sel deformation with capacitors, and inertial flow using inductors.146 A
Windkessel circuit is comprised of two resistors and a capacitor, which
correspond to proximal and distal pressure drop and distal vessel com-
pliance, respectively.145 A study by Pirola et al.93 compared five differ-
ent implementations of boundary conditions, including Windkessel
and pressure BC, in aortic circulation. This study evaluated the differ-
ences in flow distributions and WSS arising from five different outlet
BC (OBC) types compared to PC-MRI data for aortic flow (Fig. 3).
The five different OBCs were implemented as follows: Windkessel
model at ascending and descending aorta (OBC 1), Windkessel model
at ascending aorta and flow waveform at descending aorta (OBC 2),
flow waveform at ascending aorta and pressure waveform at descend-
ing aorta (OBC 3), flow waveform at ascending aorta and zero pres-
sure at descending aorta (OBC 4), and zero pressure at ascending
aorta and descending aorta (OBC 5). The findings of this study sug-
gested that the Windkessel model was in good agreement with in vivo
PC-MRI flow data and recovered physiological pressure waveforms.
On the other hand, zero-pressure outlet BCs should generally be
avoided in cardiovascular flow models if the goal is to predict physio-
logically relevant flow and pressure features, reinforcing the need for
careful examination of BCs.93,144

III. TRANSLATING PHYSIOLOGICAL FLOW DATA INTO
CLINICAL READOUTS

Personalized computational models can be used as a complemen-
tary tool to improve the understanding of complex biomechanical

behaviors in several cardiovascular diseases. Modeling approaches
described in Sec. II B can compute intravascular hemodynamic forces
at spatiotemporal resolutions that have been intractable for even mod-
ern day clinical diagnostic methodologies.9

These investigations are of paramount importance to push the
boundaries of cardiovascular research and drive novel insights into
disease pathologies and treatment planning because the remodeling of
the vascular system is inherently regulated by mechanical loads and
hemodynamic forces.7 One such important metric is WSS, which is a
pro-atherogenic risk factor that has been demonstrated to play a role
in stent thrombosis and restenosis.116,152,153 Deriving WSS clinically
can be difficult and invasive without specialized imaging
techniques.154

3D CFD models can compute spatial maps of WSS across the
arterial geometry reconstructed from patient images.56,57,153,155 In
addition, physical quantities that are routinely used in clinics, such as
pressure and volumetric flow fields, can also be computed from CFD
models.57,59,76 For deriving WSS there do not exist direct clinical tech-
niques such as invasive pressure wire, which underscores the impor-
tance to validate such flow-based models. Typically, the accuracy of
CFD applications is established by comparing results to flow simula-
tions where analytic results, such as Womersley and Dean flows can
be computed using the incompressible NS equations. Such analytical
comparisons are unfeasible for vascular geometries because flow
through these structures needs to be resolved through complex narrow
branches. Therefore, it is important for studies reporting WSS in vas-
cular geometries to validate either using in vitro experiments or 4D
MRI measurements.

Validated CFD models of the cardiovascular system have estab-
lished the direct influence of hemodynamic forces on the development
of atherosclerosis and disease progression.153,156 Several clinical trials
demonstrate the usefulness of physics-based modeling approaches for
understanding and improving diagnosis and treatment of several dif-
ferent types of CVDs (Table II). In Secs. IIIA–III C, we will discuss the
application of computational models spanning from development of
new devices to routine clinical decision-making in different cardiovas-
cular disease areas, specifically coronary disease, aortic diseases, and
congenital heart diseases.

A. Coronary artery disease and physiology

Coronary artery diseases account for 45% of overall deaths due to
CVDs. Accurately diagnosing the severity of coronary disease gener-
ally requires an invasive procedure. Computational models can mini-
mize the need for invasive instrumentation by deriving intravascular
physiology non-invasively; such approaches are gaining increasing
acceptance in interventional cardiology. A notable example is frac-
tional flow reserve (FFR), which has emerged as the gold standard for
the assessment of coronary artery physiology and is widely employed
to determine ischemia-causing lesions.157

FFR is an invasive procedure where a physician uses a pressure-
guided wire to measure the ratio of mean distal pressure in the coro-
nary artery (Pd) to the mean aortic pressure (Pa) during the period of
maximum hyperemia. Hyperemia is induced using intravenous
administration of pharmacological agents that cause vasodilation.
However, the accessibility and the high procedural costs of FFR have
restricted its wide-scale utilization and have paved the way for compu-
tational methods that can non-invasively derive FFR (Table I). In
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FIG. 3. Suitability of boundary conditions in aortic flow. (a) Comparing axial velocity along the descending aorta using phase contrast magnetic resonance imaging (represented
by the slice location in the aorta) data. Comparisons were made at different point of the cardiac cycle: T1—mid-systolic (T1, top row), T2—peak systole (T2, middle row), and
T3—mid-systolic deceleration (T3, bottom row). (b) Top panel—Time-averaged wall shear stress (TAWSS) results obtained with the five sets of outlet boundary conditions
(OBCs). Bottom panel—local absolute differences in TAWSS compared to results obtained with OBC1. (c) Top panel—Oscillatory shear index (OSI) results obtained with the
five sets of OBCs. Bottom panel—local absolute differences in OSI compared to results obtained with OBC1. Panels (a), (b), and (c) reproduced with permission from Pirola
et al., J. Biomech 60, 15–21 (2017). Copyright 2017 Elsevier.
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TABLE II. Clinical trials based on cardiovascular flow models in aortic diseases, congenital heart diseases, and coronary artery diseases. (Abbreviations and sources listed
below.a)

Conditions Study Title Interventions

Coronary Artery Disease HeartFlowNXT - HeartFlow Analysis of Coronary Blood Flow
Using Coronary CT Angiography

Procedure: ICA (Invasive Coronary
Angiography); Procedure: FFR (Fractional
Flow Reserve); Procedure: cCTA (coronary

computed tomography angiography);
Other: FFRct Analysis (Fractional Flow

Reserve Computed Tomography)
Coronary Artery Stenosis Validation of Stenosis Assessment by Coronary Artery

Computed Tomography Against Invasive Measurements of
Fractional Flow Reserve in Patients With Significant Coronary

Artery Stenoses

Procedure: FFR, IVUS, VH, or combina-
tion of the three

Abdominal Aortic Aneurysm Development of Novel Imaging Markers Predicting the
Progression of Abdominal Aortic Aneurysm Using 3D

Computed Tomography
Abdominal Aortic Aneurysm Measurement of Maximum Diameter of Native Abdominal

Aortic Aneurysm by Angio-CT
Other: Angio-CT

Aortic Aneurysm Patient Specific Biomechanical Modeling of Abdominal Aortic
Aneurysm to Improve Aortic Endovascular Repair

Other: Biomechanical computer program

Endograft Implantation to
Repair Abdominal Aortic
Aneurysm

Contrast Enhanced Ultrasound vs Computed Tomographic
Angiography in the Detection of Endoleaks Following AAA

Repair

Procedure: Contrast Enhanced Ultrasound
(Contrast Agent: OptisonTM)

Abdominal Aortic Aneurysms Validation of Fenestrations Positioning by Numerical
Simulation

Other: numerical simulation

Aortic Aneurysm, Abdominal Enhanced Guidance for Endovascular Repair of Abdominal
Aortic Aneurysm

Other: Validation of the new elastic regis-
tration software; Other: Validation of the

new rigid registration software
Aortic Arch Aneurysm Simulation of Stent-graft Deployment in Aortic Arch

Aneurysms
Other: Collection of data

Acute Coronary Syndrome,
Plaque, Atherosclerotic

Prediction of Vulnerable Plaque Using Coronary CT
Angiography and Computational Fluid Dynamic in Acute

Coronary Syndrome
Acute Coronary Syndrome,
Myocardial Infarction, Plaque,
Atherosclerotic, Rupture,
Spontaneous

Exploring the Mechanism of Plaque Rupture in Acute
Coronary Syndrome Using Coronary CT Angiography and

Computational Fluid Dynamic

Diagnostic Test: Coronary CT angiography

Acute Myocardial Infarction,
Unstable Angina

Exploring the Mechanism of Plaque Rupture in Acute
Coronary Syndrome Using Coronary CT Angiography and
Computational Fluid Dynamics II (EMERALD II) Study

Procedure: Computed Tomographic
Angiography

Coronary Stenosis, Acute
Coronary Syndrome, Acute
Myocardial Infarction

Coronary Plaque Geometry and Acute Coronary Syndromes Diagnostic Test: CCTA

Myocardial Infarction, Acute
Coronary Syndrome,

The Supplementary Role of Non-invasive Imaging to Routine
Clinical Practice in Suspected Non-ST-elevation Myocardial

Infarction

Other: Cardiovascular Magnetic Resonance
Imaging; Other: Computed Tomography

Angiography
Coronary Artery Disease, Acute
Coronary Syndrome, Acute
Myocardial Infarction

The Value of CT-FFR Compared to CCTA or CCTA and
Stress MPI in Low to Intermediate Risk ED Patients With

Toshiba CT-FFR

Device: Toshiba CT-FFR

Coronary Disease Prospective Evaluation of Myocardial Perfusion Computed
Tomography Trial

Device: computed tomography perfusion
guided treatment; Device: Fractional flow

reserve guided treatment
Coronary Artery Disease CT Coronary Angiography and Computational Fluid

Dynamics
Device: CT coronary angiography and

computational fluid dynamics
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TABLE II. (Continued.)

Conditions Study Title Interventions

Coronary Artery Disease Stress Testing Compared to Coronary Computed Tomographic
Angiography in Patients With Suspected Coronary Artery

Disease

Other: Stress MPI SPECT; Other:
Coronary CTA

Coronary Artery Disease Determination of Fractional Flow Reserve by Anatomic
Computed Tomographic Angiography

Device: FFR

Coronary Disease Diagnostic Accuracy of CT-FFR Compared to Invasive
Coronary Angiography With Fractional Flow Reserve

Diagnostic Test: CT-FFR; Diagnostic Test:
Stress echocardiography

Cardiovascular Diseases Computed Tomography Coronary Angiography for the
Prevention of Myocardial Infarction (The SCOT-HEART 2

Trial)

Diagnostic Test: Computed tomography
coronary angiography; Other: ASSIGN

Score
Congenital Heart Disease;
Atherosclerosis; Myocardial
Ischemia

Cardiovascular Disease Screening Device: Toshiba Aquilion ONE CT;
Device: Swiemens MRI scanner

Cardiovascular Abnormalities Heartflow (AFFECTS) Procedure: FFRct and SPECT
Multivessel Coronary Artery
Disease

A Multicentre, Pilot Study to Evaluate the Safety and the
Feasibility of Planning and Execution of Surgical

Revascularization in Patients With Complex Coronary Artery
Disease, Based Solely on MSCT Imaging Utilizing GE
Healthcare Revolution CT and HeartFlow FFRCT

Radiation: Multi-sliced computed tomog-
raphy (MSCT)

Coronary Artery Disease;
Atherosclerosis

Determination of Instantaneous Wave-Free Ratio by
Computed Tomography

Device: PressureWireTM Certus (St. Jude
Medical Systems, Sweden)

Atherosclerosis; Coronary Artery
Disease; Acute Coronary
Syndrome

Imaging and Biomarkers of Atherosclerosis in Patients With
Stable or Unstable Coronary Artery Disease

Device: Coronary intervention using
IVUS-VH & FDG PET-MDCT

Aortic Valve Stenosis; Coronary
Artery Disease

Evaluation of Fractional Flow Reserve Calculated by Computed
Tomography Coronary Angiography in Patients Undergoing

TAVR

Device: iFR / FFR measurement

Coronary Artery Disease Augmented-Reality CTA Plus Angiography vs Angiography
Alone for Guiding PCI in Coronary Lesions - Randomized

Study

Procedure: Angiographic guided PCI;
Procedure: Augmented-Reality CTA

guided PCI
Coronary Artery Disease;
Coronary Atherosclerosis; Stress
Testing

CT-FIRST: Cardiac Computed Tomography Versus Stress
Imaging for Initial Risk Stratification

Procedure: Cardiac CT Angiography;
Procedure: Stress Imaging Test (Stress
Myocardial Perfusion Study or Stress

Echocardiogram)
Coronary Artery Disease Ultra-high-resolution CT vs Conventional Angiography for

Detecting Coronary Heart Disease
Diagnostic Test: CT angiography;
Diagnostic Test: Invasive coronary

angiography
Coronary Artery Disease Virtual Coronary Physiology: An Angiogram Is All You Need Procedure: Percutaneous Coronary

Intervention
Coronary Artery Disease One-Dimensional Mathematical Model-Based Automated

Assessment of Fractional Flow Reserve
Device: FFR

Coronary Artery Stenosis Validation of Stenosis Assessment by Coronary Artery
Computed Tomography Against Invasive Measurements of

Fractional Flow Reserve in Patients With Significant Coronary
Artery Stenoses

Procedure: FFR, IVUS, VH, or combina-
tion of the three

Coronary Occlusion Validation of Quantitative Flow Ratio (QFR) - Derived Virtual
Angioplasty

Diagnostic Test: Quantitative Flow Ratio
(QFR) measurement

Non ST Elevation Myocardial
Infarction

Non-invasive and Invasive Plaque Characterisation Device: Imaging

ST Segment Elevation
Myocardial Infarction

Early Assessment of QFR in STEMI-II Diagnostic Test: Computation of quantita-
tive flow ratio
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TABLE II. (Continued.)

Conditions Study Title Interventions

Coronary Stenosis Comparison of Optical Coherence Tomography-derived
Minimal Lumen Area, Invasive Fractional Flow Reserve and

FFRCT

Diagnostic Test: OCT, FFR, CTA and
FFRCT

Coronary Artery Disease The Computed Tomography-derived Fractional Flow Reserve
STAT Trial

Diagnostic Test: CTFFR-Guided Group
Management; Diagnostic Test: SOC Group

Management
Aortic Aneurysm, Abdominal Follow-up of Endovascular Aneurysm Treatment - The FEAT

Trial
Procedure: Computed Tomography
Angiography; Procedure: Magnetic

Resonance Angiography
Pulmonary Embolism; Coronary
Artery Disease; Aortic Aneurysm

Computed Tomography Dose Reduction Using Sequential or
Fast Pitch Spiral Technique

Aortic Aneurysm Dynamic Computed Tomography Angiography (CTA) Follow-
up for EndoVascular Aortic Replacement (EVAR)

Aortic Diseases; Thoracic Aortic
Aneurysm; Aortic Dissection

Biomechanical Reappraisal of Planning for Thoracic
Endovascular Aortic Repair

Diagnostic Test: TEVAR patients

Endovascular Repair of
Abdominal Aortic Aneurysm

Computed Tomography Scan Versus Color Duplex Ultrasound
for Surveillance of Endovascular Repair of Abdominal Aortic

Aneurysm. A Prospective Multicenter Study

Procedure: Computed tomography scan
versus color duplex ultrasound

Endovascular Abdominal Aortic
Aneurysm Repair

Contrast Ultrasound in the Surveillance of Endovascular
Abdominal Aortic Aneurysm Repair

Congenital Heart Disease;
Pulmonary Hypertension

Integrated Computational Modeling of Right Heart Mechanics
and Blood Flow Dynamics in Congenital Heart Disease

Procedure: Cardiac Magnetic Resonance -
MRI; Other: Cardiopulmonary Exercise
Test; Other: Blood Sampling for all

participants
Pulmonary Hypertension;
Congenital Heart Disease;
Pediatric Congenital Heart
Disease

Image-based Multi-scale Modeling Framework of the
Cardiopulmonary System: Longitudinal Calibration and

Assessment of Therapies in Pediatric Pulmonary Hypertension

Procedure: cardiac catheterization;
Radiation: Cardiac MRI

Coronary Disease Prospective Evaluation of Myocardial Perfusion Computed
Tomography Trial

Device: computed tomography perfusion
guided treatment; Device: Fractional flow

reserve guided treatment
Coronary Artery Disease Computed Tomography as the First-Choice Diagnostics in

High Pre-Test Probability of Coronary Artery Disease
Other: Cardiac CT as the first diagnostic

modality in suspected CAD; Other:
Invasive coronary angiography as indicated

by the guidelines
Aortic Aneurysm Evaluation of Aortic Aneurysms With Focus on Wall Stress

and Wall Rupture Risk
Other: CT-acquisition

Thoracic Aortic Aneurysm The Cardiovascular Remodeling Following Endovascular
Aortic Repair (CORE) Study

Other: TEVAR; Other: Non-TEVAR medi-
cal treatment

Abdominal Aortic Aneurysm Control Post Endovascular Treatment of Aortic Aneurisms
Through Magnetic Resonance and Ultrasound (SAFEVAR)

Radiation: CT with contrast agent;
Diagnostic Test: MR without contrast
agent; Diagnostic Test: Color-Doppler
Ultrasound; Other: Questionnaire

Radiation Burn; Aortic
Aneurysm, Abdominal

Evaluation of 3D Rotational Angiography After EVAR Radiation: 3D rotational angiography
(3DRA)

Aortic Valve Stenosis Added Value of Patient-specific Computer Simulation in
Transcatheter Aortic Valve Implantation (TAVI)

Other: Computer simulation

Cardiovascular Modeling; Aortic
Coarctation; Aortic Valve
Disease; Cardiovascular MRI

Proof of Concept of Model Based Cardiovascular Prediction Procedure: Surgery or Treatment by Heart
Catheter

Cardiac Ischemia; Coronary
Artery Disease; Coronary
Stenosis

Radiographic Imaging Validation and Evaluation for Angio iFR
(ReVEAL iFR)

Diagnostic Test: iFR
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TABLE II. (Continued.)

Conditions Study Title Interventions

Hypotension and Shock Physiological Validation of Current Machine Learning Models
for Hemodynamic Instability in Humans

Other: Assigned Interventions

Coronary Microvascular Disease;
Artificial Intelligence;
Cardiovascular Diseases; Heart
Failure

Artificial Intelligence With Deep Learning on Coronary
Microvascular Disease

Hypotension and Shock Measurement of Hemodynamic Responses to Lower Body
Negative Pressure

Other: Lower body negative pressure

Coronary Heart Disease;
Coronary Artery Diseases

Machine Learning Based CT Angiography Derived FFR: A
Multi-center, Registry

Atherosclerosis Hemodynamic Change of Coronary Atherosclerotic Plaque
After Evolocumab Treatment

Coronary Artery Disease Can We Predict Coronary Resistance By Eye Examination ?
(COREYE)

Other: OCTA (angiography by tomogra-
phy in optical coherence)

Coronary Disease International Post PCI FFR Registry Device: Percutaneous coronary
intervention

Atherosclerosis, Coronary Fluid-dynamics in Bifurcation PCI Procedure: Coronary angiography and
optical coherence tomography

Coronary Stenosis Validation of a Predictive Model of Coronary Fractional Flow
Reserve in Patients With Intermediate Coronary Stenosis

Diagnostic Test: Fractional Flow Reserve

Aortic Valve Stenosis; Heart
Valve Diseases

Assessments of Thrombus Formation in TAVI

Coronary Artery Disease Improvement Assessment of Coronary Flow Dysfunction
Using Fundamental Fluid Dynamics

Procedure: Cardiac PET, Coronary
catheterization

Coronary Artery Disease Non-invasive Fractional Flow Reserve CT (FFRCT) Scan for
the Study of Coronary Vaso-motion

Coronary Artery Disease Effect of FFRCT-angio in Functional Diagnosis of Coronary
Artery Stenosis

Diagnostic Test: FFRCT-angio

Angina Pectoris; Coronary
Stenosis

Evaluation of the Correlation Between the Coronary Stenosis
Degree With FFRCT and the Grade of Stable Angina Pectoris

Radiation: Computed tomographic angiog-
raphy of coronary artery

Coronary Artery Disease The PLATFORM Study: Prospective Longitudinal Trial of
FFRct: Outcome and Resource Impacts

Coronary Artery Disease FFRangio Accuracy vs Standard FFR Device: FFRangio
Multi Vessel Coronary Artery
Disease

Angiogram Based Fractional Flow Reserve in Patients With
Multi-Vessel Disease

Device: FFRangio

Left Main Coronary Artery
Disease; Coronary
Arteriosclerosis

Registry on Left Main Coronary Artery Bifurcation
Percutaneous Intervention

Procedure: PCI on left main

Acute Coronary Syndrome FFR-CT to Detect the Absence of Hemodynamically
Significant Lesions in Patients With High-risk Acute Coronary

Syndrome

Diagnostic Test: FFR-CT; Diagnostic Test:
FFRangioTM

Coronary Stenosis The Sensitivity and Specificity of CardioSimFFRct Analysis
Software on Coronary Artery Stenosis

Diagnostic Test: FFR and FFRCT

Coronary Vessel Anomalies Physiologic Evaluation of Anomalous Right Coronary Artery
Stenosis

Procedure: revascularization

aAbbreviations—FFR: fractional flow reserve; CT: computed tomography; ICA: invasive coronary angiography; STEMI: ST elevation myocardial infarction; 3DRA: three-
dimensional rotational angiography; iFR: instantaneous wave free ratio; AR: augmented reality; TAVI: transcatheter aortic valve replacement; PET: positron emission tomography;
SPECT: single photon emission computed tomography; OCT: optical coherence tomography; IVUS: intravascular ultrasound; TEVAR: thoracic endovascular aortic repair; FDG: flu-
orodeoxyglucose; MDCT: multi-detector computed tomography; SOC: standard of care; PCI: percutaneous coronary intervention; VH: virtual histology. From http://www.clinical-
trials.gov accessed November 14, 2020.
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addition to traditional 3D CFD solvers (NS- and LBM-based), both
reduced-order models and ML-based approaches have extended com-
putation of FFR with clinical accuracy (Table I).

Several clinical trials have been conducted to assess the accuracy of
non-invasive FFR using either CTA, CA, or IVUS-OCT imaging data
(Table II). These trials have successfully resulted in two medical software
packages approved by the US Food and Drug Administration (FDA):
FFRCTA

11 (FFR derived from computed tomography, HeartFlow, Inc.,
Redwood City, California, USA) and FFRangio

12 (FFR derived from coro-
nary angiography, CathWorks, Ltd., Kfar-Saba, Israel). FFRCTA relies on
solving 3D NS equations whereas FFRangio uses LPM for computing
pressure gradient across the stenoses in order to derive FFR.12,41 The
accuracy of both technologies FFRCTA and FFRangio is high at 87% and
92%, respectively, on a per-vessel basis.12,158

Another FDA-approved software, CardioInsight (Medtronic), is
a non-invasive electrocardiograph software that creates 3D multi-
chamber cardiac mapping and accurately identifies premature ventric-
ular dysfunction.159,160 Such FDA-approved technologies have led to
significantly increased clinical adoption of non-invasive patient-
specific assessment in routine practice of cardiology. Apart from
hyperemic pressure ratios, other non-invasive diagnostic metrics are
being researched that are either flow-based or resting pressure-based.
Common examples of such metrics are volumetric-flow based, quanti-
tative flow ratio and resting pressure-based, and instantaneous wave
free ratio, which are also being clinically evaluated161,162

An overarching goal of diagnostic metrics is to clinically determine
the impaired blood-flow carrying capacity of coronary arteries in the
presence of stenosis.163 Diagnostic assessment is followed by treatment
procedures such as percutaneous coronary interventions (PCI), which
help restore coronary flow through revascularization of a stenosis.164

Despite the success of PCI, complications such as in-stent restenosis
(ISR) and stent thrombosis (ST) are common in patients and thereby
compromise the benefits of interventional procedures116 ISR and ST
present multifactorial etiology and cannot be explained by the type of
stenosis or stent used in PCI.165 The development of ISR and ST is
driven by the arterial remodeling processes that are activated due to the
alterations in local hemodynamic forces, particularly low WSS.7,116,153

Evidence from in vitro and in vivo experimental and clinical studies
increasingly suggests that flow disturbances, reversal of flow, and low
WSS affect development and progression of atherosclerosis,166,167 and
contribute toward stenting complications, such as ISR and ST.153,168–172

Importantly, these studies help establish that beyond diagnostic assess-
ment, CFD studies that map underlying hemodynamic risk factors, such
asWSS, play a crucial role in identifying coronary artery disease patients
who present highest risk of post-PCI complications.

B. Congenital heart diseases and aortic diseases

Congenital heart diseases (CHD) are those related to the struc-
tural abnormality of the heart or functionally significant great vessels
of the heart.173 Some common CHDs that have been computationally
investigated are hypoplastic left heart syndrome (HLHS), Tetralogy of
Fallot (ToF), and Coarctation of the aorta (CoA).34,174–181

HLHS is surgically treated using series of procedures: Norwood,
Glenn or hemi-Fontan, and the complete Fontan procedures.34,182 The
goal of these consecutive surgical procedures is to create a direct con-
nection between the systemic venous and pulmonary arterial circula-
tions. While establishing such a connection allows surgeons to bypass

the non-functional ventricle, it creates distinct anatomies of the
ventricle that suffer from different energy losses and uneven blood
distribution.34,182 To study such disturbed flow patterns and
their associated outcomes, CFD models are a powerful tool that
can be used to pre-operatively determine and predict underlying
hemodynamics.174–177,183,184 CFD allows visualization of flow pat-
terns across different stages of HLHS surgeries, specifically in the
regions of systemic-to-pulmonary shunt because in this region,
flow is initially complex and at later procedural stages becomes less
pulsatile with uniform pressure fields.182

Per-patient assessment in HLHS treatment is important because
shunt geometry and shunt flow varies significantly among the patient
population.182,238 CFD simulations provide detailed flow metrics that
hold immense clinical relevance. For example, pressure fields are used
as a surrogate for oxygenation, and velocity fields are indicative of
physical properties, such as systemic and end-organ oxygen deliv-
ery.177 Another useful hemodynamic variable is WSS, which is associ-
ated with thrombosis—a fatal complication in the aortopulmonary
shunt. WSS can be used for guiding shunt modifications that reduce
the risk of thrombosis.185,186 Similarly, energy loss is an important
clinical consideration in HLHS patients because circulation is provided
by a single ventricle. Minimizing energy loss improves Fontan circula-
tion and therefore CFD can be used to determine specific Fontan con-
figurations which result in minimum energy loss.183,187

Apart from CFD, reduced-order models have also been used to
ascertain hemodynamics in shunt for Norwood procedures.188,189 This
work used a closed loop lumped parameter model (LPM). The shunt
was modeled as a non-linear resistor with varying diameter and flow
rate. The LPM approach enables modeling interactions with the
remainder of the circulatory system. Furthermore, combining the ben-
efits of reduced-order models and 3D models, multiscale approaches
are being used to model shunt hemodynamics, pulmonary and coro-
nary perfusion, and ventricular performance.188,189

Another commonly investigated CHD is Tetralogy of Fallot
(ToF), which is characterized by distinct features such as ventricular
septal defect, right ventricular outflow tract obstruction, and right ven-
tricular hypertrophy.178 A CFD study used WSS to understand the
effect of shunt configuration and shunt geometry design on local
hemodynamics, and suggested that a direct shunt improves hemody-
namic conditions rather than the central oblique or right pulmonary
artery shunts.179

Coarctation of the aorta (CoA) is a CHD characterized by a nar-
rowing of the aorta and constitutes 8%–11% of the total congenital
defects in the United States.1 Revascularization using stents is a com-
mon surgical treatment option; however, CoA patients suffer from
severe long-term outcomes, reduced life-expectancy, and morbidities
such as hypertension, stroke, and aneurysm formation.190,191 A pio-
neering study suggested that morbidities in the CoA patients could be
explained based on the disturbed hemodynamic conditions.192

Important considerations apart from physiological boundary condi-
tions need to be taken into account for accurately modeling
CoA.180,181 For example, it is important to take compliance and tissue
properties into account because in CoA patients there is a disruption
with respect to the aorta storing blood during systole and delivering it
to the rest of the body during diastole.115,193

Studies using patient-specific CFD models based on physiological
boundary conditions revealed that hemodynamic variables TAWSS
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and OSI for CoA patients were significantly higher compared to con-
trol patients and validated against invasively measured peak pressure
gradients.180,181 Another study compared surgical treatments for CoA
patients and suggested that there exists preferential anatomic locations
where surgical correction can result in worsened WSS.180 Such non-
invasive CFD-based investigation can aid clinicians to determine
hemodynamic changes resulting from different surgical options for a
treated patient.

Hemodynamic forces also play a crucial role in the progression
of aortic dissection: a condition that results in blood to flow through
the inner and middle walls creating a true lumen (TL) and false lumen
(FL) due to a tear in the inner aortic wall.194,195 While aortic dissection
is not a congenital disease, it is the most common acute aortic syn-
drome.194 CFD enables capturing the hemodynamic field in the TL
and FL.195–197 Several works suggest that marked pressure and flow
differences exist between the TL and FL, and the hemodynamic fields
differ based on the location of tear, vessel distensibility, and anatomical
structure.195–197 Quantitative assessment of hemodynamic patterns
can help identify patients who are at a risk of developing aneurysm
and thrombosis post endovascular aortic repair.198 Overall, there is an
increasing application of patient-specific physics-based models to aid
clinical decision-making for patients with aortic dissection.

C. Designing and optimizing medical devices
and treatment

Generally, treatment outcomes are affected by the interaction
between the medical device and the biomechanics at the implantation
site.200 These interactions are further complicated by the dynamic
physiological conditions, unique 3D anatomy, and mechanics of the
device. It is therefore important to consider the characteristics of the
medical device and its influence on biomechanics. To this end,
physics-based flow simulations offer tremendous opportunities to
model the impact of device implantation on a per-patient basis and
predict the long-term effect of the device on the body.9,200 Moreover,
planning individualized treatment options can be challenging using
in vivo animal models or in a clinical setting due to the associated
time, cost, and inevitable population variability.201 However, personal-
ized flow models using CFD and patient-specific anatomy derived
from medical imaging data (Sec. II) are a cost-effective and suitable
option since they enable quantitative biomechanical evaluations across
diseased vascular segments. Such evaluations can be invaluable for pre-
dicting treatment outcome since hemodynamic alterations have been
shown to play a key role in the progression of adverse treatment out-
comes, such as ISR and ST (Sec. III).116,153,202–204

CFD methods have contributed to rapid device prototyping,
reducing human risk and cutting down in vitro and in vivo experimen-
tal costs, and have led to a major shift in treatment and management
of CVDs.9,205 Several studies have demonstrated the potential of in sil-
icomodels to optimize device design commonly used in the treatment
of cardiovascular diseases.153,202–204,206–212 CFD simulations have
played a central role in coronary artery disease treatment using PCI
with the overarching goal to refine stent design and deployment strat-
egy, and have guided clinicians toward identifying suitable implanta-
tion sites.153,202–204,212 Specifically, studies have emphasized the
assessment of hemodynamic properties within the stented lesion to
determine the biomechanical response, as WSS alterations have been
related to in-stent restenosis.116,153,202,203 Flexible stents that conform

to natural vessel shape improves WSS patterns due to a reduced radius
of curvature and increased Dean number within the stented region,
while rigid stents (inflexible) result in vast spatiotemporal WSS varia-
tions along the curved coronary arterial regions, which are common
sites of restenosis (Fig. 4).199 Furthermore, CFD simulations have been
used to test the pre-clinical efficacy of stent, with respect to design fea-
tures such as strut thickness, vessel surface area coverage, and radial
force, on blood flow disturbances and thrombogenicity.170,213

Design of mechanical heart valves and ventricular assist devices
(VADs) are other important areas where CFD simulations have been
used to gain insight in the thrombogenic biological response.206–211 To
this end, studies have focused on modeling valve dynamics, closure
mechanism, and upstream and downstream blood flow separa-
tion.206–208 CFD studies in conjunction with experimental approaches
have investigated continuous flow VADs to determine optimal throm-
boresistance and VAD implantation sites.209–211 Extending CFD appli-
cation to virtual treatment planning generally involves implanting a
device, such as an annuloplasty ring, into the 3D model of patients with
ischemic mitral regurgitation.214 High resolution visualization of CFD
simulation results enables non-invasive characterization of cardiac func-
tion and mechanical reliability of the device under different physical
condition.214 Such studies establish the role of CFD models to deliver
objective, per-patient assessment on a wide scale and are particularly
lucrative for international regulatory agencies due to their potential to
reduce prototyping and clinical studies prior to in vivo implantation.
This is exemplified by the various initiatives that have been undertaken
by the European Commission and the US FDA. The European commis-
sion started the Virtual Physiological Human (http://www.vph-institu-
te.org/), and the US FDA introduced the Device Innovation
Consortium. The broad objective of such projects is assessment, evalua-
tion, and standardization of non-invasive computational approaches to
improve the quality and performance of medical devices.205,215

IV. CHALLENGES AND LIMITATIONS

Sections II and III discuss the emerging applications of physics-
based flow models in clinical cardiology and basic cardiovascular
research, such that these methods constitute an actively evolving field.
Despite the tremendous developments in computational resources,
medical imaging technology, and numerical solvers, there are several
questions that still remain unanswered to demonstrate usefulness of
physics-based models for improved diagnosis and treatment of CVDs.
These questions can best be categorized under the following three head-
ings: (1) uncertainty quantification and model parameterization to
determine the model robustness, (2) model verification and validation
for clinical use, and (3) computational complexity and time-to-solution
minimization. The first topic outlines the limitations of computational
frameworks related to uncertainty and optimization algorithms in
image segmentation, geometric reconstruction, and modeling
approaches. The second addresses the need for robustly validated and
realistic models that can enable seamless integration in routine clinical
cardiology practice. Finally, the third topic is related to the real-time
diagnostic assessment using non-invasive computational approaches.

A. Uncertainty quantification and model
parameterization to determine the model robustness

Uncertainty quantification (UQ) is a mathematical concept to
determine the uncertainty of physical models due to noisy data,
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FIG. 4. Example of CFD study for optimizing stent design and features for implanting in the case of coronary artery disease. (a) Depicting flexible and inflexible stents. Three-
dimensional vessel reconstructions implanted with 12-mm stents that conform to the vessel (flexible, left) or result in vessel straightening (inflexible, right). The 3D vessel is an
idealized curved coronary artery model. The diagram also depicts the pericardial and myocardial regions. Following vessel and stent dimensions were used by the study: 8 axial
and circumferential repeating strut sections with stent-to-artery diameter ratio of 1.2, thickness equals 0.096 mm, and the width equals 0.197 mm. (b) Spatial distributions of
WSS along the pericardial (top panel) and myocardial (bottom panel) luminal regions. Simulations results depicted for maximum blood flow velocity for flexible and inflexible
stents implanted in an idealized curved coronary artery vessel. (c) Time-dependent alterations in spatial wall shear stress throughout the period of the entire cardiac cycle flexi-
ble and inflexible stents implanted in an idealized curved coronary artery vessel. Reproduced with permission from J. F. LaDisa, Jr., L. E. Olson, H. A. Douglas, D. C. Warltier,
J. R. Kersten, and P. S. Pagel, Biomedical Engineering Online 5(1), 1–11 (2006).199 Copyright 2006 Authors, licensed under a Creative Commons Attribution (CC BY) license.
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theoretical limitations of the numerical model, and reliability of com-
putations, approximations, and algorithms.216 UQ can be particularly
important for cardiovascular flow models because of the variations in
the anatomical and physiological parameters that are used as inputs to
the model and thus have profound effects on the overall simulation
results.217 In patient-specific models, anatomical variations can arise
from medical image segmentation while physiological parameter
uncertainties can come from inherently variable clinical record mea-
surements such as heart rate.35,218 Image segmentation and input
parameter variability have been examined by recent works that
highlighted large changes in the segmented lumen regions and inlet
boundary conditions.219,220 To illustrate this notion, two modeling
challenges were used by these studies: the 2015 International
Aneurysm CFD Challenge and the Multiple Aneurysms AnaTomy
CHallenge (MATCH) 2018 study.219,220 These studies illustrated
marked inter-team variability with respect to image segmentation and
reconstructed 3D geometry, and thus lack consensus on severity of
hemodynamic metrics associated with disease progression.219,220

Authors also noted that apart from segmentation variability, only a
few teams were able to accurately segment the geometry and took sev-
eral hours longer than other teams.219

Another interesting study was performed UQ by changing the
stenosis severity by 61 image voxel and flow rates by 610% to model
operator uncertainty.221 Authors reported uncertainty in pressure
drop as high as 20 mmHg.221 Furthermore, non-invasive computation
of clinical diagnostic metrics, for example FFR, also requires sensitivity
analysis and UQ.218,222 As performing parameter sweeps for 3D CFD
simulations can become computationally prohibitive, authors in this
study used a reduced-order model and varied eight input parameters
and reported uncertainty to be dominated by the peripheral resistance,
whereas the more obvious culprit, stenosis severity, had modest influ-
ence.222 Contrary, to the findings of this study, another UQ study
using 3D CFD models showed stenosis severity and stenoses length
had the strongest impact on non-invasive FFR computation.223

Such conflicting findings from different works suggest that UQ
should be performed for any given modeling framework to assess the
driving features that have maximum influence on computational
results. Model parameterization requires in depth knowledge of physi-
ological features that may affect circulation but cannot be directly
measured, such as microcirculatory resistance.224 Therefore, further
understanding of the relative importance of physiological parameters
is required to determine which are most influential and which can be
assumed or averaged.224 Given the importance of UQ in cardiovascu-
lar flow models and the time-intensive nature of these studies, multi-
level and multifidelity techniques are being incorporated in UQ
workflows instead of traditional high-fidelity models or single-fidelity
Monte Carlo estimators.75 Alternately, ML-based methods may also
be attractive to estimate geometric and parameter variability and
assimilate the distribution of variability for cardiovascular flow
models.79,82

B. Model verification and validation for clinical use

Successful clinical translation of cardiovascular flow models
requires closer association between engineers and clinicians for
embedding computational models in routine clinical practice. This
level of acceptance requires standardization, scrutiny, andmodel credi-
bility evaluation.215 Instilling confidence in predictive capability of

computational simulations has been at the forefront of FDA’s Critical
Path Initiative for CFD via verification and validation of these meth-
ods.225 Model verification tests the accuracy of the numerical solutions
of the governing equations, and model validation determines whether
the simulation results accurately represent the real-world applica-
tion.226 Verification thus involves numerical tests of mesh discretiza-
tion, accuracy, stability, and spatial and temporal convergence.226 On
the other hand, in vitro and in vivo data has been generally accepted as
the standard for the validation of cardiovascular flow models.35

Clinical trials on non-invasive hemodynamic characterization
(Table II) have demonstrated the accuracy of their models by
comparing with invasive measurements and reporting the diagnostic
accuracy, sensitivity, specificity, and positive and negative predictive
values.11,12,81 A prime example here is non-invasive FFR computation,
where studies using either 3D CFD, reduced-order, or ML-based
approaches report the accuracy of their frameworks through a com-
parison to invasively measured FFR data.11,12,81

Comparison with invasive diagnostic measurements distills the
simulation predictions to the expected biological response but does
not necessarily validate the complete flow field. To achieve that, studies
have relied on in vitro particle imaging velocity (PIV) experiments and
used PIV as the reference standard against which CFD velocity predic-
tions must be validated.155,227–229 Another approach for validating
computational models is using pulse wave velocity measurements and
velocity data from 4D MRI, which enable characterizing in vivo veloc-
ity flow field and vessel wall stiffness.93,230 Overall, such validation
methodologies allow researchers to truly test the biological and physio-
logical (biophysical) attributes of physics-based flow models, diminish
skepticism in prediction capabilities of simulations, and lay the neces-
sary groundwork for successful clinical translation.

C. Computational complexity and time-to-solution
minimization

Real-time non-invasive diagnostic assessment is one of the
important clinical goals for cardiovascular flow models. However, 3D
numerical simulations are computationally intensive and have long
execution times due to complex geometries, pulsatile flow, and physio-
logical boundary conditions. Therefore, there is always a need for
faster computations. To meet the computational demand, the avail-
ability and advancement in parallel processing and graphic processing
units (GPUs) is very timely because fluid dynamics algorithms can be
parallelized and are ripe for such computing advancements.11,124,126,231

While increasing computational power and efficient parallelization
reduces the time-to-solution by several orders of magnitude, it requires
computational resources that may not be easily available in routine
clinical practice.

There has been a growing interest in reduced-order models and
machine learning approaches to compute global hemodynamic-based
diagnostic metrics that were traditionally computed using 3D NS solv-
ers.12,23,80,81,100 A study proposed a simpler mathematical implementa-
tion based on LPM to compute FFR without the need for complex
pulsatile CFD simulations.100 This study in direct comparison to a 3D
CFD model demonstrated that the execution time reduced from
>36h to <4 min without compromising the accuracy of computed
FFR.100 Similar results have been reported by other studies using 1D
and LPM models.70,137–140 Hence, reduced-order models are attractive
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for computing global hemodynamic quantities such as pressure gradi-
ent and volumetric flow rate.

However, it is important to note that 3D CFDmodels allow us to
capture fine flow details for biological processes that benefit from
underlying knowledge of detailed local hemodynamics. While global
hemodynamic-based quantities, such as FFR, are helpful for diagnostic
purposes, it is the local hemodynamic-based quantities that enable
researchers and clinicians to gain valuable insight into the underlying
complex relationship between hemodynamics and cardiovascular dis-
ease progression.116,165 Using 3D CFD flow models, local hemody-
namic risk-factors, such as WSS and OSI, can be accurately and non-
invasively computed.153,166,167,239 These metrics have been shown to
play a role in understanding and predicting progression of coronary
artery disease, post-PCI complications, and congenital heart disease
(as discussed in Sec. III). Thus, unified models that combine the bene-
fits of high-fidelity physics from 3D CFD and computational efficiency
from reduced-order models could significantly advance cardiovascular
flow models.232–234 In such coupled (1D-3D or 0D-1D-3D) models at
the connection interface, each domain informs the other
domain.232–234 Researchers are, therefore, developing multiscale car-
diovascular flow models (1D-3D or 0D-1D-3D) with the potential of
real-time flow assessment and fine physiological detail.75,235,236
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74L. O. M€uller, F. E. Fossan, A. T. Bråten, A. Jørgensen, R. Wiseth, and L. R.
Hellevik, “Impact of baseline coronary flow and its distribution on fractional
flow reserve prediction,” Internat. J. Numeric. Methods Biomed. Engineer.
2019, e3246.

75C. M. Fleeter, G. Geraci, D. E. Schiavazzi, A. M. Kahn, and A. L. Marsden,
“Multilevel and multifidelity uncertainty quantification for cardiovascular
hemodynamics,” Comput. Methods Appl. Mechan. Engineer. 365, 113030
(2020).

76S. Tu, J. Westra, J. Yang, C. von Birgelen, A. Ferrara, M. Pellicano, H. Nef, M.
Tebaldi, Y. Murasato, A. Lansky et al., “Diagnostic accuracy of fast computa-
tional approaches to derive fractional flow reserve from diagnostic coronary
angiography: The international multicenter favor pilot study,” JACC:
Cardiovasc. Interven. 9, 2024–2035 (2016).

77S.-H. Kim, S.-H. Kang, W.-Y. Chung, C.-H. Yoon, S.-D. Park, C.-W. Nam,
K.-H. Kwon, J.-H. Doh, Y.-S. Byun, J.-W. Bae et al., “Protocol: Validation of
the diagnostic performance of ‘HeartMedi V.1.0’, a novel CT-derived frac-
tional flow reserve measurement, for patients with coronary artery disease: A
study protocol,” BMJ Open 10, e037780 (2020).

78R. W. van Hamersvelt, M. Voskuil, P. A. de Jong, M. J. Willemink, I. I�sgum,
and T. Leiner, “Diagnostic performance of on-site coronary CT angiogra-
phy–derived fractional flow reserve based on patient-specific lumped parame-
ter models,” Radiolog.: Cardiothorac. Imag. 1, e190036 (2019).

79G. Maher, D. Parker, N. Wilson, and A. Marsden, “Neural network vessel
lumen regression for automated lumen cross-section segmentation in cardio-
vascular image-based modeling,” Cardiovasc. Engineer. Technol. 11, 621–635
(2020).

80L. Itu, S. Rapaka, T. Passerini, B. Georgescu, C. Schwemmer, M. Schoebinger,
T. Flohr, P. Sharma, and D. Comaniciu, “A machine-learning approach for
computation of fractional flow reserve from coronary computed
tomography,” J. Appl. Physiol. 121, 42–52 (2016).

81A. Coenen, Y.-H. Kim, M. Kruk, C. Tesche, J. De Geer, A. Kurata, M. L.
Lubbers, J. Daemen, L. Itu, S. Rapaka et al., “Diagnostic accuracy of a
machine-learning approach to coronary computed tomographic angiogra-
phy–based fractional flow reserve: Result from the machine consortium,”
Circulat.: Cardiovasc. Imag. 11, e007217 (2018).

82P. Rajpurkar, J. Irvin, R. L. Ball, K. Zhu, B. Yang, H. Mehta, T. Duan, D.
Ding, A. Bagul, C. P. Langlotz et al., “Deep learning for chest radiograph diag-
nosis: A retrospective comparison of the CheXNeXt algorithm to practicing
radiologists,” PLoS Med. 15, e1002686 (2018).

83A. Y. Hannun, P. Rajpurkar, M. Haghpanahi, G. H. Tison, C. Bourn, M. P.
Turakhia, and A. Y. Ng, “Cardiologist-level arrhythmia detection and classifi-
cation in ambulatory electrocardiograms using a deep neural network,” Nat.
Med. 25, 65 (2019).

84S. Moccia, E. De Momi, S. El Hadji, and L. S. Mattos, “Blood vessel segmenta-
tion algorithms: Review of methods, datasets and evaluation metrics,”
Comput. Methods Prog. Biomed. 158, 71–91 (2018).

85B. Au, U. Shaham, S. Dhruva, G. Bouras, E. Cristea, A. Coppi, F. Warner, S.-
X. Li, and H. Krumholz, “Automated characterization of stenosis in invasive
coronary angiography images with convolutional neural networks,”
arXiv:1807.10597 (2018).

86S. Y. Shin, S. Lee, K. J. Noh, I. D. Yun, and K. M. Lee, “Extraction of coronary
vessels in fluoroscopic x-ray sequences using vessel correspondence opti-
mization,” in International Conference on Medical Image Computing and
Computer-Assisted Intervention (Springer, 2016), pp. 308–316.

87B. Feiger, J. Gounley, D. Adler, J. A. Leopold, E. W. Draeger, R. Chaudhury, J.
Ryan, G. Pathangey, K. Winarta, D. Frakes et al., “Accelerating massively par-
allel hemodynamic models of coarctation of the aorta using neural networks,”
Sci. Rep. 10, 9508 (2020).

88M. Jordanski, M. Radovic, Z. Milosevic, N. Filipovic, and Z. Obradovic,
“Machine learning approach for predicting wall shear distribution for abdom-
inal aortic aneurysm and carotid bifurcation models,” IEEE J. Biomed. Health
Informat. 22, 537–544 (2018).

89R. Gharleghi, G. Samarasinghe, A. Sowmya, and S. Beier, “Deep learning for
time averaged wall shear stress prediction in left main coronary bifurcations,”
in 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI)
(IEEE, 2020), pp. 1–4.

Biophysics Reviews REVIEW scitation.org/journal/bpr

Biophysics Rev. 2, 011302 (2021); doi: 10.1063/5.0040315 2, 011302-20

Published under license by AIP Publishing

https://doi.org/10.1016/j.atherosclerosis.2010.09.007
https://doi.org/10.1016/j.jacc.2015.05.008
https://doi.org/10.3390/fluids4010011
https://doi.org/10.1115/1.4043722
https://doi.org/10.1115/1.4043722
https://doi.org/10.1161/CIRCIMAGING.114.001932
https://doi.org/10.1161/CIRCINTERVENTIONS.116.003613
https://doi.org/10.1007/s10439-020-02571-4
https://doi.org/10.1007/s10554-007-9275-z
https://doi.org/10.1007/s11748-017-0834-5
https://doi.org/10.1186/s12938-015-0104-7
https://doi.org/10.1002/cnm.2908
https://doi.org/10.1002/cnm.2908
https://doi.org/10.1038/s41598-018-35344-0
https://doi.org/10.1016/j.jbiomech.2018.11.008
https://doi.org/10.1002/cnm.3235
https://doi.org/10.1016/j.cma.2019.05.005
https://doi.org/10.1002/cnm.3246
https://doi.org/10.1016/j.cma.2020.113030
https://doi.org/10.1016/j.jcin.2016.07.013
https://doi.org/10.1016/j.jcin.2016.07.013
https://doi.org/10.1136/bmjopen-2020-037780
https://doi.org/10.1148/ryct.2019190036
https://doi.org/10.1007/s13239-020-00497-5
https://doi.org/10.1152/japplphysiol.00752.2015
https://doi.org/10.1161/CIRCIMAGING.117.007217
https://doi.org/10.1371/journal.pmed.1002686
https://doi.org/10.1038/s41591-018-0268-3
https://doi.org/10.1038/s41591-018-0268-3
https://doi.org/10.1016/j.cmpb.2018.02.001
http://arxiv.org/abs/1807.10597
https://doi.org/10.1038/s41598-020-66225-0
https://doi.org/10.1109/JBHI.2016.2639818
https://doi.org/10.1109/JBHI.2016.2639818
https://scitation.org/journal/bpr


90R. Gharleghi, H. Wright, S. Khullar, J. Liu, T. Ray, and S. Beier, “Advanced
multi-objective design analysis to identify ideal stent design,” in Machine
Learning and Medical Engineering for Cardiovascular Health and
Intravascular Imaging and Computer Assisted Stenting (Springer, 2019), pp.
193–200.

91M. McCormick, D. Nordsletten, P. Lamata, and N. P. Smith, “Computational
analysis of the importance of flow synchrony for cardiac ventricular assist
devices,” Comput. Biol. Medic. 49, 83–94 (2014).

92M. Poon, V. Fuster, and Z. Fayad, “Cardiac magnetic resonance imaging: A
‘one-stop-shop’ evaluation of myocardial dysfunction,” Curr. Opin. Cardiol.
17, 663–670 (2002).

93S. Pirola, Z. Cheng, O. Jarral, D. O’Regan, J. Pepper, T. Athanasiou, and X.
Xu, “On the choice of outlet boundary conditions for patient-specific analysis
of aortic flow using computational fluid dynamics,” J. Biomech. 60, 15–21
(2017).

94M. Ainslie, C. Miller, B. Brown, and M. Schmitt, “Cardiac MRI of patients
with implanted electrical cardiac devices,” Heart 100, 363–369 (2014).

95W. G. Members, D. Lloyd-Jones, R. J. Adams, T. M. Brown, M. Carnethon, S.
Dai, G. De Simone, T. B. Ferguson, E. Ford, K. Furie et al., “Executive sum-
mary: Heart disease and stroke statistics-2010 update: A report from the
American Heart Association,” Circulation 121, 948–954 (2010).

96G. G. Stefanini and S. Windecker, “Can coronary computed tomography
angiography replace invasive angiography?: Coronary computed tomography
angiography cannot replace invasive angiography,” Circulation 131, 418–426
(2015).

97G. De Santis, P. Mortier, M. De Beule, P. Segers, P. Verdonck, and B.
Verhegghe, “Patient-specific computational fluid dynamics: Structured mesh
generation from coronary angiography,” Medic. Biolog. Engineer. Comput.
48, 371–380 (2010).

98S. J. Chen and J. D. Carroll, “3-D reconstruction of coronary arterial tree to
optimize angiographic visualization,” IEEE Trans. Medic. Imag. 19, 318–336
(2000).

99P. D. Morris, D. Ryan, A. C. Morton, R. Lycett, P. V. Lawford, D. R. Hose,
and J. P. Gunn, “Virtual fractional flow reserve from coronary angiography:
Modeling the significance of coronary lesions: Results from the VIRTU-1
(VIRTUal fractional flow reserve from coronary angiography) study,” JACC:
Cardiovasc. Interven. 6, 149–157 (2013).

100P. D. Morris, D. A. Silva Soto, J. F. Feher, D. Rafiroiu, A. Lungu, S. Varma, P.
V. Lawford, D. R. Hose, and J. P. Gunn, “Fast virtual fractional flow reserve
based upon steady-state computational fluid dynamics analysis: Results from
the VIRTU-fast study,” JACC: Basic Transl. Sci. 2, 434–446 (2017).

101A. K. Armstrong, J. D. Zampi, L. M. Itu, and L. N. Benson, “Use of 3D rota-
tional angiography to perform computational fluid dynamics and virtual inter-
ventions in aortic coarctation,” Catheter. Cardiovasc. Interven. 95, 294–299
(2020).

102A. C. Lardo, A. A. Rahsepar, J. H. Seo, P. Eslami, F. Korley, S. Kishi, T. Abd,
R. Mittal, and R. T. George, “Estimating coronary blood flow using CT trans-
luminal attenuation flow encoding: Formulation, preclinical validation, and
clinical feasibility,” J. Cardiovasc. Comput. Tomograph. 9, 559–566 (2015).

103C. J. Slager, J. J. Wentzel, J. C. Schuurbiers, J. A. Oomen, J. Kloet, R. Krams, C.
Von Birgelen, W. J. Van Der Giessen, P. W. Serruys, and P. J. De Feyter,
“True 3-dimensional reconstruction of coronary arteries in patients by fusion
of angiography and IVUS (ANGUS) and its quantitative validation,”
Circulation 102, 511–516 (2000).

104J. Huang, H. Emori, D. Ding, T. Kubo, W. Yu, P. Huang, S. Zhang, J.
Guti�errez-Chico, T. Akasaka, W. Wijns et al., “Comparison of diagnostic per-
formance of intracoronary optical coherence tomography-based and
angiography-based fractional flow reserve for evaluation of coronary stenosis.”
Eurointervention 16, 568–576 (2020).

105K. T. Tan and G. Y. Lip, “Imaging of the unstable plaque,” Internat. J. Cardiol.
127, 157–165 (2008).

106T. Thim, M. K. Hagensen, D. Wallace-Bradley, J. F. Granada, G. L. Kaluza, L.
Drouet, W. P. Paaske, H. E. Bøtker, and E. Falk, “Unreliable assessment of
necrotic core by virtual histology intravascular ultrasound in porcine coronary
artery disease,” Circulation: Cardiovascul. Imag. 3, 384–391 (2010).

107L. S. Athanasiou, N. Bruining, F. Prati, and D. Koutsouris, “Optical coherence
tomography: Basic principles of image acquisition,” in Intravascular Imaging:

Current Applications and Research Developments (IGI Global, 2012), pp.
180–193.

108I.-K. Jang, “Optical coherence tomography or intravascular ultrasound?,”
Cardiovasc. Intervent. 4(5), 492–494 (2011).

109L. Athanasiou, F. R. Nezami, and E. R. Edelman, “Position paper computa-
tional cardiology,” IEEE J. Biomed. Health Informat. 23, 4–11 (2018).

110S. Liang, T. Ma, J. Jing, X. Li, J. Li, K. K. Shung, Q. Zhou, J. Zhang, and Z.
Chen, “Trimodality imaging system and intravascular endoscopic probe:
Combined optical coherence tomography, fluorescence imaging and ultra-
sound imaging,” Optics Lett. 39, 6652–6655 (2014).

111X. Guo, D. Giddens, D. Molony, C. Yang, H. Samady, J. Zheng, G. Mintz, A.
Maehara, L. Wang, X. Pei et al., “An FSI modeling approach to combine IVUS
and OCT for more accurate patient-specific coronary cap thickness and stress/
strain calculations,” in The 8th International Conference on Computational
Methods (ICCM2017) (2017).

112Y. Chen, J. Pang, D. Neiman, Y. Xie, C. T. Nguyen, Z. Zhou, and D. Li, “Fully
automated left ventricle function analysis with self-gated 4D MRI,”
J. Cardiovasc. Magnet. Reson. 18, P37 (2016).

113M. LaBarbera, “Principles of design of fluid transport systems in zoology,”
Science 249, 992–1000 (1990).

114T. Kr€uger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, and E. M.
Viggen, The Lattice Boltzmann Method (Springer International Publishing,
2015).

115C. Vlachopoulos, M. O’Rourke, and W. W. Nichols, McDonald’s Blood Flow in
Arteries: Theoretical, Experimental and Clinical Principles (CRC Press, 2011).

116K. C. Koskinas, Y. S. Chatzizisis, A. P. Antoniadis, and G. D. Giannoglou,
“Role of endothelial shear stress in stent restenosis and thrombosis:
Pathophysiologic mechanisms and implications for clinical translation,” J. Am.
Coll. Cardiol. 59, 1337–1349 (2012).

117R. Pandey, M. Kumar, J. Majdoubi, M. Rahimi-Gorji, and V. K. Srivastav, “A
review study on blood in human coronary artery: Numerical approach,”
Comput. Methods Prog. Biomed. 187, 105243 (2020).

118M. Chu, C. von Birgelen, Y. Li, J. Westra, J. Yang, N. R. Holm, J. H. Reiber, W.
Wijns, and S. Tu, “Quantification of disturbed coronary flow by disturbed vor-
ticity index and relation with fractional flow reserve,” Atherosclerosis 273,
136–144 (2018).

119E. W. Merrill and G. A. Pelletier, “Viscosity of human blood: Transition from
Newtonian to non-Newtonian.” J. Appl. Physiol. 23, 178–182 (1967).

120R. Benzi, S. Succi, and M. Vergassola, “The lattice Boltzmann equation:
Theory and applications,” Phys. Rep. 222, 145–197 (1992).

121X. He and L.-S. Luo, “Theory of the lattice Boltzmann method: From the Boltzmann
equation to the lattice Boltzmann equation,” Phys. Rev. E 56, 6811 (1997).

122S. Chen and G. D. Doolen, “Lattice Boltzmann method for fluid flows,”
Annual Rev. Fluid Mechan. 30, 329–364 (1998).

123S. Succi, The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond
(Oxford University Press, 2001).

124A. Randles, E. W. Draeger, T. Oppelstrup, L. Krauss, and J. A. Gunnels,
“Massively parallel models of the human circulatory system,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, Austin, TX (2015), pp. 1–11.

125J. Gounley, E. W. Draeger, T. Oppelstrup, W. D. Krauss, J. A. Gunnels, R.
Chaudhury, P. Nair, D. Frakes, J. A. Leopold, and A. Randles, “Computing the
ankle-brachial index with parallel computational fluid dynamics,” J. Biomech
82, 28–37 (2019).

126M. D. Mazzeo and P. V. Coveney, “HemeLB: A high performance parallel
lattice-Boltzmann code for large scale fluid flow in complex geometries,”
Comput. Phys. Commun. 178, 894–914 (2008).

127C. Godenschwager, F. Schornbaum, M. Bauer, H. K€ostler, and U. R€ude, “A
framework for hybrid parallel flow simulations with a trillion cells in complex
geometries,” Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (2013), pp. 1–12.

128P. L. Bhatnagar, E. P. Gross, and M. Krook, “A model for collision processes
in gases. I. Small amplitude processes in charged and neutral one-component
systems,” Phys. Rev 94, 511 (1954).

129S. Sherwin, V. Franke, J. Peir�o, and K. Parker, “One-dimensional modelling of
a vascular network in space-time variables,” J. Engineer. Math. 47, 217–250
(2003).

Biophysics Reviews REVIEW scitation.org/journal/bpr

Biophysics Rev. 2, 011302 (2021); doi: 10.1063/5.0040315 2, 011302-21

Published under license by AIP Publishing

https://doi.org/10.1016/j.compbiomed.2014.03.013
https://doi.org/10.1097/00001573-200211000-00013
https://doi.org/10.1016/j.jbiomech.2017.06.005
https://doi.org/10.1136/heartjnl-2013-304324
https://doi.org/10.1161/CIRCULATIONAHA.109.192666
https://doi.org/10.1161/CIRCULATIONAHA.114.008148
https://doi.org/10.1007/s11517-010-0583-4
https://doi.org/10.1109/42.848183
https://doi.org/10.1016/j.jcin.2012.08.024
https://doi.org/10.1016/j.jcin.2012.08.024
https://doi.org/10.1016/j.jacbts.2017.04.003
https://doi.org/10.1002/ccd.28507
https://doi.org/10.1016/j.jcct.2015.03.018
https://doi.org/10.1161/01.CIR.102.5.511
https://doi.org/10.4244/EIJ-D-19-01034
https://doi.org/10.1016/j.ijcard.2007.11.054
https://doi.org/10.1161/CIRCIMAGING.109.919357
https://doi.org/10.1016/j.jcin.2011.02.004
https://doi.org/10.1109/JBHI.2018.2877044
https://doi.org/10.1364/OL.39.006652
https://doi.org/10.1186/1532-429X-18-S1-P37
https://doi.org/10.1126/science.2396104
https://doi.org/10.1016/j.jacc.2011.10.903
https://doi.org/10.1016/j.jacc.2011.10.903
https://doi.org/10.1016/j.cmpb.2019.105243
https://doi.org/10.1016/j.atherosclerosis.2018.02.023
https://doi.org/10.1152/jappl.1967.23.2.178
https://doi.org/10.1016/0370-1573(92)90090-M
https://doi.org/10.1103/PhysRevE.56.6811
https://doi.org/10.1146/annurev.fluid.30.1.329
https://doi.org/10.1016/j.jbiomech.2018.10.007
https://doi.org/10.1016/j.cpc.2008.02.013
https://doi.org/10.1103/PhysRev.94.511
https://doi.org/10.1023/B:ENGI.0000007979.32871.e2
https://scitation.org/journal/bpr
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