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ABSTRACT

The COVID-19 pandemic has changed the lives of many people around the world. Based on the available data and published reports, most
people diagnosed with COVID-19 exhibit no or mild symptoms and could be discharged home for self-isolation. Considering that a substan-
tial portion of them will progress to a severe disease requiring hospitalization and medical management, including respiratory and circulatory
support in the form of supplemental oxygen therapy, mechanical ventilation, vasopressors, etc. The continuous monitoring of patient condi-
tions at home for patients with COVID-19 will allow early determination of disease severity and medical intervention to reduce morbidity
and mortality. In addition, this will allow early and safe hospital discharge and free hospital beds for patients who are in need of admission.
In this review, we focus on the recent developments in next-generation wearable sensors capable of continuous monitoring of disease symp-
toms, particularly those associated with COVID-19. These include wearable non/minimally invasive biophysical (temperature, respiratory
rate, oxygen saturation, heart rate, and heart rate variability) and biochemical (cytokines, cortisol, and electrolytes) sensors, sensor data ana-
lytics, and machine learning-enabled early detection and medical intervention techniques. Together, we aim to inspire the future development
of wearable sensors integrated with data analytics, which serve as a foundation for disease diagnostics, health monitoring and predictions, and
medical interventions.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0140900

I. INTRODUCTION

The World Health Organization (WHO) has reported cumula-
tively over 765 million cases and 6.9 million deaths worldwide due to
COVID-19 as of May 2023. Due to the limited medical resources, most
people diagnosed with COVID-19 are asked to stay home for
self-isolation. Study, however, has shown that a substantial portion of
COVID-19 patients will progress to severe COVID disease, requiring
hospitalization and immediate medical intervention.1 Patients who are
required to self-isolate at home might face anxiety from not being
properly monitored and treated. Medical grade equipments used in

hospitals for such purposes are large, expensive, and require profes-
sional staff to operate. Although portable alternatives to some of these
systems (typically provided by local health departments in low quanti-
ties) exist, they are generally obtrusive and require partial or complete
immobilization of the patient in order to achieve reliable continuous
monitoring. Furthermore, patients in certain low- and middle-income
parts of the world have extremely limited access to health care and/or
the ability to afford such technologies, making the matter a global issue.

Wearable sensors that are capable of continuously monitoring a
wide range of biomarkers of human physiology, including biophysical
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and biochemical signals, are promising for unobtrusive, pain-free,
accessible, and low-cost assessment at home.2 Wearable sensors have
several key advantages over their non-wearable, traditional counter-
parts. First, they present unique opportunities for non/minimally inva-
sive monitoring of the vital signs and disease symptoms of interest
without the need of the immobilization of the patient.3,4 As we will dis-
cuss in Secs. II–V, traditional non-wearable technologies used for the
acquisition of such information typically involve invasive schemes that
induce discomforts for the patient and/or require partial or full immo-
bilization of the patient due to poor interfacing capabilities with the
human body. Second, the lack of robust interfacing with the human
body and the outdated sensing concepts involved deem many tradi-
tional technologies unsuitable for continuous monitoring. More spe-
cifically, they only provide discrete data points with large, varying time
intervals and commonly require manual labor by the patient or a
healthcare professional (e.g., thermometers for temperature, blood
specimen collection for biochemical analysis, etc.). This is because the
interfacing methods of such tools are often obtrusive, uncomfortable,
inconsistent and, thus, highly prone to environmental noise, motion
artifacts, user error, etc. for long-term continuous measurements.
Wearable sensors, on the other hand, are capable of providing robust,
consistent, targeted interfaces that overcome many of the above short-
comings and allow for continuous monitoring.5,6 Finally, wearable
sensors can serve as unique platforms for incorporating novel, ultra-
high performance alternative sensing techniques (especially within the
context of biochemical sensing), which would not be feasible with tra-
ditional technologies.3,7 Additionally, wearable sensors can be inte-
grated into common daily items, such as smartwatches, fitness
trackers, rings, eyeglasses, and more recently, skin patches, bandages,
even face masks, contact lenses, and dental devices.7,8

There have been significant advances in the development of
wearable biophysical and biochemical sensors over the past few
years.8–12 Here, we report a comprehensive review of the recent pro-
gress in wearable biophysical and biochemical sensors capable of
monitoring vital signs and symptoms that were found by researchers
to have potential significance within the context of the COVID-19
pandemic. Furthermore, we give particular emphasis to flexible, skin-
interfaced technologies, which we consider to be “next-generation.”
The publications preceding the work presented herein have mostly
focused on either wearable biophysical13–18 or biochemical sen-
sors,7,19 but not both. Although we acknowledge that both fields are
independently very vast and have experienced significant develop-
ments in recent years, we also believe that both are equally relevant
within the context of disease diagnosis, monitoring, treatment and,
together, they have the potential to advance personalized healthcare
greatly. We summarize and relate the state-of-the-art developments
in both fields by giving particular emphasis to disease symptom
monitoring, whose importance is strongly highlighted with the ongo-
ing COVID-19 pandemic. Importantly, we present and outline a sig-
nificant body of research relating the biomarkers and symptoms of
interest to COVID-19. Furthermore, we believe that understanding
the sensing mechanisms is crucial for inspiring the future research
and development of wearable sensors and potentially for inventing
and exploiting novel sensing techniques. Thus, we include these con-
cepts and go into great detail in each section of this review to explain
the relevant sensing mechanisms and the physics involved.
Moreover, we discuss the more recent, niche sensing technologies

and use cases that are promising for the advancement of future wear-
able sensors. Finally, unlike most publications preceding it, in this
work, we aim to construct a more complete picture of the field by
dedicating a section that focuses on recently emerging data analytics
and machine learning methods for data-driven disease diagnostics
and medical intervention, with particular emphasis on COVID-19.
We believe that these data analytics and machine learning methods,
if exploited in conjunction with the next-generation state-of-the-art
wearable biophysical and biochemical sensors hereby reviewed, have
the potential to allow researchers to design end-to-end systems for
personalized remote health monitoring and diagnostics at home.

The symptoms of COVID-19 patients can range from mild to
severe, with possible signs and symptoms including fever, cough,
shortness of breath, sore throat, and diarrhea.20 Although COVID-19
primarily affects the respiratory system, it can also cause health prob-
lems in other parts of the body. For example, it may trigger an overre-
action of the immune system, known as a cytokine storm. The
purpose of this review paper is to provide an overview of recent devel-
opments in wearable sensor technology and data analytics that enable
the monitoring and analysis of COVID-19 symptoms. The review is
structured as follows (Fig. 1). Section II focuses on wearable sensing of
conventional biophysical information, including body temperature,
respiration rate, blood oxygen saturation, heart rate, and heart rate
variability. Section III mainly focuses on wearable biochemical sensing,
a rapidly emerging field that promises to revolutionize personalized
health care through molecular-level monitoring of dynamic metabolic
processes and biochemistry content, such as cytokines, cortisol, and
electrolytes. Section IV of this review focuses on recently developed
data analytics and machine learning methods that exploit the vital
signs, biomarkers, and symptoms of interest for early detection of
COVID-19 and medical intervention.

II. BIOPHYSICAL SENSING FOR SYMPTOMS RELATED
TO COVID-19

Physical vital signs are critical to monitor as they are indicators
of the body’s overall homeostasis, and they can serve as a warning sys-
tem when the body is in the early stages of an infection. In this section,
we review the recent developments in wearable biophysical monitoring
of disease symptoms, especially those commonly observed in COVID-
19 patients, including changes in body temperature, respiration rate,
oxygen saturation (SpO2), heart rate (HR), and heart rate variability
(HRV). Table I summarizes the biosensor types, sensing mechanisms,
and sensing sites of the biophysical sensors for monitoring symptoms
of COVID-19.

A. Body temperature monitoring

Body temperature is one of human physiology’s most important
vital signs because its stability is crucial for maintaining the body’s
homeostasis. Body temperature allows physicians to diagnose and treat
infections earlier, rather than waiting for recognizable symptoms to
occur. This is because fever is one of the body’s first reactions to infec-
tious diseases, such as COVID-19. For instance, the maximum body
temperature that a patient experiences over the course of their
COVID-19 infection was found to be a strong indicator of fatality/
mortality.33 Therefore, measuring body temperature accurately and
continuously is of particular importance. Despite its importance, con-
ventional techniques involving thermometers have very limited

Biophysics Reviews REVIEW pubs.aip.org/aip/bpr

Biophysics Rev. 4, 031302 (2023); doi: 10.1063/5.0140900 4, 031302-2

Published under an exclusive license by AIP Publishing

pubs.aip.org/aip/bpr


capability in continuous measurement of body temperature. On the
other hand, the gold standards for core body temperature measure-
ment, such as a rectal thermometer or a temperature probe in the
esophagus, pulmonary artery, or urinary bladder, are all invasive.34,35

Pulmonary artery catheters are only used for critical care and cardiac
surgery patients, while rectal thermometers are rarely used due to their
invasiveness. Therefore, it is essential to develop temperature sensors
that are wearable, noninvasive, easy-to-use, and capable of continuous
and accurate monitoring of body temperature.

Within the context of wearable sensors, the temperature can be
measured by using the following main types of temperature sensors:
negative temperature coefficient (NTC) and positive temperature coef-
ficient (PTC) thermistors and resistance temperature detectors
(RTDs). The resistance of NTC thermistors is high at low tempera-
tures due to the lack of free charge carriers. As the temperature
increases, thermal agitation causes more free charge carriers (electrons
or holes) from the valence band, thereby decreasing the resistance
[Fig. 2(a)]. Unlike NTC thermistors, PTC thermistors have low resis-
tances due to their high dielectric constants below the Curie tempera-
ture, which prevents barriers from forming between the crystal grains.

Once the temperature increases above the Curie temperature, the
dielectric constant drops. This allows electron-trapping species, such
as metal vacancies, adsorbed gases, and electron acceptor species to
form at the grain boundaries, which causes a dramatic increase in
resistance [Fig. 2(b)]. Similar to PTC thermistors, RTDs, typically
made of conducting metals (gold and platinum), have positive temper-
ature coefficients. RTDs take advantage of the temperature coefficient
of resistance (TCR) of metals [Fig. 2(c)], which is the calculation of the
resistance change due to the increase in temperature, given as

R ¼ Rref ½1þ a T � Trefð Þ�;

where a is the temperature coefficient of resistance for conductor
material with R and Rref denoting the resistance at test temperature
and the reference temperature of the sensor, respectively.

Although they are not widely used in flexible, skin-interfaced
wearable sensors, thermocouples are another important type of tem-
perature sensors. Thermocouples are made from two dissimilar electri-
cal conductors (alloys), which form two junctions at different
temperatures; a cold junction that acts as a reference and a hot

FIG. 1. Wearable sensors and data analytics for continuous monitoring and analysis of biomarkers and symptoms related to COVID-19.
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junction where the measurement occurs. The output voltage pro-
duced at this junction due to the thermoelectric effect is propor-
tional to the temperature change. This type of temperature sensor
can typically operate at much higher temperatures than that of

thermistors and RTDs. It also has a much wider working range
(�270–1260 �C). Nevertheless, the low sensitivity associated with
thermocouples limits their usage in wearable temperature sensing
applications.

TABLE I. Biophysical sensors for monitoring symptoms of COVID-19. NTC: negative temperature coefficient; PZT5: lead zirconate titanate; LEDs: light-emitting diodes; PDs:
photodiodes; NFC: near-field communication; PI: polyimide; VCSEL: vertical-cavity surface-emitting laser.

Biophysical vital sign Type of biosensor Sensing mechanism Sensing site Reference

Body temperature Gold doped silicon nanomem-
brane array—NTC thermistor

Electrical resistance decreases as
temperature increases

Arbitrary location on the
torso

21

Integrated circuits (ICs) with sili-
con bandgap temperature

sensors

Voltage difference between two
silicon p-n junctions increases as

temperature increases

Neck area 22

Respiration rate Thermal actuator and NTC
Thermistor

Electrical resistance decreases as
temperature increases

Upper lip 23

Carbonized linen deposited with
copper strain sensor

Electrical resistance changes with
deformation

Throat 24

Laser-induced graphene strain
sensor

Electrical resistance changes with
deformation

Abdomen 25

Three-axis digital accelerometers Periodic rotation of the device
due to breathing

Suprasternal notch 26

Ultrasound PZT5 piezo disk
transducer

Ultrasound time of flight changes
with the movement of the

diaphragm

Abdomen (zone of
apposition)

27

Oxygen saturation (SpO2),
Heart rate (HR), and
Heart rate variability
(HRV)

Organic/polymer LEDs and
organic PDs integrated in opto-

electronic skin

Reflectance pulse oximetry Arbitrary location on the
body

28

Sensor patch with two pairs of
organic LEDs and organic PDs

for data redundancy

Reflectance pulse oximetry Wrist 29

NFC patch fabricated on a flexi-
ble sheet of Cu/PI/Cu through
photolithography embedded in

soft silicone elastomer

Reflectance pulse oximetry Arbitrary location on the
torso and limbs (neonatal

care)

30

Organic PDs with spectrally
selective filters for LED-free

pulse oximetry using only ambi-
ent light

Transmission pulse oximetry Index finger 31

An array of microfabricated
VCSEL diodes and piezoelectric
transducers embedded in soft sil-

icone elastomer

Photoacoustic tomography Arbitrary location on the
body

32

FIG. 2. Different types of temperature
sensors. (a) Resistance change as tem-
perature increases for an NTC thermistor.
(b) Log (resistivity) as temperature
increases for a PTC thermistor. (c) TCR
graph for an RTD.
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Recent advancements in materials science, device fabrication
technologies, and system integration have enabled the integration of
temperature sensors, such as NTC and PTC thermistors and RTDs
into wearable platforms for continuous body temperature monitor-
ing.21,36 For example, Sang et al. developed an ultrasensitive tempera-
ture sensor in which a gold-doped silicon nanomembrane array was
laminated onto an ultrathin polymer layer in a serpentine mesh struc-
ture [Fig. 3(a)].21 By controlling the concentration of Au impurities
doped into the silicon nanomembrane, several effects can be observed,
including the movement of the freeze-out region closer to the intrinsic
region, the shift of the Fermi energy level, and an increase in the acti-
vation energy of p-type silicon nanomembranes. These combined
effects increase the device’s sensitivity substantially; the sensitivity of
the reported sensor is 22 times higher than that of the temperature
sensors based on pure gold. For this type of temperature sensor, the
concentration of free-electrons increases when the temperature
increases due to the formation of electron–hole pairs, which decreases
the resistivity of the Au-doped silicon. Importantly, the ultrathin poly-
mer supporting layer allows the sensor to attach conformally to the
skin, enabling it to be used with minimal interference from relative
movement or sweat during physical activity. The sensor was used to
measure an individual’s temperature on a stationary bike by placing it
on the back and simultaneously monitoring the person’s respiration
rate by tracking the changes in temperature right below the nostrils
when the sensor was attached to the philtrum [Figs. 3(b) and 3(c)].

It should be noted that the above-mentioned temperature sensors
measure the skin temperature, not the core body temperature. The
measurement of core body temperature is a more accurate representa-
tion of human homeostasis, as opposed to the peripheral body temper-
ature, which is generally lower than the core temperature.37 The gold
standard methods (e.g., rectal thermometers, pulmonary artery cathe-
ters, etc.) used for measuring core temperature are highly invasive,
which makes the use of wearable sensors for estimating the core tem-
perature very appealing. To meet this clinical need, Jeong et al. devel-
oped a wireless, multimodal, fully wearable cardiopulmonary
monitoring device, which incorporates two temperature sensors to
estimate the core body temperature [Fig. 3(d)].22 The two sensors
simultaneously measure the skin temperature and the ambient tem-
perature. The skin sensor is located next to the skin in the device and
isolated from the ambient sensor using a thermal insulator film to pre-
vent interference from the ambient temperature [Fig. 3(e)]. The ambi-
ent sensor is placed on top of the battery, as far from the skin as
possible. It also has a layer of thermal insulator film underneath to iso-
late it and prevent the battery from influencing the temperature mea-
surements. The advantage of measuring both the skin and ambient
temperature is that it allows the device to estimate the core body tem-
perature using a subject-specific model [Fig. 3(f)]. The device is fully
wearable, enabling it to monitor body temperature over long periods
while the user is active and transmit the measured data over Bluetooth
to be displayed on a user interface. The device was tested on a
COVID-19 patient for 171 h over 8 days during their recovery and was
able to continuously monitor the core body temperature, which was
observed to decrease from 37.5 to 37 �C by the end of the 8 days. The
device was also able to monitor the respiration rate, heart rate, cough
count, and activity level during that time period.

Wearable temperature sensors could dramatically improve peo-
ple’s ability to monitor body temperature reliably and continuously,

thereby enabling the early determination of fluctuations in tempera-
ture, either an increase that could imply the progression of an infection
or a decrease that could point toward the patient recovering from their
disease or infection. Additionally, significant changes in body tempera-
ture caused by critical conditions, such as hypothermia and hyperther-
mia, can potentially be monitored and detected by wearable
continuous body temperature sensors, thereby allowing for better
medical intervention. Future improvements need to focus on the
removal of motion artifacts, which is one of the main shortcomings
that many wearable devices suffer from. Creating devices that can con-
formally attach to the skin helps remove motion artifacts that are
caused by the lack of sufficient and secure contact on the skin during
movement.38 Carefully choosing where to attach the sensor on the
body can also help minimize the amount of motion artifacts.22

Another method of mitigating the influence of daily motion on sensor
signal measurements is to perform post-sensor data processing. Band
pass filters can be used to remove motion artifacts as long as the rela-
tive frequency of those artifacts is known.26 Signal processing algo-
rithms, such as regression, adaptive filtering, blind-source separation,
single-source separation, and machine learning, can also be used to
remove motion artifacts.39

B. Respiration rate monitoring

Respiratory rate is one of the common vital signs that are fre-
quently assessed in clinical settings. Continuous measurement of the
respiratory rate is critical for respiratory diseases that cause lung infec-
tions, such as COVID-19. Changes in the respiratory rate can accurately
predict COVID-19 infections.40–42 The respiratory rate has also been
shown to be a good indicator of mortality risk. Chatterjee et al. found
that patients with tachypnea (i.e., having respiratory rates of >22
breaths per minute) were at 1.9-to-3.2-fold elevated mortality risk, with
98% of tachypneic patients requiring supplemental oxygen administra-
tion.43 The common method for respiration rate monitoring is spirome-
try, which utilizes a bulky system involving a tube for the patient to
breathe into through their mouth. The importance of accurate and con-
tinuous respiratory rate monitoring has led to the development of next-
generation wearable sensors using alternative sensing techniques. These
sensing methods include those based on temperature, humidity, strain,
ultrasound, and acceleration.22–27,44–50 The method of interfacing with
the body also varies across these modalities.

1. Thermal sensors for respiration rate monitoring

For instance, temperature and humidity sensors can be placed on
the upper lip below the nostrils to track the temperature changes
caused by inhaling and exhaling air. The temperature change associ-
ated with the inspiration and expiration of air causes the resistance of
the integrated temperature sensor to change. By monitoring the resis-
tance change, the respiration rate can be calculated. Liu et al. devel-
oped a highly sensitive thermal sensor that can be used to monitor
respiration rate when placed on the upper lip beneath the nostrils
[Figs. 4(a) and 4(b)].23 The device consists of a thermal actuator with a
fractal curve design made from gold serpentine traces and a miniatur-
ized NTC thermistor. The thermal actuator distributes the heat
around the thermistor to increase the temperature difference between
the thermistor and exhaled air, enhancing the sensitivity substantially.
The temperature changes caused by inhaling and exhaling through the
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FIG. 3. Wearable temperature sensors. (a) Schematic illustration for the preparation of a gold-doped silicon nanomembrane epidermal temperature sensor array. (b)
Photographic images of temperature sensors attached to the skin below the nose and on the back. (c) The fractional resistance changes of gold-doped silicon sensors and
conventional metal sensors over time during periods of rest and exercise. [(a)–(c)] Figure adapted from Ref. 21. Reproduced with permission from Sang et al., Adv. Mater.
34(4), 2105865 (2022). Copyright 2021 Authors, licensed under a Creative Commons Attribution (CC BY) license. (d) Schematic illustration of the wearable sensors for core
body temperature estimation. (e) Labeled cross section schematic illustration of the device. (f) Comparison of estimated and measured core body temperatures under various
ambient temperatures. [(d)–(f)] Figure adapted from Ref. 22. Reproduced with permission from Jeong et al., Sci. Adv. 7(20), eabg3092 (2021). Copyright 2021 Authors,
licensed under a Creative Commons Attribution (CC BY) license.
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FIG. 4. Wearable thermal sensors for respiratory rate monitoring. (a) Schematic illustration and optical images of key components of the wearable respiration sensor. (b) A
photographic image of the assembled respiration monitoring device adhered to the skin beneath the nostrils. (c) Resistance changes over time during periods of exercise and
rest. Insets show photographic images of the subject exercising and resting. [(a)–(c)] Figure adapted from Ref. 23. Reproduced with permission from Liu et al., Mater. Today
Phys. 13, 100199 (2020). Copyright 2020 Elsevier. (d) Photographic image of the temperature sensing devices adhered to the skin in different places on the subject’s face. (e)
Temperature changes over time, inset shows zoomed in section of the graph. (f) Thermal images of the subject’s face when inhaling and exhaling. (g) Temperature over time
during periods of exercise and rest. [(d)–(g)] Figure adapted from Ref. 47. Reproduced with permission from J. Shin et al., Adv. Mater. 32(2), 1905527 (2020). Copyright 2019
Authors, licensed under a Creative Commons Attribution (CC BY) license. (h) Photographic image of respiration monitoring device adhered to the skin beneath the nostrils. (i)
Temperature over time, inset is zoomed in section of the graph. [(h)–(i)] Figure adapted from Ref. 48. Reproduced with permission from Han et al., Sci. Transl. Med. 10(435),
eaan4950 (2018). Copyright 2018 American Association for the Advancement of Science.
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nose cause the resistance of the NTC thermistor to change dramati-
cally, allowing the sensor to monitor the respiration rate of the subject.
Polydimethylsiloxane (PDMS) is used as a flexible and stretchable base
substrate to increase the sensor’s conformability. This temperature
sensor can monitor the respiration rate during exercise and while rest-
ing [Fig. 4(c)] and distinguish between five different respiratory pat-
terns, including gasps, frightened breathing, meditation, sitting, and
sleeping. Another temperature sensor that could be placed below the
nose to monitor respiration rate was reported by Shin et al. [Fig.
4(d)].47 They made an NTC thermistor-based artificial skin out of
NiO nanoparticle inks that was coated onto a polyethylene terephthal-
ate (PET) film and then selectively patterned using a laser. The B-
value represents the sensitivity of the thermistor, and they calculated
theirs to be 7350K in the range of 25–70 �C, which they believe to be
the highest sensitivity ever reported for a thermistor-based tempera-
ture sensor at the time of publication. Their monolithic laser reductive
sintering (m-LRS) NiO temperature sensor also has a rapid response
time (>50ms). They were able to conformally attach the device below
the nose, showing the measurement of small temperature changes
from inhalation and exhalation to monitor respiration rate [Figs. 4(e)
and 4(f)]. The device was also able to monitor real time changes in res-
piration during physical exercise [Fig. 4(g)]. It can also differentiate
between normal breathing and shallow breathing due to shallow
breathing causing a smaller temperature change. A wireless skin-like
temperature sensor with near-field communication (NFC) capabilities
was reported by Han et al. allowing the sensors to be placed all over
the body for large scale temperature mapping without needing batter-
ies or wires.48 The temperature sensing is achieved using a resistance

thermometer detector that is built into the NFC chip. The temperature
sensing device was adhered to the skin below the nose and could wire-
lessly monitor the temperature changes caused by inhaling and exhal-
ing, thereby allowing for the estimation of respiration rate [Figs. 4(h)
and 4(I)].

2. Strain sensors for respiration rate monitoring

In addition to using temperature to measure respiratory rate,
strain sensors can be placed on the throat or abdomen to measure the
changes in resistance caused by the deformations of the throat and the
abdomen during breathing. Liu et al. developed a strain sensor that
can slightly deform with the movements of the throat during respira-
tion, causing the resistance of the strain sensor to change and enabling
it to monitor respiration rate and coughing activity using carbonized
linen fabric deposited with polymer-assisted copper [Figs. 5(a) and
5(b)].24 Pristine linen woven fabric was carbonized, then underwent
polymer growth, and had copper deposited on it before finally being
encapsulated in Ecoflex. This strain sensor is highly flexible and sensi-
tive with ability to stretch up to 300% and a gauge factor of �3557.6
between 0% and 48% strain. It also displays excellent reliability and
durability even after 12000 cycles of being repeatedly stretched to 60%
strain and released. The sensor can accurately distinguish between
normal breathing, coughing, tachypnea, and tachypnea with coughing
[Fig. 5(c)]. Moving from the throat to the abdomen, Xu et al. devel-
oped a multifunctional, wearable, wireless sensor system that incorpo-
rates a PDMS and laser-induced graphene strain sensor for respiration
rate monitoring [Fig. 5(d)].25 The strain sensor is made of a laser-

FIG. 5. Wearable strain sensors for respiratory rate monitoring. (a) Schematic illustration of the carbonized linen fabric strain sensor deposited with polymer-assisted copper.
(b) Photographic image of the strain sensor attached to the throat. (c) Relative resistance changes of the strain sensor over time when the wearer is coughing and when the
wearer is breathing with or without tachypnea and tachypnea and cough. [(a)–(c)] Figure adapted from Ref. 24. Reproduced with permission from Liu et al., Chem. Eng. J. 426,
130869 (2021). Copyright 2021 Elsevier B.V. (d) Photographic image of the LIG strain sensor attached to the abdomen. (e) DR/R0 of the strain sensor over time under different
conditions. [(d) and (e)] Figure adapted from Ref. 25. Reproduced with permission from Xu et al., Adv. Mater. 33(18), 2008701 (2021). Copyright 2021 Wiley-VCH GmbH.
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induced graphene (LIG) ribbon in the shape of a sideways U with
elongated LIG filaments encapsulated in PDMS. The filaments of LIG
were elongated to increase the resistance under stretching. This strain
sensor is connected to a wireless system, allowing for unobtrusive
real-time monitoring of respiration rate. When attached to the abdo-
men of an adult or child, the strain sensor can deform with the move-
ments of the abdomen caused by respiration, causing a change in
resistance, which is wirelessly transmitted to a smartphone via
Bluetooth and can be used to track the respiration rate [Fig. 5(e)].

3. Mechano-acoustic sensors for respiration rate
monitoring

Mechano-acoustic sensors can also be used to monitor respira-
tion rate by placing them on the suprasternal notch. More specifically,
three-axis digital accelerometers can be placed on the suprasternal
notch to measure mechanical motions associated with breathing,
enabling respiratory rate estimation. Lee et al. developed a fully wear-
able wireless system utilizing high bandwidth triaxial accelerometers
for mechanoacoustic monitoring of physiologically relevant informa-
tion, such as respiration rate and heart rate [Fig. 6(a)].26 It attaches to
the suprasternal notch of the throat and incorporates a rechargeable
battery and a Bluetooth chipset into its design for wireless data com-
munication, making it fully wireless and wearable, and thus enabling
use during sports, manual labor, or other activities where a wired
device could not be used [Fig. 6(b)]. This device was used to measure
respiratory rate while the wearer was awake and asleep [Figs. 6(c) and
6(d)]. Breathing produces mechanoacoustic data that accelerometers
can track. Specifically, movement of the chest wall during breathing
causes a periodic rotation of the device around the y axis (i.e., yaw) at
the neck.26 Researchers have proposed adding grounded points that
do not move with the chest wall to increase the angular range of rota-
tion caused by respiration.26 Data post-processing using machine
learning and frequency-domain analysis take advantage of the time-
frequency features to separate the different key events, such as respira-
tion rate, heart rate, swallow counts, and energy expenditure. Such
platforms were later integrated with sensor data analytics and a cloud
data infrastructure to monitor respiratory biomarkers for COVID-19
patients in clinical and home settings.50 Another mechano-acoustic
sensor that can wirelessly monitor vibrations and muscle activities at
the suprasternal notch of the throat was reported by Xu et al. [Fig.
6(f)].49 They incorporated an integrated triaxial broad-band acceler-
ometer along with other electronics such as a surface electromyogram
(sEMG) onto a thin, stretchable, and flexible Ecoflex substrate to
achieve conformal contact with the suprasternal notch and added a
composite hydrogel electrode to attain a low contact impedance, which
improves the signal quality [Fig. 6(e)]. This sensor utilizes a 2D-like
sequential feature extractor with fully connected artificial neurons for
data processing, which has a high classification accuracy of 98.2% for
13 states/features on five healthy human subjects and can adapt to
noisy data. The device platform can also adapt to new subjects with a
classification accuracy of 92%. The weak vibrations of lung dilatation
processes can be detected by the accelerometer as acceleration along
the y axis, which can then be processed using digital filtering
and peak-detection to monitor respiration rate [Fig. 6(g)]. Moving
from the suprasternal notch to the abdomen, Shahshahani et al. devel-
oped a wearable ultrasound-based sensor for diaphragm motion

tracking and respiration rate monitoring.27,46 It is placed near the
abdomen on the zone of apposition (ZOA) to reduce motion artifacts
from the upper body (i.e., the heart, etc.). Their device uses a single
lead zirconate titanate (PZT5) piezo disk transducer to send ultra-
sound signals to the diaphragm, from which the echoed signals are
then received and measured. The respiration rate is calculated by
tracking the position of the organ using the intensity and time of flight
(ToF) of reflected sound. When compared against the gold standard
(i.e., spirometer), the sensor outperformed other methods that use
photoplethysmography (PPG) and inertial sensors.

C. Blood oxygen saturation, heart rate, and heart rate
variability monitoring

Using the skin as a translucent medium, various wearable sensors
can be engineered to optically and noninvasively measure certain bio-
markers of human physiology. These important biomarkers include
SpO2, HR, and HRV. SpO2, often described in terms of percentages, is
a quantitative measure of the amount of oxygen-saturated hemoglobin
with respect to the total hemoglobin in the blood.51 Following the oxy-
genation process in the lungs, saturated hemoglobin facilitates the dis-
tribution of oxygen throughout the body. As a result, blood SpO2

levels are directly influenced by the respiratory system. The SpO2 levels
of patients with SARS-CoV-2 or other respiratory infections can dis-
play values well below the normal range due to the respiratory dys-
functions of varying degrees caused by lung inflammation.52

Specifically, SpO2 levels of lower than 92% were shown to have an
increased likelihood of hospitalization (relative risk¼ 7.0), as well as
elevated risk of intensive care unit (ICU) admission, septic shock, and
acute respiratory distress syndrome among 209 suspected patients (77
tested positive for COVID-19). Therefore, continuous and accurate
monitoring of SpO2 is of particular importance for COVID-19
patients.

HR and HRV are two other important biomarkers that are
closely related to each other. HR refers to the number of heart beats
per minute, whereas HRV describes the variation in the interbeat time
intervals and is usually measured in terms of standard deviations in
the time domain.53 In search of more easily acquired biomarkers that
can reliably predict the outcomes of COVID-19 disease, HR and HRV
have extensively been studied.54–57 Frequency domain analysis of
HRV has revealed that high (HF) and low (LF) frequency powers of
the spectrum exhibit a significant reduction in COVID-19 patients,
whereas time domain measures, such as root mean square of succes-
sive R-to-R peak interval differences (rMSSD) and standard deviation
of NN intervals (SDNN), showed increased values, indicating elevated
parasympathetic activity.54 Moreover, the increased HRV in COVID-
19 patients of age 70 and higher predicted greater odds of survival,
while low HRV implied ICU admission in the first week of hospitaliza-
tion.55 Another study has revealed that the aforementioned decrease
in HRV could be a good predictor of increases in C-reactive protein
(CRP), which is now commonly used to track the patient’s inflamma-
tory response caused by SARS-CoV-2.56 Additionally, HR has been
shown to exhibit elevated baseline values in fetuses of pregnant
COVID-19 patients, presumably due to the effects of the maternal
inflammatory response, maternal pyrexia, and cytokine storm.57

Acquisition of HR and HRV continuously and accurately is, therefore,
appealing within the clinical context.
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FIG. 6. Wearable mechano-acoustic sensors for respiratory rate monitoring. (a) Schematic illustration of the exploded view of the mechano-acoustic sensor. (b) Photographic
image of the device adhered to the suprasternal notch. (c) Respiration rate over two minutes using the mechano-acoustic device data and manual counting. (d) Respiration
rate measured during sleep by the mechano-acoustic sensor and pressure transducer air flow (PTAF) recordings. [(a)–(d)] Figure adapted from Ref. 26. Reproduced with per-
mission from Lee et al., Nat. Biomed. Eng. 4(2), 148–158 (2020). Copyright 2019 Springer Nature. (e) Schematic illustration of the exploded view of the device system. (f)
Photographic images of the device adhered to the suprasternal notch of the throat and the arm. (g) Comparison of the measured respiration rate over time of Xu et al.’s device
and a commercial device.49
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SpO2, HR, and HRVmeasurements can all be acquired classically
through PPG signals using pulse oximetry, an optical technique that is
typically noninvasive.58 In the case of SpO2 monitoring, red blood cells
saturated with oxygen possess a unique shade of red. This sets the basis
for the working principle of a pulse oximeter, which measures the
difference in light intensities caused by the unique absorbance charac-
teristics of oxygenated and deoxygenated hemoglobin at different
wavelengths.51,59 More specifically, oxygenated (deoxygenated) hemo-
globin lets more red (infrared) light pass through while absorbing
more infrared (red) light [Fig. 7(a)]. Therefore, a basic pulse oximeter
requires only three components at its core: a red light source operating
at �660nm (R), an infrared light source operating at �940nm (IR),
and a photodetector (PD) [Fig. 7(b)]. Upon the illumination of the
tissue through the skin, the PD measures the intensities of either
the transmitted (i.e., transmission-based oximetry) or reflected (i.e.,
reflectance-based oximetry) R and IR light. Then, a processor (i.e.,
a microcontroller) digitizes the PD voltage signals through an analog-
to-digital converter (ADC) and performs a simple calculation to

find the light ratio between the two measured wavelengths of light.
Finally, this ratio is used to generate a calibration curve using
the Beer–Lambert law, from which the SpO2 level is determined.
This method of noninvasively measuring peripheral SpO2 levels in a
controlled clinical environment has been shown to be within 3%–4%
(2%–3% for continuous monitoring) accuracy of the more accurate,
invasive arterial SpO2 measurements.59 The level of accuracy achieved
is considered to be sufficient for most cases; however, more accurate
methods may be required for oxygenation monitoring of critically ill
patients and newborn infants due to the fact that the calibration curves
for pulse oximetry are generally derived from healthy individuals of
higher ages. Consequently, noninvasive medical grade pulse oximeters
alone generally do not provide decisive readings and hence are often
used in combination with other monitoring systems to improve diag-
nostics in clinical settings, especially for COVID-19 patients.60

Furthermore, since PPG signals display periodic peaks that corre-
spond to cardiac cycles caused by pulsative volumetric changes in the
blood vessels, HR and HRV information can be computationally

FIG. 7. Principles of pulse oximetry-based COVID-19 monitoring. (a) Absorption spectra of oxygenated (HbO2, red line) and deoxygenated (Hb, blue line) hemoglobin.
Reversed differences in absorption levels at red (shaded red) and infrared (shaded blue) wavelengths set the basis for pulse oximetry. Reproduced with permission from S.
Prahl, see https://omlc.org/spectra/hemoglobin/index.html for “Data Available” (accessed May 22, 2022). (b) System block diagram of a basic transmission-based pulse oxime-
ter. The PD senses the intensities of reflected or transmitted lights from the tissue (insets are HbO2 and Hb inside a blood vessel) due to the R and IR LEDs, which are then
amplified to generate a photoplethysmogram (PPG). SpO2, HR, and HRV values are extracted from the PPG signal through digital processing and peak detection algorithms.
By analyzing these values through appropriate methods, such as thresholding and time/frequency domain techniques, COVID-19 disease assessment and monitoring can be
performed.
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extracted from the PPG signals using appropriate peak detection algo-
rithms.58 After the SpO2, HR, and HRV values are collected, they can be
further processed using aforementioned methods such as thresholding
(i.e., comparing against a fixed or an adaptive value), time (i.e., standard
deviation), and frequency (i.e., power spectra) domain analysis to com-
plete a workflow for pulse oximetry-based COVID-19 disease diagnosis
[Fig. 7(b)].

Despite the widespread popularity of noninvasive pulse oximeters
in clinical settings (e.g., fingertip or earlobe-worn medical oximeters)
and consumer electronics (e.g., wrist-worn smartwatches and fitness
trackers), conventional technologies used in their implementations
impose multiple limitations. Since noninvasive pulse oximetry employs
optical methods, only a few body areas, such as the fingertips and the
earlobes (although less common, the forehead can also be targeted), are
well suited for performing medical-grade measurements due to their
higher translucency.61 However, clinical pulse oximeters are not suitable
for SpO2 monitoring of moving subjects because of their susceptibility
to motion artifacts and bulky, rigid construction. Considering that most
people infected with SARS-CoV-2 are not immediately aware of it, con-
tinuous and remote SpO2 monitoring on a daily basis could be crucial
for the early detection of the disease. Although wrist-worn sensors in
the form of smartwatches or fitness trackers are more convenient for
daily usage, and some of them can be utilized for reasonably reliable
measurements of HR and HRV,62,63 they are generally considered to be
not accurate enough for SpO2 monitoring.61,64 While more robust algo-
rithms can be developed to improve the accuracy of SpO2 readings
from the wrist,65 lack of sufficient contact and extensive motion present
around the wrist introduce large baseline errors66 that are difficult to
account for without additional readings from fused sensors, such as
inertial measurement units (IMUs). Such methods predictably require
additional hardware and increase complexity.

The emergence of next-generation skin-interfaced electronic devi-
ces that employ soft, flexible, and/or stretchable materials in their con-
struction presents unique opportunities for developing wearable,
noninvasive optical sensors whose mechanical properties match those of
the epidermis.67,68 Such sensors exploit alternative materials and fabrica-
tion methodologies for their core electronic components, namely, photo-
diodes (PDs) and light-emitting diodes (LEDs).69–71 These devices
achieve conformal contact with the skin to minimize motion artifacts,
which greatly improves the accuracy and reliability of the measurements
of relevant biomarkers, such as SpO2, HR, and HRV, and enable moni-
toring from a wider range of body locations. This gives PPG the edge
over alternative methods, such as electrocardiography (ECG), for wear-
able HR and HRV monitoring. ECG is easily influenced by electromyo-
graph (EMG) signals generated by muscle activation and other electrical
noise, which constraints ECG to only chest-based recordings due to the
increased signal-to-noise ratio for daily wearable sensing and for clinical
applications involving patients with tremor or hyperkinesia.14,72 For
these reasons, as well as PPG’s similar HR/HRV performance and ability
to measure SpO2, we do not discuss wearable ECG sensors for HR and
HRV monitoring in this work (the reader is encouraged to check papers
from Chen et al.16 and Hong et al.14 for the discussion of wearable ECG
sensors). The skin-like properties of epidermal pulse oximeters make
them significantly less noticeable to the user, offering new convenient
ways for remote monitoring of moving subjects.13–18,73 Below, we sum-
marize the recent advances in wearable optical sensors for skin-
interfaced pulse oximetry.

Yokota et al. developed a flexible photonic skin using organic
materials that can monitor the SpO2 levels using reflectance-based
pulse oximetry.74 This device can stretch up to 200%, allowing it to be
unobtrusively attached to the fingertip for oximetry measurements. A
similar organic flexible sensor patch, described by Lee et al., improves
upon the previous sensor by exploiting a unique “8”-shaped geometry
to minimize the stray propagation of the emitted light from the LEDs
[Fig. 8(a)].28 The sensor reliably operates at ultra-low electrical power
levels, enabling all-day PPG and SpO2 monitoring of the user [Fig.
8(b)]. Khan et al. developed a flexible organic sensor array to achieve
spatial oxygenation mapping capabilities in different body areas
beyond the conventional sensing sites.75 The authors later fabricated a
multi-channel pulse oximeter that, when paired with algorithms to
take advantage of the redundancy of the measurements, can improve
HR detection [Figs. 8(c) and 8(d)].29 In order to realize pulse oximetry
that is unnoticeable to the user, Kim et al. developed an ultra-
miniaturized wireless pulse oximetry system that attaches to the fin-
gernail or the earlobe and utilizes near-field communication (NFC) for
power delivery and PPG data transmission.76 The device is fabricated
on a flexible sheet of Cu (18lm)/polyimide (PI, 12lm)/Cu (18lm)
foil through photolithography. The electronic components are sol-
dered in and then encapsulated within a soft silicone elastomer.
Chung et al. later developed an improved, epidermal version of the
previous device using stretchable serpentine Cu electrical traces
embedded in an ultra-thin, soft, skin-like elastomer to combine PPG
pulse oximetry and ECG for neonatal intensive care with on-device
signal processing and high-bandwidth data transmission through
Bluetooth [Figs. 8(e), 8(f), and 8(g)].30 The following set of recent
developments involves introductions of distinctive approaches and
novel technologies to advance wearable optical sensing and pulse
oximetry forward going into the future.

To this end, a wearable transcutaneous oxygen (tcpO2, measure
of oxygen level as opposed to saturation level) sensor was fabricated
by Lim et al. using a photoluminescent oxygen-sensing film.77 This
sensor incorporates an indium tin oxide (ITO) thin-film heater layer
to increase the local temperature of the target skin area to promote
arterialization and, therefore, enhance tcpO2 measurements.
Abdollahi et al. followed a unique approach to develop patient-
specific pulse oximeters.78 The sensor is incorporated into a flexible
cuff system, which is fabricated according to the measurements of
the target sensing area (i.e., finger or toe) of a particular patient
through advanced PDMS 3D printing. This personalized cuff is then
interfaced with the main board for data processing and transmission.
In order to greatly enhance the interfacing capabilities and increase
the emission area of wearable LEDs, Bae et al. proposed a new
approach to fabricate PDMS-based stretchable waveguides.79

Another major improvement to the existing wearable pulse oximeters
was introduced by Han et al., where the authors achieved high-
performance pulse oximetry using only ambient light without the use
of LEDs by combining organic PDs with spectrally selective filters to
achieve sensitivity peaks at near-infrared (�740 nm), red (�610 nm),
and green (�525nm) wavelengths [Figs. 8(h) and 8(i)].31 The elimi-
nation of the LEDs and reliable operation in both indoor and out-
door lighting conditions make ambient light oximeters appealing for
realizing low-cost and efficient pulse oximetry systems.

An alternative method that can be used to measure blood oxy-
genation is photoacoustic tomography (PAT), which is a powerful,
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emerging hybrid method that combines optical stimulation of tissue
and ultrasonic transduction80,81 PAT has found applications in alter-
native monitoring of blood oxygenation, thanks to its excellent con-
trast due to targeted optical excitation and deep tissue penetrating

capabilities resulting from nature of the ultrasonic signals received.82,83

Only recently, PAT has been incorporated into flexible, skin-
interfaced wearable sensors by Gao et al. in the form of a photoacous-
tic patch for 3D imaging of hemoglobin in the blood.32 The sensor

FIG. 8. Recent advances in wearable optical sensors
for pulse oximetry. (a) Schematic illustrations and pho-
tographic images of an organic flexible sensor patch
optimized for power efficiency. (b) PPG measurements
using the wearable sensor patch placed on the finger-
tip and extracted HR/SpO2 information. [(a) and (b)]
Figure adapted from Ref. 28. Reproduced with permis-
sion from Lee et al., Sci. Adv. 4(11), eaas9530 (2018).
Copyright 2018 Authors, licensed under a Creative
Commons Attribution (CC BY) license. (c) Schematic
illustration and photographic image of a flexible multi-
channel wearable pulse oximeter. (d) Raw (first and
second panels) and weight-adjusted (third and fourth
panels) PPG measurements from the multi-channel
sensor, HR estimations from the two channels (fifth
panel), and HR estimations of two multi-channel
extraction algorithms (sixth panel). [(c) and (d)] Figure
adapted from Ref. 29. Reproduced with permission
from Khan et al., IEEE Access 7, 128114–128124
(2019). Copyright 2019 Authors, licensed under a
Creative Commons Attribution (CC BY) license. (e)
Schematic illustration of a wireless, battery-free epider-
mal electronic system (EES) for PPG measurements
in neonatal intensive care. (f) Real-time, on-device
SpO2 monitoring using the PPG EES during a breath-
ing exercise. (g) SpO2 monitoring performance of the
PPG EES compared to the gold standard system
(Intellivue MX800, Philips). [(e)–(g)] Figure adapted
from Ref. 30. Reproduced with permission from Chung
et al., Science 363(6430), eaau0780 (2019). Copyright
2019 Authors, licensed under a Creative Commons
Attribution (CC BY) license. (h) Schematic illustrations
and photographic images of a LED-free pulse oximeter
that uses ambient light. Insets display the various
spectral filters designed to be integrated with the PDs
to selectively sense the wavelengths of interest. (i)
Fingertip pulse oximetry measurements using the sun
as a light source with green and red spectral filters.
[(h)–(i)] Figure adapted from Ref. 31. Reproduced with
permission from Han et al., Adv. Mater. Technol. 5(5),
1901122 (2020). Copyright 2020 WILEY-VCH Verlag
GmbH & Co. KGaA, Weinheim.
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uses microfabricated vertical-cavity surface-emitting laser (VCSEL)
diodes on an elastomeric polymer in order to excite the hemoglobin
molecules in deep tissue (>2 cm), causing them to emit acoustic ultra-
sound waves which are then detected by the piezoelectric transducers
integrated onto the same sensor patch. Although only total hemoglo-
bin was measured, the sensor patch can easily be modified to incorpo-
rate two different VCSEL diode wavelengths in order to distinguish
oxygenated hemoglobin from deoxygenated hemoglobin and measure
SpO2, akin to the red and infrared LEDs used in pulse oximetry.
Furthermore, exploiting the linear relationship between the amplitude
of the photoacoustic response signals with core temperature, the
authors were able to generate an accurate 3Dmap of the core tempera-
ture within the imaging field of view.

III. BIOCHEMICAL SENSORS FOR SYMPTOMS RELATED
TO COVID-19

Wearable biosensors are promising for non-/minimally invasive,
continuous, and real-time monitoring of vital physiological informa-
tion in personalized medicine. Early efforts of wearable sensors
focused on monitoring the human body’s physical activities, including
heart rate,84 body movement,85 blood pressure,86 body temperature,87

respiration rate,25 and ECG.67,88 However, the development of wear-
able devices capable of providing direct information on the dynamic
biochemical and metabolic processes at the molecular level is still in its
infancy.89 Furthermore, multiplexed biochemical monitoring could
detect COVID-19-associated early symptoms and track the progres-
sion of illness, thereby enabling a more accurate disease diagnosis and
treatment. The current standards of monitoring various biochemicals,
including antibodies, electrolytes, metabolites, and cytokines involve
frequent sampling of blood or urine in the laboratory. Such sample
collection and testing procedures are painful, time-consuming, and
pose a barrier to their usage in the continuous monitoring of bio-
markers. In addition, those sampling and testing procedures increase
the number of healthcare worker/patient interactions and require
additional use of personal protective equipment (PPE). There remains
an urgent need for personalized, simple, and effective ways to monitor
health status by measuring multiple biochemical markers, such as elec-
trolytes, cytokines, and cortisol, all of which provide critical

information for the prediction, screening, diagnosis, and therapy of
COVID-19.90–94

Typical biochemical sensors consist of three key components;
“receptors” (e.g., antibody, oligonucleotide, aptamer, etc.) for selective
binding to the target analytes, “transducers” that convert the target-
receptor interaction into measurable signals, such as electric potential,
current, and impedance (Fig. 9), enabling the sensitive and selective
detection of biochemicals, and a readout system that stores, processes,
and displays the measurable sensor signals. In this section, we will
mainly review the recent development of wearable biochemical sensors
for monitoring cytokines, cortisol, and electrolytes for COVID-19
patients (Table II).

A. Cytokine monitoring

SARS-CoV-2 infections can cause excessive levels of hyper-
inflammatory cytokine in the serum, which is known as the cytokine
storm.99 Some studies suggest that the cytokine storm is a possible
cause of death for COVID-19 patients and that the level of cytokine
can be used as an effective predictor for disease severity, progression,
and recovery.100 Recently, interleukin-6 (IL-6) and interferon-alpha
(IFN-a) were reported to be positively correlated with severe cases. For
instance, IL-6 is associated with hospitalization, ICU admission, and
poor prognosis.101–105 High serum IFN-a level was found in severe
cases during COVID-19.102 Therefore, before prescribing immuno-
suppressive therapy, the cytokine panel should be evaluated to pre-
cisely identify the needs of each patient.106

Protein biomarkers, like cytokines, are typically detected by
immunosensors in which antibodies are used as sensor receptors. As
the receptors, antibodies can specifically recognize targets. However,
their practical applications are still limited by their large molecular
size, limited lifetime, temperature sensitivity, irreversible denatur-
ation,100 and complicated operations, which will be difficult in wear-
able sensor applications. Different from the antibodies generated from
animals through complex processes, aptamers are chemically synthe-
sized with lower cost, higher stability, longer shelf life, and lower varia-
tion from batch-to-batch. More importantly, it is much easier to
induce chemical modification at any desired location in the chain of
nucleotides.107 For example, by using the specific aptamer of the target,

FIG. 9. Schematic illustration of the key components of a typical electrochemical biosensor.
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Wang et al. reported a flexible and regenerative graphene field-effect
transistor (gFET)-based aptameric sensor for interferon-gamma (IFN-
c) detection down to 740 fM in undiluted human sweat [Fig. 10(a)].90

Specifically, by drop-casting Nafion solution onto the graphene surface
to form a Nafion film, graphene was isolated with the nontarget mole-
cules to minimize the nonspecific adsorption of graphene, allowing the
regeneration and reuse of the gFET by dissolving the Nafion film in
ethanol. Moreover, this device demonstrated excellent electrical and
mechanical performance, with no obvious mechanical damage and
maintained a consistent electrical response over up to 80 cycles of
regeneration and up to 100 cycles of crumpling tests, respectively.
Additionally, by exploiting the flexibility and durability of the
graphene-Nafion composite film, this sensor exhibited conformal

attachment to human skin under deformation, implying the potential
for wearable applications. Different from techniques for single bio-
marker detection, a sensing system that enables simultaneous detec-
tion of multiple cytokines could provide more information for disease
screening, diagnosis, and therapy, which is especially important for
early identification of the COVID-19 infection for asymptomatic and
presymptomatic individuals. Recently, Hao et al.91 developed an apta-
meric dual-channel graphene-based biosensing system for multiplexed
detection of IFN-c, TNF-a, and IL-6 in human biofluids, including
serum, saliva, urine, and sweat, within 7min with detection limits as
low as 476, 608, and 611 fM, respectively [Fig. 10(b)]. This multi-
sensing system integrates a customized device for signal processing,
display, and wireless data transmission to a smart device and notifies

FIG. 10. Wearable cytokine sensors. (a) Schematic illustration of the graphene-Nafion film based regenerative sensor for cytokine detection. Figure adapted from Ref. 90.
Reproduced with permission from Wang et al., Adv. Funct. Mater. 31(4), 2005958 (2021). Copyright 2020 Wiley-VCH GmbH. (b) Illustration of aptameric dual channel
graphene-based biosensing system for multiplex detection of IFN-c, TNF-a, and IL-6 in cytokine storm caused by SARS-CoV-2. Figure adapted from Ref. 91. Reproduced with
permission from Hao et al., Small 17 (29), 2101508 (2021). Copyright 2021 Wiley-VCH GmbH.

TABLE II. Biochemical sensors for monitoring symptoms related to COVID-19.

Analyte Type of biosensor
Type of

transduction
Matrix
analyzed

Limit of
detection (LOD) Reference

IFN-c Graphene field-effect transistor
(gFET)-based aptameric sensor

FET Sweat 7.4� 10�13mol l�1 90

IFN-c, TNF-a,
and IL-6

Graphene field-effect transistor
(gFET)-based aptameric sensor

FET Serum 4.76� 10�13mol l�1 91
Saliva 6.08� 10�13mol l�1

Urine 6.11� 10�13mol l�1

Sweat
Cortisol Molecularly imprinted

polymer-based organic
electrochemical transistors

(OECTs)

OECTs Sweat Not available 95

Antibody-electrochemical sensor Amperometric Sweat 2.21� 10�10mol l�1 96
Saliva

Aptamer-field-effect transistor FET Sweat 1� 10�12mol l�1 97
Naþ, Kþ Electrochemical-potentiometric Sodium and

potassium ISE
Interstitial
fluids

Not available 98

Naþ Graphene field-effect transistor Ion-sensitive field-effect
transistor (ISFET)

Interstitial
fluids

2.78� 10�6mol l�1 94
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the individuals when their physical condition worsens. Additionally,
this intelligent graphene-based biosensing device demonstrated the
capability for wearable applications in COVID-19 patients when the
sensor was fabricated on a flexible polyethylene terephthalate (PET)
substrate for cytokine detection in sweat.

B. Cortisol monitoring

Cortisol is generated by the human body in response to stress.
Abnormally high or low cortisol concentrations can be life-threaten-
ing.93 In particular, excessive levels of cortisol can aggravate a patient’s
condition, leading to a weaker immune system and a higher risk of
infection. A new study led by Dr. Dhillo et al. found that COVID-19
patients with high concentrations of total cortisol in their serum are
more likely to have their condition deteriorate quickly, leading to
death.93 Thus, cortisol levels can be a key biomarker to indicate the
severity of COVID-19 infection and can be used as valuable informa-
tion for medical personnel to identify COVID-19 patients who may
need intensive care. Parlak and co-workers developed a wearable
organic electrochemical transistor (OECT) for continuous noninvasive
monitoring of cortisol in sweat.95 This sensor system consists of multi-
functional layers, including microcapillary channel arrays for sweat
sampling, molecularly imprinted polymer (MIP)-coated organic elec-
trochemical transistors that can selectively bind with cortisol, and a
water-proof protection layer [Fig. 11(a)]. The sensing principle
involves the binding of the MIP and the target cortisol, resulting in the
sealing and blocking of the MIP pores, which prevents ion transport to
the channel. This allows for the detection of cortisol concentration by
measuring changes in source- drain current of OECT. Figure 11(b)
shows the analytical performance of the developed sensor for on-body
measurement by spraying artificial sweat with various cortisol concen-
trations on the forearm, including the sensor output current response
as a function of cortisol concentration and the corresponding calibra-
tion curve. The developed sensor was also tested with real sweat from
the skin, showing a good agreement with standard enzyme-linked
immunosorbent assay (ELISA) methods [Fig. 11(b)]. With microflui-
dics technology, sweat can be rapidly sampled by the laser-patterned
channel arrays from the skin surface without sensor contamination.

Recently, an integrated wireless mobile health (mHealth) sensing
system [Figs. 11(c) and 11(d)] based on laser-engraved graphene for
noninvasive cortisol measurement in sweat was developed by
Torrente-Rodr�ıguez et al.96 This wireless sensing device is comprised
of a microfluidic module for on-body sweat sampling and a flexible
electrode array (including three laser-engraved graphene-based work-
ing electrodes, an Ag/AgCl-based reference electrode, and a laser-
engraved graphene-based counter electrode) for cortisol detection.
The measurement is based on the competitive binding between sweat
cortisol and the cortisol labeled by horseradish peroxidase (HRP) onto
the antibody-functionalized graphene electrode. In a 6-day pilot study
with a healthy human subject, the developed platform successfully
captured the diurnal pattern of sweat cortisol [Fig. 11(d)]. The sweat
cortisol also shows a good correlation with salivary/serum cortisol in a
study involving eight healthy subjects [Fig. 11(d)]. Nonetheless, this
platform still requires the addition of external reagents, limiting the
real-time in situ sweat cortisol monitoring. To that end, recently,
Wang et al. developed a smartwatch with a flexible aptamer-field-
effect transistor (aFET) sensor array for label-free monitoring of corti-
sol in sweat [Figs. 11(e) and 11(f)].97 A nanometer-thin-film of In2O3

spin-coated on flexible polyimide was used as the channel layer of FET
transduction platform and the aptamer was used as the biorecognition
element. The aFET for cortisol detection is based on the conforma-
tional change of the negatively charged aptamer in the presence of cor-
tisol targets. This conformational change induces the surface charge
changes in the semiconductor channel, which can be detected by the
transfer curve of FET. This fully integrated wearable smartwatch was
able to detect cortisol levels in a wide concentration range from 1 pM
to 1lM with a high selectivity and sensitivity. Additionally, it demon-
strates the capability for the real-time monitoring of sweat cortisol lev-
els, pH, and skin surface temperature during normal daily activities
[Fig. 11(f)].

C. Electrolyte monitoring

It is well known that one of the early symptoms of COVID-19 is
fever. A new study reported that 67/206 patients with low-severity
COVID-19 infections experienced diarrhea, and for 19.4% of these
cases, diarrhea was the first early symptom.108 Fever and diarrhea
cause the body to lose water and electrolytes rapidly, forcing it to uti-
lize fat and muscle to maintain normal body functions. Due to electro-
lyte imbalance caused by such losses, fluids and electrolytes must be
replenished to prevent dehydration and further complications, such as
hypokalemia and hyponatremia. Sodium and potassium are two
important ions for maintaining electrolyte balance, especially for
COVID-19 patients who are undergoing prolonged fever, diarrhea,
and normally lost water and electrolytes from skin and stool, which
increases the risk of dehydration. Therefore, it is critical to develop a
sensor for real-time monitoring of body electrolyte levels, which will
help healthcare professionals continuously monitor COVID-19
patients at home and effectively manage the electrolyte balance.
Among various biofluids (sweat, saliva, tears, and many others),109,110

skin interstitial fluids (ISF) represents a promising biofluid for inter-
face with wearable biosensors for minimally invasive wearable applica-
tions.111–113 Compared to sweat, ISF could provide a rich source of
biomarkers, including electrolytes, metabolites, proteins, micronu-
trients, and hormones, for analysis in situ without sample evaporation,
contamination, and storage. Recently, Li et al. developed a
microneedle-based potentiometric sensor that can continuously moni-
tor sodium and potassium in skin interstitial fluids.98 By integrating a
miniaturized stainless steel 26 gauge hollow microneedle, this potenti-
ometric sensing system tends to avoid sensor delamination and touch-
ing the nerve endings during the sensor insertion, thereby enabling
monitoring of the electrolytes in a minimally invasive way like the
commercial continuous glucose meter (CGM) [Fig. 12(a)]. In order to
realize the wireless transmission of the measured electrolytes data,
Zheng et al. reported a wearable microneedle-base gate field effect
transistor (FET) sensing system that was minimally invasive for real-
time monitoring of sodium in interstitial fluids.94 This novel biosensor
relies on the microneedle-base extended gate electrode (EG) and refer-
ence electrode (RE) that penetrate the skin to access the sodium in the
ISF [Fig. 12(b)], which shows high stretchability, sensitivity, biocom-
patibility, and mechanical stability during on-body testing. Integration
with wireless communication and the Internet-of-Things cloud, this
developed sensor has the potential to enable efficient remote health-
care without face-to-face consultations. Like other biosensors, the
interferences from other biomarkers and nonspecific adsorption in
complex biological environments, like skin ISF, could cause the output
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FIG. 11. Wearable sensors for cortisol detection. (a) Schematic illustrations and optical images of flexible OECTs and (b) the analytical performance in sweat cortisol detection.
[(a) and (b)] Figure adapted from Ref. 95. Reproduced with permission from Parlak et al., Sci. Adv. 4(7), eaar2904 (2018). Copyright 2018 Authors, licensed under a Creative
Commons Attribution (CC BY) license. (c) and (d) Laser-engraved graphene-based mHealth device for cortisol measurement in serum, saliva, and sweat samples from healthy
human subjects. [(c) and (d)] Figure adapted from Ref. 96. Reproduced with permission from Torrente-Rodr�ıguez et al., Matter 2(4), 921–937 (2020). Copyright 2020 Elsevier.
(e) and (f) Schematic illustration of the key components of a flexible aptamer-FET-based smartwatch and the representative results for the real-time monitoring of sweat corti-
sol, pH, and skin temperature during normal daily activities. [(e) and (f)] Figure adapted from Ref. 97. Reproduced with permission from Wang et al., Sci. Adv. 8(1), eabk0967
(2022). Copyright 2022 Authors, licensed under a Creative Commons Attribution (CC BY) license.
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noise of the developed ion-selective electrodes. Optimizing the forma-
tion of ion-selective membrane and the development of anti-
biofouling surface coatings, as detailed in the section summary and
perspectives, could resolve these issues. Importantly, due to sensor-to-
sensor variations, the sensors usually need to be pre-calibrated before
each use to ensure accurate detection using ISE.114

IV. DATA ANALYTICS AND MACHINE LEARNING
A. Sensor data analytics

Sensor data analytics is a platform built to analyze the data col-
lected from different sensors. The data are analyzed to gain insight
and obtain meaningful understanding by using different metrics.
Recent studies have suggested that sensor data analytics is going to
play an important role in the wearable sensor area. In particular, Quer
et al. developed a smartphone application that collects activity data, as
well as self-reported symptoms from individuals to diagnose the
COVID-19 infection.115 They collected the demographic data and sen-
sor data from 54 reported positive and 279 negative participants,
including age, resting heart rate (RHR), steps, and sleep activities. To
investigate the correlation between sensor data and COVID-19, they
proposed a statistical analysis method to estimate the infection status
by generating a measure through a weighted combination of the sen-
sor data and comparing it to the baseline value to determine the infec-
tion. This study shows that the statistical analysis method reaches an
AUC (area under the curve) of 0.80 for COVID-19 detection. The pro-
posed method used 11 hyper-parameters for the calculation, and the
weight parameters were optimized by the authors on a given dataset.
However, this optimization method is not efficient, and the detection
results are sensitive to the settings of the parameters. Shan et al. devel-
oped a nanomaterial-based breath sensor to collect the expiratory
gases with different VOCs (volatile organic compounds) and humidity
as the input features for the rapid and accurate diagnosis of COVID-
19.116 They followed 49 COVID-19-positive patients, 58 negative indi-
viduals, and 33 non-COVID lung infection patients to investigate the
sensor responses based on the statistical analysis. The collected data
were trained using the discriminant factor analysis (DFA) algorithm,
which is a statistical procedure that classifies the unknown individual
into a certain group. The experimental results indicate that the
proposed method achieves 76% accuracy and an AUC of 0.81 for dis-
tinguishing the infection of COVID-19. The nanomaterial-based
breath sensor provided a novel solution to identify the COVID-19

infection. However, the statistical method does not have satisfactory
performance for sensor data analytics.

B. Motion artifacts

Motion artifacts create a unique challenge for utilizing the data
from a sensor for further analysis, such as for estimation or classifica-
tion tasks. They are especially critical when measuring physiological
parameters, such as the respiration rate, heart rate, blood oxygen level,
and body temperature. Motion artifacts can appear in many forms, the
most common ones are noise and interference. These artifacts often
come from the body movements, changes in body position or posture,
or contact pressure between the sensor and skin. They often affect sub-
stantially the overall performance of a wearable device. To effectively
address the issue, it is important to understand the source of motion
artifacts and the data analytic techniques that can mitigate the effects
of motion artifacts. The processing to handle motion artifacts can be
problem dependent and should be properly designed in order to fully
utilize the data collected by a sensor.

A common approach to limit the detrimental effects from arti-
facts is by filtering. The goal is to separate the desired signal from the
noise generated by motion artifacts. A filter can be designed with a
passband over the frequency region where the useful information lies
and eliminate all other frequency content that may be due to noise or
interference from the unrelated activities.117 Various filtering methods
have been proposed in the literature, including low-pass filters, high-
pass filters, bandpass filters, and adaptive filters. Tanweer et al.
presented a filtered-X least mean square (FX-LMS) adaptive noise can-
celation algorithm to reduce the motion artifacts from the sensor data
during intensive exercise,118 which enhanced the signal quality for
accurate heart rate estimation. In another study, Zhang et al. proposed
a general framework called TROIKA.119 It uses a combination of filter-
ing, spectral analysis, and time-frequency analysis techniques to reduce
motion artifacts. This framework is shown to be able to improve the
accuracy and reliability of heart rate monitoring using the wearable
photoplethymogram (PPG) sensors.

Data fusion and sensor fusion are also primary techniques to
enhance the overall performance of a wearable device by combining
useful data from multiple sensors. They can help to detect and com-
pensate for the motion artifacts by exploiting additional contextual
information. Yousefi et al. presented a motion-tolerant adaptive algo-
rithm for wearable PPG biosensors based on particle filtering.120 It

FIG. 12. Wearable sensors for electrolyte monitoring. (a) Schematic illustration of the microneedle-based potentiometric sensor for electrolyte monitoring in skin ISF (left). The
sensing system implanted in chicken skin (right). Figure adapted from Ref. 98. Reproduced with permission from Li et al., ACS Sens. 6(6), 2181–2190 (2021). Copyright 2021
American Chemical Society. (b) A microneedle-based FET sensor attached to wrist for continuous monitoring sodium in ISF. Figure adapted from Ref. 94. Reproduced with
permission from Zheng et al., Adv. Mater. 34(10), 2108607 (2022). Copyright 2022 Wiley-VCH GmbH.
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combines data from the PPG sensors and the three-axis accelerometer
to estimate the heart rate. The proposed method improved the heart
rate estimation accuracy and demonstrated the potential of data fusion
techniques for wearable sensor applications. Bian et al. presented a
fusion method for heart rate, respiration rate, and motion measure-
ments from a wearable sensor system.121 The method combines data
from multiple wearable sensors, including the PPG, respiration, and
accelerometer sensors, and performs a regression method to estimate
the energy expenditure. These methods illustrated that data fusion and
sensor fusion can play a critical role in handling motion artifacts.

Machine learning technique has been an active area of research
in recent years and shown promising performance in addressing
motion artifact problems. It enables the extraction of relevant features
and patterns from the sensor data, leading to more accurate identifica-
tion and correction of motion artifacts. The paper121 explored the use
of machine learning method to estimate the respiration rate from
noisy signals. It investigated several machine learning algorithms,
including the decision trees, k-nearest neighbors (KNN), and support
vector machine (SVM), to identify and correct the motion artifacts
from the observations. Cho et al. introduced a robust method by track-
ing the respiration rate in the scenes having high-dynamic range,
through mobile thermal imaging and machine learning techniques.122

It employed a combination of feature extraction and an SVM classifier
to identify the pattern of respiration to mitigate the motion artifacts,
resulting in improved reliability of the respiration rate estimation.

Despite the potential of different approaches and techniques in
addressing the motion artifacts, there remain challenges in the develop-
ment to effectively handle the motion artifacts. For instance, developing
the algorithms that can adapt to various individual characteristics may
be very challenging, since the processing method of the signals from
different ages, genders, and body builds might be different. In addition,
the methods for mitigating motion artifacts need to be computationally
efficient and can be implemented on a wearable device that has limited
resources. Future research should focus on refining data analytics tech-
niques from motion artifact correction and exploring new directions to
solve the motion artifact challenges in wearable devices.

C. Data preprocessing methods

Sensors are becoming increasingly essential, especially in monitor-
ing the key physiological parameter of diseases, such as vital signs and
symptoms. Early detection of the COVID-19 infection relies on the
extraction of useful information from the raw data collected from sen-
sors. Sensor data are often noisy, susceptible to interference, and could
have redundant information. Indeed, the background and environ-
mental noises are the key challenges to mitigate in order to have the
sensor data to be useful. The irrelevant components in the sensor data
will increase the computational complexity and reduce the detection
performance. A suitable data preprocessing method can significantly
improve the precision of detecting COVID-19 infection. Therefore,
some researchers are focusing on the preprocessing methods for the
sensor data, not only for extracting the relevant and independent infor-
mation, but also for providing better inputs/features to a machine
learning algorithm that can produce more accurate results. Wu et al.
started with 74 COVID-19 related features in a set of raw data, includ-
ing the symptoms, blood test, and biochemical examination.123

The features are not independent. They studied the similarity in the
distribution of the features and removed the features that were

significantly correlated with reduce the redundant information.
Eventually, the number of features was reduced to only 37. Then, the
reduced feature set is utilized in different machine learning algorithms
for COVID-19 detection. It has improved computational efficiency and
performance accuracy. Dairi et al. addressed the problem of reducing
the dimensionality of the input features by using a variational autoen-
coder (VAE) rather than the traditional principal component analysis
(PCA).124 Although PCA is faster and computationally efficient, VAE
is capable of modeling complex non-linear problems and ensuring the
low dimensional latent space represents the most important features.
They trained the VAE network for feature dimensionality reduction
and relevant non-linear information extraction hidden in the blood test
data. The VAE network appears to be quite effective.

VAEs and PCA are both dimensionality reduction methods.
PCA is a traditional statistical method that uses orthogonal transfor-
mation to convert a large set of variables into a smaller one, called
principal components. PCA is linear and only captures the global
structure of the data. VAE is a type of generative model that uses
machine learning techniques to learn complex, non-linear transforma-
tions for the data dimensional reduction. The VAE networks appear
more effective than PCA. Because PCA is limited to linear transforma-
tions, only capturing linear relationships between variables, and it only
works well when the data follows Gaussian distribution. In contrast,
VAE method can identify the non-linear associations throughout the
dataset. The non-linear capability enables VAE to more accurately
construct highly complex data distributions, which makes it more suit-
able for a wide range of data types.

The VAE networks also have the unique property of learning a
structured and consistent latent space, a feature arising from the
machine learning approach that is trained to understand a distribution
over the latent space. This attribute is especially beneficial for feature
extraction, as it enables the model to create a useful latent space that can
be utilized for classification. On the other hand, the latent space of PCA
is not constructed and consistent between variables, resulting in inade-
quate feature extraction performance for complex data distribution.

In conclusion, the VAE presents several advantages over the tra-
ditional linear methods like PCA, especially when dealing with com-
plex, high-dimensional data. The non-linear modeling capability of
VAEs allows them to construct important and accurate relationships
from the data. Consequently, the VAE network is quantitatively more
effective than PCA.

It is common in a medical dataset that encounters numerous
missing data points and has imbalanced data observations, which may
cause a machine learning model in producing false detection.
Mohammedqasem et al. proposed an oversampling algorithm that
addresses the data imbalance issue by increasing minority samples
through synthetic samples.125 They randomly interpolated the homo-
geneous neighboring samples to generate new synthetic samples. In
addition, they analyzed the sample distribution to remove the overlap-
ping samples and noise samples before including the synthetic data in
the minority class. Different from using the self-reported symptoms,
researchers also reported the ability to early detect COVID-19 infec-
tion by collecting the vital signals, such as heart rate and respiratory
rate. Challenges remain in addressing the noisy background while
recording vital signals. Ni et al. exploited the time-frequency features
to separate coughing from other common daily activities.50 They pre-
processed the raw data by transforming it into a time series and
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spectrogram representation by using the Fast Fourier transform (FFT)
with the Hanning window. Then, the spectrogram is used to train the
machine learning model, which ensures the robustness of the input
features and improves the performance in classification.

D. Machine learning-enabled early detection
and medical interventions

To understand the mechanism of a new virus, such as COVID-
19, machine learning models may capture valuable information related
to the symptoms. If we utilize the interpretation from the machine
learning model at the early stage, there will be a chance to mitigate the
severity of the pandemic. Plenty of analysis methods and predictive
models have emerged to extract key features from sensor data or image
data. For example, a decision tree model that distinguishes the abnor-
mal coughing data and combines other symptoms can determine
whether the patient is infected by COVID-19 or not. In addition, a
deep learning model is able to detect unusual parts from computerized
tomography (CT) scan images. Machine learning models that achieve
high accuracy provide early identification and monitoring of potential
pandemic cases. Therefore, it is expected that the development of
effective machine-learning methods will help early detection and

medical interventions, especially since a number of machine-learning
algorithms have been proposed to analyze medical cases during the
past few years. In this section, we will mainly review the recent devel-
opment of machine learning algorithms for monitoring some virus
cases, predicting the severity of a patient’s illness, and early identifying
COVID-19 patients. Table III summarizes the results of COVID-19
detection and classification that are reported in the literature by differ-
ent machine learning algorithms.

1. Decision tree

A decision tree model is a tree-like structure in which the node
represents the outcome of a test, and the leaf represents a class label
[Fig. 13(a)]. The decision tree is widely used in classification and regres-
sion problems. It is well known that the decision tree can be easily visu-
alized and interpreted by exploiting the tree-based decision rules from
the data features. Recently, Wu et al. applied the decision tree algorithm
to the COVID-19 severity prediction task for further analysis of the
most relevant features.123 The interpretation shows that the decision
tree recognized that the N-Terminal pro-Brain Natriuretic Peptide
(NTproBNP), CRP, and ALB (Albumin) are the most important fea-
tures. In addition, the results indicate that the decision tree has less tol-
erance for a high level of NTproBNP. However, the decision tree model
makes the wrong diagnosis, which is unable to identify two severe
patients among nine patients in the testing set. Otoom et al. explained
that the decision tree algorithm makes the prediction using only one
feature in each decision node by computing all training examples and
selecting one maximum information gain value.126 Yang et al. proposed
a clinically operable decision tree to rapidly identify whether the patient
is at high risk of death so that the patient can get a high-priority treat-
ment and urgent care.132 They first built a two-stage decision tree,
including three biomarkers, neutrophil-to-lymphocyte ratio, CRP, and
lactic dehydrogenase. Then, the cross-validation method was applied to
trim the full tree, and they chose the smallest complexity parameter to
build a simple and meaningful decision tree. The model achieves 0.98
accuracies in the 2169 COVID-19 patients’ dataset. The decision tree
algorithm is easy to interpret and understand, but not appropriate for
large-scale datasets and applications.

2. Random forest

Random forest (RF) is an ensemble learning method for classifi-
cation and regression problems. It utilized a bagging strategy and fea-
ture randomness to create an individual tree from which to form

TABLE III. Classification performance regarding the early detection and severity of
COVID-19 infection. “CNN” and “SVM” denoted “Convolutional Neural Network” and
“Support Vector Machine,” respectively.

Algorithm Dataset Precision
Recall/
AUC Reference

Statistical
analysis

333 patients collection NA 0.80a 115

Decision
tree

Albert Einstein Hospital 0.88 0.75 123
Open Research Dataset 0.92 0.95a 126

Random
forest

Electronic Health
Records

0.95 0.97 127

53 patients collection 0.7 NA 128
SVM Albert Einstein Hospital 0.98 0.99 124

JinYinTan Hospital 0.94 0.95 129
MLP 231 patients collection NA 0.74 130
CNN 20 patients collection 0.87 0.98 50

204 patients collection 0.993 0.534 131

aRepresents the AUC value. “NA” means the results did not get reported.

FIG. 13. (a) Basic framework of the deci-
sion tree algorithm. (b) Structure of the
random forest algorithm, where “TN”
denotes the features for the “N”th tree.
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multiple decision trees using the same learning algorithm [Fig. 13(b)].
Random forest algorithms can achieve high accuracy results in many
classification cases without having many hyper-parameters. It is widely
used in many simple classification problems and is an alternative to
the decision tree algorithm. However, the random forests algorithm is
much more difficult to interpret because the model sometimes con-
tains hundreds of decision trees. Wu et al. recently employed the ran-
dom forests algorithm in COVID-19 severity prediction for
recognizing the permutation of the important features.123 The CRP2
and NTproBNP are identified as the most important features for the
prediction by the random forests algorithm. Compared to the decision
tree algorithm, they claimed that the F1 score is slightly higher on the
classification task. However, both the random forest and decision tree
algorithms misclassified two severe COVID-19 patients. Gao et al. pre-
sented a mortality risk prediction model for COVID-19 (MRPMC) by
combining decision tree, random forest, and other machine learning
algorithms to build a classification model, which is able to predict
physiological deterioration and death up to 20 days in advance.127

They proclaimed that the model achieves an AUC of 0.97 in an inter-
nal validation cohort and potentially improves the monitoring and
recovery for high-risk COVID-19 patients. The random forest
machine learning algorithm also shows great ability to the regression
problem. Yesilkanat et al. investigated the performance of estimating
the number of COVID-19 cases for the near future by utilizing the
random forest algorithm.133 They used 1500 decision trees and 3 splits
at the node points of the tree to build the random forest model. The
comparative results show that the random forest machine learning
algorithm has produced very accurate results in estimating the number
of COVID-19 cases during 1–17 June 2020, which achieves an average
of 0.914R2 values and enables to prevent the sudden epidemic.
However, the method would be more convincing if the data period
could be longer in the evaluation process. Recently, Barbosa et al. pro-
posed a web solution to rapidly diagnose COVID-19 by applying a
random forest algorithm to the blood test data.134 The diagnosis chose
41 blood test features among the total 107 features, such as CRP, creat-
inine, and D-dimer. It is quite effective and recommended by the
Ministry of Health as an initial clinical approach for diagnosing
COVID-19. They build the random forest model using 90 and 100
trees, which is achievable an accuracy above 90% and a kappa statistic
above 0.80. They claimed that the task of diagnosing COVID-19 is
harder than indicating the type of hospitalization using the same blood
test features. The proposed system is a web solution that is flexible and

available to access online for the diagnosis. Shen et al. suggested that
the proteomic and metabolomic profiling of sera are the keys to early
detection and effective treatment of severe COVID-19 patients.128

They collected 46 positive patients and 53 negative individuals to mea-
sure the proteomic and metabolomic as the input features for training
a machine learning model. The random forest algorithm is employed
to evaluate the patients, and further evaluate the severity of the patients
into the mild, non-severe, and severe categories. The model was vali-
dated using 10 independent patients, and 7 of them were correctly
detected with COVID-19. The limitation of this study is the insuffi-
cient amount of clinical data. However, the model revealed the charac-
teristic protein and metabolite changes are the critical biomarkers for
the evaluation of the severity in the infection.

3. Support vector machines (SVMs)

SVM is a machine learning model with associated learning algo-
rithms that are used for classification and regression analysis. The
objective of the SVM algorithm is to find a hyperplane in an N-
dimensional space that maximizes the distance between the data
points of different classes [Fig. 14(a)]. SVM maps the data to high-
dimensional feature space and determines the decision boundaries to
classify the data points. SVM is effective for operation in high dimen-
sional space, has high accuracy for classification problems, and is
memory efficient. It is not only widely used in signal classification
problems but also performs well in image classification problems.
Therefore, recent studies present much progress in biomedical-related
topics using the SVM algorithm. Dairi et al. addressed the problem of
detecting COVID-19 infection using the blood test features and unsu-
pervised SVM algorithm.124 They first extracted the features from the
data using a variational autoencoder (VAE), aiming to reduce the
dimensionality of the data features and encode a new data representa-
tion from the blood test samples. Then, the SVM is applied to the out-
put of the VAE without using any label, which determines a
hyperplane that is as close as possible to the normal samples. They
claimed that the SVM algorithm achieves 99.3% AUC of detection
accuracy in evaluating 1700 samples of blood tests. The innovation of
this paper is that they proposed a method to detect COVID-19 in an
unsupervised manner using the SVM algorithm and blood test sam-
ples. The SVM algorithm is also frequently designed to recognize and
discriminate the severity of the diseases. Shi et al. proposed an
enhanced SVM algorithm to determine the severity of COVID-19 by

FIG. 14. (a) Illustration of the SVM algorithm. (b) Basic structure of the MLP network. (c) Architecture of the CNN.
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utilizing clinical data, such as patient basic information and hemato-
logical indices.135 The proposed method first normalized the data fea-
tures and mapped them from the input space to the high-dimensional
feature space. The Slime Mold Algorithm (EMA) is applied to convert
the optimal feature into the binary space using the sigmoid function,
and the feature is considered meaningful to use if it is less than the
threshold. The SVM is then trained to obtain a high-quality classifica-
tion of the COVID-19 severity using binary features. The extensive
experimental results show that the proposed framework achieves
91.09% accuracy in discriminating the severity of 51 COVID-19
patients. The ablation studies performed a further analysis of the com-
ponents in the framework, which proved that the SVM algorithm is
more accurate compared to the KNN (K Nearest Neighbor) algorithm.
To rapidly recognize the potential COVID-19 cases from the real-time
data of symptoms, Otoom et al. built a framework to collect data and
compare the performance of the SVM algorithm with other different
machine learning algorithms.126 The proposed system collected real-
time symptoms using wearable sensors, including fever, cough, short-
ness of breath, and 80 relevant symptoms. The collected symptom
data are ranked and reduced to the 20 most indicative symptoms and
uploaded to an internet-based system for early identification of sus-
pected COVID-19 cases through the SVM machine learning algo-
rithm. The SVM algorithm achieves 92.95% accuracy and 93.9% ROC
(Receiver Operating Characteristic) area, while the decision tree algo-
rithm reaches 70.73% accuracy and 70.1% ROC area. The results sug-
gested that the proposed method provides effective and accurate
identification of potential cases of COVID-19, and the framework is
suitable for the patient to track and evaluate their health status at the
earliest convenience. The symptom features are the critical elements to
the training of the machine learning model, and further the optimiza-
tion of the performance of the model. Xiong et al. designed a feature
selection system to extract the 23 most critical features from the initial
86 symptom features by using the LassoCV method, Spearman’s rank
correlation, and expert opinions.129 The selected 23 features were
processed by the SVM algorithm in predicting COVID-19 severity,
and 287 patients were categorized as non-severe and severe cases.
With a more accurate selection process, the SVM model achieves
94.80% AUC and 93.90% accuracy. In addition, the proposed method
suggested that the chest-CT had the highest importance in the diagno-
sis of COVID-19 severity, and the following features were neutrophil
to lymphocyte ratio. Based on the above studies, the SVM algorithm
could be a powerful predictive tool to identify the severity of the
patient for early detection of the disease.

4. Neural networks (NNs)

Neural networks are the most popular and most well-known
machine learning algorithm that is used extensively for the classifica-
tion and regression problems. There are two main types of neural net-
works in general, Multiple Layer Perceptrons (MLPs) and
Convolutional Neural Networks (CNNs), which provide flexibility in a
wide range of biomedical problems. The MLP algorithm consists of
one or more layers of neurons and is suitable for classification prob-
lems where the inputs are tabular datasets [Fig. 14(b)], such as blood
test features and symptom features. The CNNs were developed for the
image classification problems that mapped the image data to an output
variable [Fig. 14(c)]. In general, the CNNs perform well with data that

contains spatial information, whereas MLPs are appropriate with tem-
poral and documental data. Valle et al. implemented an MLP model
to investigate whether the inflammatory cytokine levels can help to
predict the association between the diseases and COVID-19 sever-
ity.130 They followed 1484 patients who were suspected or confirmed
of having COVID-19 with clinical information and laboratory test
results. Then, the MLP model is applied to test the association of the
cytokine values with the patient demographics. Compared to other dif-
ferent variables, the output of the model shows that the cytokine level
is significantly higher for the patients who test positive for COVID-19
infection. In addition, the neural network model suggested that
chronic kidney disease (CKD) and age were strongly correlated with
the risk of death from COVID-19. Due to the limitation of clinical
decisions, Alakus et al. proposed a prediction system for detecting the
infection of COVID-19 using various deep-learning models.136 In this
study, they trained the machine learning model with 18 laboratory
findings from 600 patients, such as red blood cells, hemoglobin, mono-
cytes, and leukocytes. The architecture of the MLP model is comprised
of 3 layers and a total of 56 neurons, while the CNN model is built by
2 convolutional layers and 2 fully connected layers. To evaluate the
performance of each machine learning model, they compared the
accuracy, F1-score, and AUC values using the 10-fold cross-validation
approach. In terms of the evaluated performance, they claimed that
the accuracy of the CNNmodel is slightly higher than the MLP model,
which is 88% and 86% in accuracy, respectively. Further studies
proved that neural networks are able to precisely predict the infection
of COVID-19. However, a limitation of the study is that the data size
is relatively small, and some laboratory findings are missing for some
patients. On the contrary, Ni et al. integrated the mechanoacourstic
sensors and convolutional neural networks to the monitoring of
COVID-19 infections in sick and healthy patients.50 They incorpo-
rated an MA sensor, Bluetooth device, cloud-based data transmission,
and automatic data preprocessing framework to build a health moni-
toring system. Unlike the previous studies, this paper focuses on cap-
turing the subtle vibrations of the skin and collecting the sensor signals
as input features, including the signals of tapping, coughing, laughing,
throat clearing, and speaking. Rather than directly using the raw signal
data from the MA sensor, the signal preprocessing step of converting
the raw data to spectrogram is found to be the most important part to
improve the accuracy. Distinguishing the actual coughs from other
cough-like signals, the CNN is applied for further analysis. They col-
lected the daily behavior signals from 10 healthy volunteers and 10
COVID-19 patients for training the CNN model. The model starts
with 3 convolutional layers, followed by a ResNet-50 network, and it
achieves an accuracy of 0.90 for coughing signals using the spectro-
gram features. With the long-term monitoring, they suggested that
coughing and respiration rates are the potentially important bio-
markers that can identify the COVID-19 patients and healthy subjects.

V. SUMMARY AND PERSPECTIVES

In addition to re-exposing many vulnerabilities of traditional
health care practices, the unexpected outbreak of COVID-19 also
greatly amplified the importance and the appeal of remote health care
and propelled the research toward this new paradigm of medicine. A
particularly appealing body of recent research efforts involves wearable
sensors capable of capturing a vast range of biomarkers of human
physiology. In this review, we have reviewed the recent progress in
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wearable sensor research in consideration of the COVID-19 pandemic
and its implications. The first part of this review was dedicated to
wearable biophysical sensors for monitoring a variety of conventional
biomarkers and vital signs, including body temperature, respiration
rate, blood oxygen saturation, heart rate, and heart rate variability.
These biophysical signals have been extensively studied, with a signifi-
cant body of research supporting that they can be reliable predictors of
outcomes and symptoms of diseases, including COVID-19. The sec-
ond part of this report was devoted to the recent advances in wearable
biochemical sensors, an emerging field that promises to make bio-
chemical sensing continuous, pain-free, and easy-to-use. Unlike bio-
physical sensors, biochemical sensors can provide a direct assessment
of biochemistry and metabolism at the molecular level. Monitoring of
biochemistry content, such as electrolytes, cytokines, and cortisol, can
provide crucial insights toward effective therapeutics for COVID-19.
The third and final portion of the review focused on the recent devel-
opments in data analytics and machine learning methods used to per-
form predictive assessments on data collected from biophysical and
biochemical sensors. These methods offer tremendous value for
remote medicine as they can support healthcare professionals in medi-
cal decision-making, early detection, and prevention of disease.

Recently, there have been many demonstrations of novel sensing
devices and examples of integration of some of the biophysical and
biochemical sensing concepts discussed in this work into wearables
and accessories used daily by humans. These unique devices include
(in addition to the skin patches and bandages already discussed in this
review) face masks for monitoring breathing patterns, pathogens,
inflammation markers, contact lenses for measuring cortisol, glucose,
intraocular pressure, and dental chips for tracking therapeutic drugs.73

Some of these devices have already been FDA-approved and intro-
duced to the general consumer market,137 which further implies the
imminent popularization of advanced state-of-the-art wearable sen-
sors for the general public.

For future development of advanced wearable sensors, integrating
biophysical and biochemical sensors in a hybrid platform is very
appealing, because this will greatly enhance the performance and
reduce inaccuracies by introducing data redundancy and improving
data diversity. More specifically, integrated hybrid sensors will be cru-
cial for data analytics and machine learning methods, as they have been
shown to generally benefit from increased number of features and data
diversification.138 In the past few years, such platforms have emerged
including a hybrid biochemical (lactate) and ECG monitoring sys-
tem.139 and a sensor patch for 3D imaging of total hemoglobin and
core temperature.32 We believe that combining biochemical cytokine,
cortisol, and electrolyte sensors with PPG pulse oximetry would be a
highly promising hybrid scheme, due to the low cost and complexity of
the associated biophysical sensing hardware and the ability to continu-
ously and accurately monitor many relevant biomarkers that have been
shown to be related to infectious diseases, such as COVID-19.

Despite these recent advances in wearable sensors, the continu-
ous biophysical and biochemical monitoring in COVID-19 patients
still faces the following challenges, which require future developments.
First, nonspecific adsorptions and biofouling. The nonspecific adsorp-
tions could block the sensor surface to cause biofouling and influence
its long-term continuous monitoring. To address this issue, the
recently developed antibiofouling coatings of zwitterionic polymers
and polyacrylamide hydrogels could be used to reduce

biofouling.140,141 For these applications, the surface densities of the
sensor receptors and antifouling coatings should be systematically
optimized to ensure that the resultant sensors perform optimally (i.e.,
with high sensitivity, selectivity, and fast response time) in targeted
biofluids. In addition to the antibiofouling coatings, wearable micro-
fluidics represents another option for minimizing biofouling for wear-
able devices. For example, the recently developed wearable
microfluidics isolate and transport the biofluid,142,143 like sweat,
immediately from the skin once it emerges from the sweat gland,
thereby protecting the sensors from biofouling associated with debris
and oils on the skin surface or from environmental contaminants.

Second, continuous monitoring in skin ISF, compared with other
biofluids, like sweat, tears, and saliva, the skin ISF, which is formed
through plasma extravasation from continuous capillaries and sur-
rounds tissues and cells, presents an emerging biofluid for health mon-
itoring and clinical medicine due to the similarities and/or correlation
of biomarkers in skin ISF and that in plasma.144 This biofluid is a rich
source of biomarkers, including proteins, nutrients, metabolites, and
hormones.144 Importantly, many low molecular weight analytes, such
as metabolites (glucose and lactate) and nutrients, have essentially
equivalent concentrations in plasma and ISF due to the high density
and surface-to-volume ratio of continuous capillaries, blood pressure
forces, and diverse biomarker transport routes from plasma to ISF.
The ISF/plasma concentration ratio for higher molecular weight analy-
tes, such as proteins and lipids, ranges from 0.9 to 0.14,144 depending
on the analyte’s molecular weight. Despite that, the current wearable
sensors for continuous monitoring of biomarkers in skin ISF are only
limited to a handful of biomarkers, including electrolytes and metabo-
lites. The continuous monitoring beyond these biomarkers represents
a future direction, in particular, the monitoring of hormones, proteins,
and nutrients for chronic disease monitoring and management, like
chronic kidney disease and cardiovascular disease.

Finally, the limited amount of data from human subjects for
the training of machine learning algorithm, that is, collecting data
from as many diverse subjects as possible is essential to build
machine learning models for accurate results. Otherwise, learning
from a limited number of subjects may fail to generalize, leading to
uncertain performance. The training data are the most critical ele-
ment in developing machine learning models. The challenge for
machine learning is insufficient training data and inconsistent
responses from individuals. One possibility of having extensive
learning data is through open-source sharing, where various
research groups post their wearable data for free access. However,
this approach may be subject to data privacy issues, and the details
related to the data collected and subjects may not be available.145

As a result, it may not be suitable for specific applications. Another
approach for handling the small dataset problem is by augmenting
the data. Augmentation can be performed in the time domain
through isolating signals, adding Gaussian noise, data shifting, or
their combinations. These techniques for augmentation have been
widely used in the machine-learning community to create addi-
tional data for model training. It has been demonstrated that data
augmentation can help to increase the model capability. Indeed,
augmented data can be made by using generative adversarial net-
works (GANs),146 which is an approach to generating new syn-
thetic data for training ML models. It helps to produce more data
and train accurate models without exposing the actual user data.
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