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ABSTRACT

According to the World Health Organization, the proportion of the world’s population over 60 years will approximately double by 2050. This
progressive increase in the elderly population will lead to a dramatic growth of age-related diseases, resulting in tremendous pressure on the sustain-
ability of healthcare systems globally. In this context, finding more efficient ways to address cancers, a set of diseases whose incidence is correlated with
age, is of utmost importance. Prevention of cancers to decrease morbidity relies on the identification of precursor lesions before the onset of the disease,
or at least diagnosis at an early stage. In this article, after briefly discussing some of the most prominent endoscopic approaches for gastric cancer diag-
nostics, we review relevant progress in three emerging technologies that have significant potential to play pivotal roles in next-generation endoscopy
systems: biomimetic vision (with special focus on compound eye cameras), non-linear optical microscopies, and Deep Learning. Such systems are
urgently needed to enhance the three major steps required for the successful diagnostics of gastrointestinal cancers: detection, characterization, and
confirmation of suspicious lesions. In the final part, we discuss challenges that lie en route to translating these technologies to next-generation endo-
scopes that could enhance gastrointestinal imaging, and depict a possible configuration of a system capable of (i) biomimetic endoscopic vision
enabling easier detection of lesions, (ii) label-free in vivo tissue characterization, and (iii) intelligently automated gastrointestinal cancer diagnostic.
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INTRODUCTION

Gastrointestinal cancers are comprised of all cancers that occur
in digestive tract organs, such as the stomach, large and small intestine,
pancreas, colon, liver, rectum, anus, and biliary system. Collectively,
they represent the first leading cause of cancer-related deaths. Of these,
gastric cancer (GC) alone accounts for the fourth leading cause of can-
cer morbidity, at the global level.1,2 Prevention is very important for
avoiding GC, but the plethora of causes behind this severe pathology,
together with their geographic and ethnic dependencies, yield signifi-
cant challenges in implementing efficient primary prevention strate-
gies able to reduce the current related mortality rates. Furthermore, a
statistical model3 published by Tomasetti and Vogelstein in 2015, with
conclusions consolidated in their follow-up article,4 brought evidence
that two-thirds of the variation in adult cancer risk across tissues can
be explained primarily by “bad luck,” which is related to the number
of random mutations occurring in genes that can drive cancer growth.
These aspects suggest that secondary prevention, obtainable through
the early detection of precursor lesions or cues, should be the major
focus for reducing the high mortality rates currently associated with
GC. The three main steps that are of utmost importance for the proper
endoscopic diagnosis of gastrointestinal cancers are “detection,”
“characterization,” and “confirmation.”5 Diagnostic methods based on
endoscopic imaging are currently regarded as being the most sensitive
and specific in detecting neoplasia in patients suspected of harboring
GC. In this perspective, we review relevant progress in three emerging
technologies that could significantly boost the capabilities of next-
generation endoscopes for GC diagnostics, and for gastrointestinal
cancers in general: (i) biomimetic video systems (with special focus on
compound eye cameras), (ii) non-linear optical microscopies, and (iii)
artificial intelligence. We discuss as well some of the most prominent
challenges that lie en route to translating these valuable technologies to
the clinical practice and a potential configuration of a next-generation
endoscope that would synergistically combine them.

CURRENT ENDOSCOPIC APPROACHES FOR GC
DIAGNOSTICS

In the next paragraphs, we will briefly discuss the most popular
approaches used for endoscopic diagnostics of GC, a part of which are
presented in Fig. 1, highlighting some of their advantages and
limitations.

Risk factors for GC development are gastric atrophy (GA) and
intestinal metaplasia (IM), and surveillance is recommended for
extended GA/IM.6 GC usually develops via low-grade and high-grade
intestinal neoplasia. Early GC may be amenable to minimally invasive
endoscopic therapy with endoscopic mucosal resection or endoscopic
submucosal dissection, thus obviating the need for total gastrectomy.
Endoscopic therapy requires high-resolution imaging to allow for the
detection and characterization of lesions. While resolutions in the
millimeter range can often be useful to identify well-developed tumors,
and to define a lesion’s margins, micron-level resolutions are required
to probe microvascular, and micro surface patterns. Furthermore, sub-
micron resolutions can be highly valuable for identifying dysplastic tis-
sues with subtle cues, infiltrations of cancer cells in healthy tissues, and
for spotting cell aspects characteristic of aneuploid cells. Resolutions at
the nanometer level can provide access to important aspects, such as
overexpression of cancer-related proteins, or to cell processes relevant
for cancer genesis, such as cytokinetic abscission, nuclear envelope

reassembly, nuclear pore complex formation, etc. Precancerous condi-
tions, such as H. pylori-gastritis, and lesions, such as GA and IM, may
be multifocal or diffuse, and the concept of field cancerization requires
meticulous screening and surveillance of the complete gastric mucosa.
Population-based and opportunistic screening for GC is performed in
high-incidence areas in Asia, such as Japan and South Korea, and has
been shown to significantly reduce mortality from GC.7 Diagnosis at
an early stage is associated with improved survival,8 and endoscopic
screening has resulted in approximately 40% risk reduction of GC
mortality and seems superior to both no screening and radiographic
screening in high-risk regions.9

A GC miss rate of around 10% has been reported for esophago-
gastroduodenoscopy (EGD)10–12 (with some surveys including pre-
HD-trials). Reasons for failure to adequately diagnose early GC may
be due to a multitude of reasons, including non-detection, detection
with inadequate assessment or biopsy protocol, or sampling/pathology
error with inadequate follow-up.11 The large surface of the stomach
may put GCs at a particular risk of being missed during EGD.
Therefore, systematic endoscopic mapping of the complete stomach
has been recommended, with a recording of 22 endoscopic images of
landmark areas to standardize reporting.13 Similarly, time spent with
EGD14 and structured training15 has been positively linked to detec-
tion rates of gastric lesions. New endoscopic technologies that improve
imaging of large surfaces of the gastrointestinal tract (GIT), in terms of
clarity, depth-of-field, or postprocessing, have a high potential to lower
the GCmiss rate.

Endoscopic diagnosis of gastric neoplasia and precursor lesions
follows a multistep approach, requiring the detection of suspicious
areas, followed by endoscopic characterization and delineation for
therapy or targeted biopsies. Gastroscopy with high definition (HD)
white light endoscopy (WLE) is the standard of care. It has been aug-
mented by two types of image enhancement during endoscopy, dye-
based enhancement (chromoendoscopy), and equipment-based
enhancement. The latter is sometimes referred to as “virtual
chromoendoscopy” and includes both pre- and post-image-acquisition
techniques such as narrow-band imaging (NBI), i-Scan and optical
enhancement (OE) i-Scan, flexible spectral imaging color enhance-
ment (FICE), and blue laser imaging (BLI), all of which are available
and reversible by pressing a button on the endoscope’s handpiece.
Chromoendoscopy requires the physical application of a dye onto the
mucosa, which is time- and material-consuming, but has the advan-
tage of not relying on dedicated endoscopes. The ability of chromoen-
doscopy to enhance the detection of GC has been demonstrated by a
meta-analysis using different dyes.16 For equipment-based image
enhancement, diagnostic criteria for IM and GC have been validated
for NBI.17 Once a lesion has been detected, magnification endoscopy
was evaluated for on-site characterization based on the presence or
absence of a clear demarcation line and irregular microvessel and/or
microstructure patterns. The presence of these criteria was indicative
of a GC lesion. Meta-analyses have confirmed the ability to predict the
occurrence of neoplasia with high accuracy.18–20

Another approach for enhanced endoscopic imaging has been to
improve the limited field of view of standard forward-viewing endo-
scopes (usually between 140 and 170�) by wider-angle visualization. A
prominent example of these efforts has been marketed under “full-
spectrum endoscopy (FUSE),” permitting a panoramic 245� (gastro-
scope) to 330� (colonoscope) field of view (FOV). This has been
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shown to enable enhanced adenoma-detection rate during colonos-
copy,21,22 with increased absolute number of detected adenomas,23

and lower adenoma miss-rate,24 but has not been extensively studied
in the upper GIT. At present, FUSE is no longer commercially avail-
able. Another emerging method for imaging inside the human body is

capsule endoscopy,25 which has been mainly used for evaluation of the
mid-GIT. However, with a passive capsule, complete visualization is
severely limited in the stomach for its capacious anatomy.26 One
approach under investigation to overcome this limitation has been the
external steering of a magnetically assisted capsule, which can be

FIG. 1. Overview of traditional modalities
for GC diagnostics.
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navigated similarly to the movements of an endoscope in forward or
backward direction, tilted, or rotated.27,28 A series of pitfalls still pend-
ing to be addressed in the quest for more efficient diagnostics with
capsule endoscopy are discussed in the recent review of S. H. Kim and
H. J.Chun.29

The ultimate confirmation of the diagnosis and evaluation of risk
factors usually still relies on histologic assessment after biopsies,
although the trials mentioned above can be indicative of mandating
less or even no biopsies if a highly confident endoscopic diagnosis can
be made. Excisional biopsy is impractical for screening in real-time
high-risk patients who may have multiple lesions and endoscopic
inspections are associated with a vast number of unnecessary biopsies,
which are labor- and cost-intensive. To alleviate these problems,
attempts to provide immediate microscopic analysis during endoscopy
have been made with confocal laser endomicroscopy (CLE) and endo-
cytoscopy.30,31 The use of CLE has been found to result in a higher
diagnostic yield of IM on a per-biopsy rather than a per-patient basis,
in endomicroscopically targeted biopsies in comparison to WLE32 or
FICE.33 A recent meta-analysis has found CLE to be highly accurate in
the diagnosis of gastric atrophy and IM.34 In a large prospective trial,
the establishment of CLE criteria and subsequent validation provided
98% accuracy for immediate GC diagnosis.35 CLE has also been linked
to fluorescence-based molecular detection of GC-associated antigens
in preclinical models.36,37 Although often evaluated separately within a
trial setting, the different modalities of HD-WLE, dye- or equipment-
based image enhancement, magnification, and microscopic endoscopy
can be combined in a clinical approach.38

EMERGING TECHNOLOGIES

Over the past decade, we have witnessed significant progress in
multiple scientific and technological fields with the potential to enable
a new generation of endoscopic imaging systems capable to exhibit
unprecedented performance. Next we focus on reviewing a selected set
of relevant advances in three of these fields and their potential impor-
tance in endoscopic diagnostics.

Biomimetic vision: Compound eye cameras,
and others

A key characteristic of endoscopic imaging systems is their FOV,
which dictates the extent of the scene that can be imaged at any given
moment during the investigation procedure. Low FOV translates to
the physician having to spend time repositioning the endoscope so
that the regions of interest are in sight. Moreover, in standard
forward-viewing endoscopes (SFV), areas that need to be observed
many times can be visualized only tangentially, not in an optimal ori-
entation and the procedure is thus prone to miss lesions. Higher FOV
thus saves time, as instead of endoscope positioning it allows the phy-
sician to focus his/her attention on the scene that is imaged, which can
lead to an increase in the lesion detection accuracy. Current flagship
gastroscopes built on the traditional SFV architecture provide a FOV
of �150�, and the FuseV

R

system (EndochoiceVR , USA), provides a 245�

FOV for gastroscopic imaging. A multi-center tandem trial provided a
convincing estimate on the massive advantages offered by increased
FOV,39 demonstrating 69% more colon adenomas detected using the
higher FOV FuseVR system in comparison to SFV endoscopes,39 while
other later studies shed further light on the advantages provided by
this technology.23,24

Light sensing organs specific to various animal and insect species
have the potential to play in the near-future an important role in con-
siderably extending the FOV of endoscopes while also providing other
advantages that can result in reduced intervention time and enhanced
success of the diagnostics procedure. Among these, compound eyes
(CE), Figs. 2(f)–2(h), which can be found in arthropods (i.e., insects
and crustaceans), have recently gained a massive focus of attention
from the engineering communities preoccupied with optical imaging.
These organs are made up of small, multiple optical units (i.e., omma-
tidia) per eye, while camera-type eyes in vertebrates have a single
lens.40,41 Compared with single-lens systems, CE offer wider FOV
with negligible optical distortion, nearly infinite depth of field, and
high temporal resolution.40,42 Other characteristics, such as excellent
photosensitivity in low-light environments, multi-spectral imaging,
and polarization perception enhancement, can also be found in some
CE.40,42,43 To date, multiple noticeable attempts have been made to
develop artificial CE in the form of Compound Eye Cameras (CEC),
e.g., Refs. 44–51. The insightful reviews of Lee et al.,43,52 Cheng et al.,53

and Chung et al.54 nicely present the progress that has been made to
date in this field.

A major challenge in the development of CE imaging systems
with high FOV is the implementation of highly curved photodetector
arrays on a hemispherical geometry and their integration with micro-
optics. An important strategy to implement a CEC with wide FoV
consisted in the use of a flexible printed circuit board with cylindrical
shape,46,55 Fig. 2(a). Imagers produced this way were shown to exhibit
good cylindrical FOV (180� � 60�), and local adaptation to illumina-
tion. However, this unidirectional geometry did not provide a hemi-
spherically wide FOV. One route toward achieving a CEC with omni-
directional FOV relied on the assembly of polymer microlens arrays
(MLAs) and stretchable electronic devices,44 Fig. 2(b). The proof-of-
concept images produced by this CEC architecture showed exception-
ally wide FoV (160� � 160�),44 without blurring or aberrations.
Coupling two of these devices in back-to-back configurations can
result in an FOV that almost fully covers all cardinal directions, which
would represent a tremendous advantage for endoscopic imaging.
Such configurations can be applied as well to other types of CE, such
as refracting/reflecting superposition eyes and neural superposition
eyes.40 Another distinct type of CEC, taking the form of an ultrathin
digital camera consisting of microprisms, microlenses, and pinhole
arrays on a flat image sensor, was achieved by mimicking the vision
principle of Xenos peckii, an endoparasite of paper wasps,51 Fig. 2(c).
This unique optic configuration enables wide FoV, accompanied by
high spatial resolution and sensitivity. Another notable progress in the
field of biomimetic video system was recently reported by Liang
et al.,50 who demonstrated a single one-piece lens with curved hexago-
nal MLAs, which enables 92� FoV and an f-number of 1.68. This
architecture succeeded in exploiting the principles of both the human
eye as well as an insect’s CE for achieving a robust device that benefits
from advantages characteristic to both vision models.50 In terms of
image resolution and physical dimensions, the above-mentioned
approaches need to be improved for them to become reliable solutions
for enhanced endoscopic imaging. One way to overcome the current
resolution limitations of these devices consists of the integration of dis-
crete components onto a hemispherical surface. A prominent example
for such potential approaches is the work of Cogal and Leblebici47

who demonstrated 1.1-megapixel images under an FoV of
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180� � 180� in a human colon model Fig. 2(h), using a 5mm radius
hemispherical shaped video system inspired from CE which is based
on a distribution of multiple off-the-shelf cameras, Fig. 2(d). These
approaches could eventually be augmented by employing latest hour
single-lens biomimetic cameras mimicking fish vision, such as the
Cichlid-inspired camera reported by Kim et al.,56 which features a
more convenient miniaturization factor compared to other biomimetic
variants, and excellent technical performance, yielding wide FOV, low
optical aberrations, wide depth of field, simple visual accommodation,
and excellent light sensitivity. Another study57 that carries important
relevance for potential endoscopic imaging reported a biomimetic
vision system inspired by the fiddler crab eye, featuring a flat microlens
with a graded refractive index structure for suppressing the defocusing
effect caused by changes in the external environment [see Fig. 2(e)]. The
panoramic vision of the fiddler crab was replicated by integrating graded
microlens arrays with flexible silicone photodiode arrays on a 3D spheri-
cal structure. The resulting vision capabilities were successfully demon-
strated in both air and water.

Other CEC-related efforts that we find important to mention in
this section are the development of CECs58 capable to address the
infrared domain, important for endoscopic imaging,59 and the devel-
opment of CECs capable of multispectral imaging in the visible
domain,60 which could potentially inspire the implementation of bio-
mimetic modalities capable of virtual chromoendoscopy (e.g., NBI,
BLI, etc.).

Additionally, the recent work proposing biomimetic cameras
mimicking the cuttlefish-eye61 can turn out to be highly relevant for
the field of endoscopy, where uneven illumination and low contrast62

represent two of the most critical factors affecting the quality of the
medical act. In this design, the W-shaped pupil compensates for
the uneven vertical light distribution by reducing incident lights
from the top of its vertical FOV. In addition, the cylindrical silicon
photodiode array, incorporating a high-density belt-like pixel
region, enables high-acuity imaging in the region of interest.
Another key feature of this camera is provided by a flexible carbon
nanotube-polarizing film integrated into the surface of the photodi-
ode array, which enables polarization-sensitive imaging. Another
recent design, this time inspired by the characteristics of the human
retina,63 can also be considered as highly relevant for the field of
endoscopy, given the utility of NBI imaging in this field. In addition
to biomimetic cameras providing advantages in terms of optical
parameters such as FOV, contrast, and others, recent work in the
field of temperature-sensitive cameras can also turn out to be highly
useful for the field of endoscopy, given the temperature differences
between healthy tissues, malignant tumors, and benign tumors.64,65

Building on the visual characteristics of snakes, which possess
exceptional infrared perception conferred by pit organs, Ding et al.
have proposed a biomimetic hemispherical thermoelectric sensor66

based on a high-density array of ionic thermoelectric polymer nano-
wires, which exhibit high thermopower with subtle temperature dif-
ference. This sensor mimicking the thermal receptors in the pit
organs of snakes provides an ultrawide FoV of 135�.

Non-linear optical microscopy

In clinical approaches for GC diagnostics, if an abnormal tissue
region is identified during the endoscopic exam, a small fragment is

FIG. 2. A selection of recent biomimetic imaging systems. (a) cylindrical vision sensor fabricated in columnar bar arrays,46 with morphology and properties resembling those of
primitive (f) and modern (g) arthropods; (b) hemispherical compound eye camera based on stretchable electronics technology,44 inspired from the vision system of modern
arthropods (g) and (c) ultrathin digital camera based on a sandwiched configuration of concave microprisms, microlenses, and pinhole arrays on a flat image sensor, resem-
bling the compound eye of an endoparasite51 (h); inset: SEM images of concave microprism arrays filled with a black polymer; (d) multi-camera panoptic video system47 devel-
oped for endoscopic imaging based on miniaturized standard video cameras; inset: hemispherical deployment of cameras (in red) for achieving biomimetic vision properties;
(e) integrated device on a 3D structure for panoramic imaging featuring graded microlens arrays with flexible silicon photodiode arrays; (f), (g), (h), and (j) compound eyes of
the (f) extinct trilobite Erbenochile erbeni, (g) Drosophila melanogaster (fruit fly), (h) Xenos peckii endoparasite, and (j) Uca arcuate bowed fiddler crab. The biomimetic cam-
eras depicted on the top row replicate the vision capabilities of the corresponding natural models depicted on the bottom row. (i) Image collected in a human colon model with
the biomimetic endoscopic video system depicted in (d) with 180� FOV (140� contained in the red square). (a), (f), and (g) Reproduced with permission from Floreano et al.,
Proc. Natl. Acad. Sci. U. S. A. 110(23), 9267–9272 (2013). Copyright 2013 PNAS.46 (b) Reproduced with permission from Song et al., Nature 497(7447), 95 (2013). Copyright
2013 Macmillan Publishers Limited.44 (c) and (h) Reproduced with permission from Keum et al., Light 7(1), 80 (2018).Copyright 2018 Authors, licensed under a Creative
Commons Attribution 3.0 Unported License.51 (d) and (i) Reproduced with permission from Cogal and Y. Leblebici, IEEE Trans. Biomed. Circuits Syst. 11(1), 212–224 (2017).
Copyright 2017 IEEE.47 (e) and (j) Reproduced with permission from Lee et al., Nat. Electron. 5(7), 452–459 (2022). Copyright 2022 Springer Nature Limited.57
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extracted from it and then processed with fixation and staining for his-
topathological examination. The most important disadvantages of this
approach are invasiveness, artifacts, sampling error, time consump-
tion, high costs, interpretive variability, and failure to take therapeutic
decisions in real-time.67–69 As a result of their optical sectioning capa-
bilities and ingenious contrast mechanisms, non-linear optical micros-
copies (NLOs) have emerged over the past couple of decades as very
promising alternatives to traditional histology, taking into account
their possibilities to alleviate the aforementioned drawbacks and offer
label-free imaging. Such techniques are capable of characterizing
in vivo, ex vivo, and in vitro tissue morphology, functionality, and bio-
chemical composition70–72 in a noninvasive way, with tissue penetra-
tion depths of several hundred microns73 in routinely used
configurations, and beyond 1mm when used in association with long-
wavelength excitation sources.74 Furthermore, their important poten-
tial for virtual histology can be augmented by recent image processing
techniques that can represent the collected images in color schemes
familiar to histopathologists.75–77

The use of NLO in diagnostic scenarios exploits endogenous
optical signals generated by the tissues upon their interaction with a
pulsed laser beam used for excitation. While tissue bioimaging applica-
tions based on NLO techniques have also been implemented in combi-
nation with contrast arising from exogenous agents,78–81 the vast
majority of NLO studies on tissues exploit intrinsic optical contrast,
given their underpinning contrast mechanisms, corroborated with tis-
sue composition and architecture. Strong emphasis has been placed to
date on interrogating with NLO techniques autofluorescence corre-
sponding to endogenous chromophores, e.g., NADH or FAD,82 and
harmonic generations originated by non-centrosymmetric molecules
present in the human tissues, such as myosin, tubulin or collagen,
which are of interest with respect to pathology assessment.83 The two
most popular NLO modalities that exploit these optical signals are
Two-Photon Excitation Fluorescence Microscopy (TPEF) and Second
Harmonic Generation Microscopy (SHG), respectively. Their use has
been demonstrated so far for exploring anatomical and physiological
aspects that are relevant for assessing the state of various tissues and
the progression of multiple pathologies.84–86 The advantages offered
by TPEF can also be exploited in the frame of Fluorescence Lifetime
Imaging Microscopy (FLIM), a technique that measures how the fluo-
rescence intensity decays in time following excitation (a.k.a fluores-
cence lifetime).87 Coherent Anti-Stokes Raman Scattering Microscopy
(CARS) and Stimulated Raman Scattering Microscopy (SRS) represent
two other NLO techniques that have been demonstrated as being very
useful for probing tissue states, based on the intrinsic vibrational con-
trast of endogenous biomolecular species, such as lipids.88,89 Same as
TPEF and SHG, Raman-based techniques can probe both soft,90,91

and hard tissues.92 The advantages of NLO techniques in comparison
with Confocal Laser Scanning Microscopy, such as superior optical
penetration due to near-IR excitation,73 label-free imaging,71 optical
metabolic imaging based on coenzyme detection,82 and out-of-focus
photodamage, have been thoroughly discussed.70,85

To date, TPEF and SHG have been successfully employed for
assessing the architecture of gastrointestinal tissues in both animal
models and human biopsies in multiple studies93–106 (see Fig. 3). In
addition to the many studies reporting thorough characterization
assays on ex vivo and fixed tissues, progress in miniaturization,
enabled also in vivo imaging of the murine colon, for which SHG and

TPEF were successful in probing tissue morphology changes during the
time course of intestinal inflammation associated with ulcerative coli-
tis.107 These efforts demonstrate TPEF and SHG as solid alternatives for
gastrointestinal tissue diagnostics, and their potential to address this
problem is related to their ability to provide cellular information such as
abnormal cell morphology or size variation of cell nuclei, which are
important indicators for pathological or precursory cues. Other features
that can be characterized with TPEF, such as tissue modifications linked
to blood vessel hyperplasia, or inflammatory reactions, hold as well
important potential for understanding in detail how the morphologies of
the abnormal cells modify the structures of the gastrointestinal mucosa.
Furthermore, the potential of FLIM imaging for the characterization of
cancers has been demonstrated in a wide variety of experiments,87,108,109

including a series of significant efforts addressing pathologies of the
GIT110,111 and accessory organs.112,113 Its significant potential concerning
this subject is connected to the fact that normal, dysplastic, and cancer-
ous tissues exhibit different metabolic activity levels, different biochemi-
cal configurations, conformational states, ion concentrations, etc., which
impact the decay rates of the endogenous fluorophores present in distinct
tissue types. One of the fundamental applications of SHG with respect to
the characterization of tissues and disease diagnostics consists of the
imaging of collagen,114 the main structural protein in the extracellular
matrix of animal tissues. Investigating collagen distribution with SHG in
tissues86,115–117 enables an accurate and noninvasive assessment of extra-
cellular matrix modifications, which represent a hallmark of a wide range
of pathologies, including cancer.83 SHG complements the imaging
potential of fluorescence-based NLO techniques for GC diagnostics
through its superb possibilities to investigate collagen deposition and
architecture changes in gastric tissues118,119 in 2D and 3D, which are as
well significant signatures of GC progression.120,121 This was nicely dem-
onstrated in the work of Makino et al.,122 who employed both TPEF and
SHG, collectively known as Multiphoton Microscopy (MPM), for creat-
ing an atlas of images of the entire normal mouse GIT, including some
accessory organs, Figs. 3(a)–3(c). This atlas together with TPEF/SHG
images collected on mouse models of experimental colitis and colorectal
neoplasia, as well as the images collected on human tissues from subjects
with celiac sprue, inflammatory bowel disease, and colorectal neoplasia,
showed that MPM can reliably identify a wide palette of relevant tissue
substructures in the normal and the diseased human GIT. This study,
together with others,93,95,107,120 stand as a convincing example that NLO
can diagnose suspicious lesions within the mucosa, which is important
for implementing appropriate therapeutic strategies in real-time, mini-
mizing the biopsies of benign tissues, and coping with current GC diag-
nostics challanges.123 Additional insight on the use of TPEF and SHG
imaging for the study of gastric cancers is presented in the recent review
ofWang et al.124

Even though Raman-based NLO techniques rely on more intri-
cate illumination setups89 compared to the NLO modalities probing
fluorescent or higher-harmonic generation signals, these have reached
nonetheless a sufficient level of technological maturity to be translated
to in vivo clinical imaging.91,125 Raman-based techniques provide
complementary information to TPEF and SHG (see Fig. 3), via their
ability to probe optical signals originating from the vibration energy of
inter-atomic bonds in molecules, e.g., the C–H bond vibration, typi-
cally used for imaging lipids in tissues,89 with lipids playing a key role
in human health and diseases, being the major components of the cell
membrane.126 They can be thus highly useful to morphologically and
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quantitatively assess the architecture and composition of tissues, and
identify subtle cues that can be specific to cancer onset, or to various
cancer stages.127–129 Although the amount of CARS and SRS applica-
tions addressing imaging of GIT components is considerably more

limited compared to those reported for TPEF and SHG, the generic
relevance of such techniques for imaging mammalian cells and tissues
is widely acknowledged130 and can be easily extrapolated to GIT tis-
sues. Among the many uses of Raman-based NLO techniques for

FIG. 3. Side-by-side comparison of images collected on unlabeled GIT tissues with non-linear optical microscopies and with conventional brightfield microscopy in the frame of
traditional histopathology protocols based on H&E staining. (a) Images of the gastro-esophageal junction with a clear demarcation between the esophagus (a) and glandular
stomach (b) are shown at low magnification122 (magnification 48� and 40� for the NLO and Brightfield Microscopy (BM) images, respectively). (b) High magnification images
of the panels depicted in (a) show keratinized stratified squamous epithelium of the esophagus (a) and gastric glands of the stomach (b)122 (magnification 300� and 200� for
the NLO and BM images, respectively). (c) Images collected on stomach tissue showing gastric glands (green in NLO) and the surrounding connective tissue (red in NLO).
Insets show chief cells with basal nuclei (arrows) and large rounded parietal cells with central nuclei (arrowheads) lining a gastric gland;122 (magnification 300� and 200� for
the NLO and BM images, respectively). (d) Images of early GC that has invaded into the submucosa. Blue arrow: tumor invasion, pink arrow: blood vessel.98 (e) Image of full-
thickness esophageal tissue with an intramural metastasis (IM) in the submucosa, which accompanies esophageal squamous cell carcinoma. Arrow: IM composed of abnormal
cells positioned in the fibrous tissue. The structure of the esophageal mucosa, consisting of stratified squamous epithelium, lamina propria, and muscularis mucosae, is still
maintained.105 Scale bar: 200 lm; (f) and (g) images of human colorectal tissues of different histological statuses, normal colorectal mucosa (f), and colorectal cancer tissue
(g); arrows in the NLO images depicted in (g) and arrowheads in (f) show the nuclei of epithelial cells. Scale bar: 50lm.103 The NLO images in (a)–(f), represent an overlay of
TPEF and SHG signals. In (h) and (i), we show that an additional NLO modality, namely, CARS, enhances the information content in NLO images. An overlay of three NLO
modalities, TPEF, SHG, and CARS is represented in the case of normal (h) and diseased (i) colon mucosa. The arrows depicted in the NLO image in (i) represent 1—lympho-
cytes, increase overall fluorescence, loss of crypt density; 2—crypt branching; 3—irregularities of crypts’ shape; and 4—flattened epithelial layer facing the lumen. Scale bar
250 lm.104 For all depicted micrographs, the source of TPEF signals are endogenous fluorophores; details can be found in the original publications. Details on color mapping:
(a)–(c) blue: TPEF (550–650 nm), green: TPEF (420–490 nm), red: SHG; (d) red: TPEF (430–716 nm), green: SHG; (e) green: SHG, red: TPEF (430–710 nm); (f) and (g)
blue: SHG þ TPEF (387–447 nm), green: TPEF (460–500 nm), red: TPEF (601–657 nm); (h) and (i) blue: SHG, green: TPEF (426–490 nm), red: CARS (2850 cm�1). (a)–(c)
Reproduced with permission from Makino et al., Cancer Prevent. Res. 5(11), 1280–1290 (2012). Copyright 2012 American Association for Cancer Research.122 (d)
Reproduced with permission from Li et al., BMC Cancer 19(1), 295 (2019).98 Copyright 2019 Authors, licensed under a Creative Commons Attribution 3.0 Unported License.
(e) Reproduced with permission from Xu et al. Biomed. Opt. Express 8(7), 3360–3368 (2017).105 Copyright 2017 OSA License. (f) and (g) Reproduced with permission from
Matsui et al., Sci. Rep. 7(1), 6959 (2017).103 Copyright 2017 Authors, licensed under a Creative Commons Attribution 3.0 Unported License. (h) and (i) Reproduced with per-
mission from Chernavskaia et al., Sci. Rep. 6, 29239 (2016). Copyright 2016 Authors, licensed under a Creative Commons Attribution 3.0 Unported License.104

Biophysics Reviews REVIEW pubs.aip.org/aip/bpr

Biophysics Rev. 4, 021307 (2023); doi: 10.1063/5.0133027 4, 021307-7

Published under an exclusive license by AIP Publishing

pubs.aip.org/aip/bpr


probing the tissues state, we feel noteworthy to highlight the ability of
these techniques to probe inflammation-related aspects,131 with
inflammation being known to promote all stages of tumorigenesis.132

In the same context, we find it noteworthy to highlight the comple-
mentarity of TPEF, SHG, and CARS for assessing tissue architectural
aspects specific to inflammatory bowel diseases, as shown by
Chernavskaia et al.,104 Figs. 3(h)-3(i). While most studies addressing
Raman-based NLO imaging on GIT tissues refer to endogenous con-
trast, recent breakthrough work81 has also demonstrated that combin-
ing such techniques with contrast agents holds as well important
potential for probing disease-relevant metabolic processes, which rep-
resent a hallmark for cancer progression. We end this discussion on
Raman-based NLO, by highlighting that recent work reported by Liu
et al.133 showed that by combining Raman-based NLO techniques
with emerging Deep Learning methods for tissue diagnostics repre-
sents an exceptional avenue for gastric cancer diagnostics (Fig. 4).

Deep Learning

Deep Learning (DL)134 is a family of machine learning methods
that employ neural networks with many layers, known as Deep Neural
Networks (DNNs). These artificial intelligence methods currently lead
machine learning benchmarks in computer vision, speech recognition,
machine gameplay,135,136 and various other fields. In medicine, a signif-
icant advantage of DL diagnostic approaches consists in their power to
process vast amounts of data to provide a diagnostic with accuracies (at
least) comparable to expert specialists.137,138 DL frameworks for bio-
medicine can deal with any type of data139,140 ranging from medical
records,137 behavioral traits,141 multiomics,142 or precise medical mea-
surements, e.g., electrocardiograms143 or medical images,144 to success-
fully identify pathological cues or diverse health risks. This capacity is

likely to completely change the current diagnostic routes and practices
in the forthcoming years,145–148 leading to the timely detection of silent
but deadly pathologies and precursory signs, and hence to the imple-
mentation of more efficient therapeutic strategies.149

The immense success of DL in image analysis applications is two-
fold: first, the accuracies achieved with DNNs are unmatched; second,
DNNs are extremely effective at transfer learning (i.e., in training on
one dataset and deploying on another, even across modalities150).
Considering this, over the past years, massive efforts have been placed
on introducing DL to the realm of digital pathology,144,145,151–154 and
recently, DL methods for automated medical image analysis provide
these days results that are on par with trained experts,155 or even exceed
their performance in specific scenarios.156 Automated dermatologist-
level classification of skin cancers155 with performance matching those
of expert dermatologists is an illustrative example of the success of DL
in biomedical image analysis. This experiment was regarded as a major
breakthrough, since such methods can be used in association with
mobile devices (e.g., smartphones), resulting in point-of-care diagnos-
tics (PoC) devices, which could lead to outstanding clinical impact.
Furthermore, combining the knowledge of specialists with the immense
processing power of DL architectures has been shown to surpass the
outputs of many traditional image analysis tasks.157,158

Deep Learning and Gastroenterology

In the context of gastroenterology, DL methods can play multiple
roles. One of the most important ones is to classify images collected on
tissues with various instruments into different classes of interest,
e.g., healthy, suspicious, and malignant. For example, Kather et al.159

demonstrated the utility of DL in terms of predicting the clinical

FIG. 3. (Continued.)
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outcome from histological images of tissues extracted from patients
presenting colorectal cancer (CRC), which was achieved by decompos-
ing complex tissue into relevant constituent parts and exploiting their
frequency. The authors showed that their method efficiently comple-
ments the current state of the art in two independent, multi-center,
patient cohorts, where the prognostic score provided by their DL
approach improved the survival prediction compared to the Union for
International Cancer Control’s staging system. Other experiments
demonstrate as well various advantages offered by coupling DL with
histological images of CRC.160–163 Concerning GC diagnostics, the
utility of DL has also been explored to date in diverse approaches. For
example, previous studies reported DL frameworks capable of classify-
ing GC in H&E stained histopathological whole slide images, while
Garcia et al.164 reported a method for the automated identification of
tumor-infiltrating lymphocytes in immunohistochemistry images of
GC.164 The use of DL for GC/CRC diagnostics does not restrict to his-
topathological image analysis. Such approaches have also been suc-
cessfully used in association with images collected during
colonoscopy/gastroscopy sessions. For example, Wang et al.165 have
introduced a DL method compatible with real-time video analysis that
can detect adenomatous polyps with per-image sensitivities and specif-
icity of approximately 95%, Fig. 4(a), and Urban et al.166 reported a
DL framework capable of identifying polyps (in a set of 8641 colonos-
copy images containing 4088 unique polyps) with a cross-validation
accuracy of 96.4%. Several other strategies for polyp detection using
DL are discussed in the review work of Kudo et al.167 Furthermore, the
recent systematic review and network meta-analysis of Spadaccini
et al.168 accurately highlights the advantages of DL-powered com-
puter-aided diagnostics systems for colorectal neoplasia. The conver-
gence between algorithms powered by DNNs and endoscopic imaging

of the upper GIT169 was also demonstrated in several relevant experi-
ments,170–172 including the landmark work of Hirasawa et al.170 [Fig.
4(b)]. Two notable efforts in this direction are those of Meier et al.,173

who successfully applied DL to identify cues collected on tissue micro-
arrays indicating high risk of poor survival in GC images, enabling the
stratification of patients in different risk groups, and Itoh et al.,174 who
achieved sensitivity/specificity of �87%, in the detection of
Helicobacter pylori infection by applying a DNN based method to gas-
trointestinal endoscopy images collected from 139 patients. Also
important to mention is the use of DNNs in ENDOANGEL, a frame-
work developed to monitor in real-time endoscope slipping aspects,
with a role in making endoscopists aware of blind spots associated
with improper endoscope withdrawal.175

Deep Learning and NLO

As discussed earlier in this article, virtual biopsies collected with
NLO contain most essential aspects that histopathologists look for in
the purpose of establishing diagnostics of GIT tissues. Hence, NLO
images collected in vivo can potentially be evaluated by histopatholo-
gists for the purpose of tissue characterization and GC diagnosis and
confirmation. However, diagnostic approaches in the frame in which
human experts inspect tissue images still exhibit a series of drawbacks,
irrespective of the modality by which these were acquired. Part of these
drawbacks are caused by slow analysis speed in manual characteriza-
tion assays, and by the fact that manual histopathological characteriza-
tion of minute specimens can be highly subjective: for example, in
previous studies, interobserver disagreements of up to >50% were
reported for low-grade dysplasia.68 While the use of DL-based meth-
ods for computer-aided diagnostics of the lower and upper GIT is

FIG. 4. Examples on the use of Deep Learning for assisting and augmenting endoscopy and non-linear optical microscopy imaging. (a) DL-based detection of polyps
(highlighted in yellow) during colonoscopy. Reproduced with permission from Wang et al., Nat. Biomed. Eng. 2(10), 741 (2018). Copyright 2018 The Author(s), under exclusive
licence to Springer Nature Limited.165 (b) DL-based detection of gastric cancer in different stages in endoscopic images. The yellow rectangular frames in the top and bottom
images were marked by the DNN as a possible lesion and to indicate the extent of a suspected gastric cancer lesion. An endoscopist manually marked the location of the can-
cer using a green rectangular frame. Reproduced with permission from Hirasawa et al., Gastric Cancer 21(4), 653–660 (2018). Copyright 2018 The International Gastric
Cancer Association and The Japanese Gastric Cancer Association.170 (c) DL-based prediction of gastric cancer in composite (falsely colored) SRSþSHG images; (i) sche-
matics of DL predictions; (ii) examples on segmented tiles, classified by the DL model into non-cancer, differentiated cancer, and undifferentiated cancer classes; scale bars:
100 lm; (iii) (top) a typical endoscopic submucosal dissection (ESD) tissue and three test locations of intra-tumor, visual margin and �8 mm away from the margin, with (bot-
tom) composite SRS-SHG images on the margin with predicted diagnostic segmentations of cancer (red) vs non-cancer (blue), and delineation of the tumor border. Scale
bars: 200 lm. Reproduced with permission from Liu et al., Nat. Commun. 13(1), 4050 (2022). Copyright 2022 Authors, licensed under a Creative Commons Attribution 3.0
Unported License.133 (d) Label-free multimodal NLO images of normal skin tissue. From the top to the bottom: raw NLO image (input), DL-enhanced image (network output),
and ground-truth image. Scale bar: 100 lm; reproduced with permission from Shen et al., Light 11(1), 76 (2022). Copyright 2022 Authors, licensed under a Creative Commons
Attribution 3.0 Unported License.200.
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gaining increasing momentum,169 the use of artificial intelligence
methods that can efficiently characterize NLO datasets is still in an
early stage. However, a series of relevant efforts illustrate very well the
possibilities derived from using in tandem NLO and DL. For example,
Huttunen et al.176 adapted four pre-trained DNNs: AlexNet, VGG-16,
VGG-19, and GoogLeNet to classify images collected with TPEF and
SHG on normal and cancerous murine ovarian tissues achieving sensi-
tivity and specificity of 95% and 97%, respectively. What is important
to highlight in this experiment is the reduced volume of the dataset,
consisting of�200 images, while DL frameworks trained from scratch,
i.e., without applying transfer learning, often require massive amounts
of data, and carry a significant carbon footprint.177 Their success was
achieved by combining data augmentation strategies178 (by which a
large dataset can be simulated from a smaller one) with the superb
capabilities of DNNs for transfer learning.179,180 Such approaches
allow addressing problems for which training data are expensive or
difficult to collect (e.g., by using knowledge learned from natural
images to aid in the classification of medical images). Later work of
Huttunen et al.181 demonstrated the efficient use of GoogLeNet DNNs
to distinguish healthy from dysplastic epithelial tissues by addressing
composite TPEF/SHG images acquired on transversal sections con-
taining the dermo-epidermal junction, a tissue region where many
cancer-related processes originate. Accuracy, specificity, and sensitivity
of �95% were demonstrated under a data augmentation scheme mix-
ing generic augmentation approaches with a Gaussian blurring
scheme, meant to help the DNNs to generalize for scale invariance. It
is important to note that routine histopathology assays for epithelial
cancer diagnostics typically evaluate transversally cut tissue sections,
such as those evaluated in the above-mentioned study. While most
NLO studies implemented in in vivo settings with tomographs fit for
clinical use evaluate images collected on the xy plane,182 xz-plane
images (vertical) are also possible to acquire.183,184 The efficiency of
NLO data augmentation by various Gaussian blurring schemes has
also been demonstrated in the work of Anton et al.,185 in the context
of corneal edema diagnostics with SHG. In this work, the complemen-
tarity of Deep Learning models building on distinct architectures has
also been shown by means of Gradient Classification Activation
Mapping (Grad-CAM),186 showing image regions that contribute
most to the activation of network neurons. The authors argued that
such complementarity can be exploited in majority vote schemes
building on the outputs of different DL models. CAM was also used to
show a correlation between image regions found most relevant by a
DNN in its decision-making process, and features traditionally
assessed by histopathologists, in the work of You et al.,187 addressing
DL classification of NLO images of breast tissues acquired with a por-
table intraoperative system. This work also demonstrated excellent
diagnostics precision for a ResNet model: tile-level 95% area under
receiver operating curve (AU-ROC); slide-level 100% (AU-ROC).187

DL frameworks have also been implemented to address pathologies of
the gastrointestinal system. For example, Lin et al.188 used a DNN
architecture based on the VGG-16 to automatically identify the differ-
entiation stage of tissues affected by hepatocellular carcinoma, achiev-
ing a classification accuracy of over 90% with support of only 217
images. In a different experiment, Yu et al.189 used a fully automated
DL method based on the AlexNet architecture that resulted in
AU-ROC values of up to 0.95 when addressing the problem of liver
fibrosis staging. Maybe the highest profile work reported to date on

the topic of GC diagnostic and NLO is the work reported by Liu
et al.,133 who used a U-Net DL model in combination with SRSþSHG
images collected on freshly excised GC tissue, to achieve a GC diag-
nostic accuracy as high as 96.4%, and a level of concordance with the
conventional histopathology exam of j¼ 0.899. In addition to the
automated diagnosis capabilities of U-Net-assisted SRS, the authors
showed as well that DL can be efficiently used to assess the distribution
of diagnostic groups and tumor subtypes, by semantic segmentation
[Fig. 4(c)]. An additional highlight of their experiment was the suc-
cessful use of DL-assisted SRS for evaluating the resection margins for
endoscopic submucosa dissection [Fig. 4(c)]. This work extends previ-
ous efforts of the same group on the topic of automated diagnostics
using DL-assisted NLO (SHG þ SRS), where they used a ResNet34
network to differentiate between healthy and laryngeal squamous cell
carcinoma, freshly excised, tissues, with 100% accuracy.190 Other nota-
ble efforts on the topic of automated diagnostics by combined use of
NLO and DL in the field of GIT imaging are the works of Jiang
et al.,191 who reported a DL collagen classifier based on the Res-net 50
framework, testing NLO images collected on stage II–III colon cancer
tissues, to predict disease-free survival and overall survival. Also, an
important finding was the capability of the DL model to
identify patients who are more likely to benefit from adjuvant
chemotherapy.

In addition to experiments dealing with DL classification of NLO
datasets into distinct classes of pathological relevance, DNNs have also
successfully demonstrated their performance in other types of relevant
biomedical image analysis applications. One example is the effort of
Haft-Javaherian et al.,192 who developed DeepVess, a tool that exploits
the power of DNNs to automate the segmentation of 3D in vivo NLO
images of murine brain vasculature which is very laborious when per-
formed manually; a related subject was also addressed by Damesh
et al.193 With a DLmethod developed to address another type of appli-
cation, Liang et al.194 tackled the problem of estimating the elasticity
of collagenous tissues in a glutaraldehyde-treated bovine pericardium
model imaged with SHG. Their method yielded a classification accu-
racy of 84% with very low regression errors in predicting the nonlinear
anisotropic stress-strain curves, showing the potential of DL to extract
physiological parameters that can be placed in correspondence with
various health risks. The work of Wang et al.195 presents as well an DL
application relevant for the field of NLO bioimaging, consisting in a
Generative Adversarial Network model capable to predict the evolu-
tion of the scar texture, allowing the subsequent extraction of potential
features from SHG images at different scales. In other notable works,
DL has successfully been used to: (i) compensate a low photon
count,196 (ii) help increase the acquisition speed197,198 (which could be
useful in the case of imaging moving tissues), or (iii) enable cross-
modality imaging199 (which, with respect to NLO-based diagnostics,
would be important for simulating a type of image not attainable
in vivo, e.g., forward SHG, based on an in vivo deployable modality,
e.g., backscattered SHG). Noteworthy, a recently reported Deep
Learning method was designed specifically for NLO techniques,200

and related bioimaging applications, providing high-speed, high-
quality, and high-fidelity reconstruction for TPEF and SHG images
based on dense generative adversarial networks [Fig. 4(d)]. This effort
highlights the immense potential of combining Deep Learning with
NLO, in order to overcome many of the bottlenecks that confined
NLO bioimaging techniques to a limited number of applications and
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use cases over the past three decades, since they started to emerge as
highly useful bio-imaging tools. Among such limitations stands also
NLO data interpretation, which has long posed problems even for
expert histopathologists, whose expertise is mainly associated with the
analysis of stained tissues. Recent progress in virtual staining by
Generative Adversarial Networks76,77,201 came as a highly required
solution to this problem, being likely to pave the way for considerably
enhanced clinical penetration of NLO techniques, allowing access to
NLO data in a color space and format with which histopathologists
are highly familiar with.

TOWARD NEXT-GENERATION ENDOSCOPES
ENABLING ENHANCED GC DIAGNOSTICS

We envision that a synergistic combination of the technologies
discussed above, CEC-based biomimetic video systems, NLO, and
DL could enable a next-generation endoscope, that we coin
GastroAce, capable of massively improving the current state-of-the-art
on detection, characterization, and confirmation of lesions in the
gastrointestinal system. The main features of GastroAce, representing
advances over the current state of the art, are discussed in Box 1. In
the following paragraphs, we discuss some of the key challenges that
lie en route to the development of such an ambitious next-generation
endoscope.

Toward compound eye video systems for GIT imaging

Two of the most important vision models that could stand behind
future CEC-based video systems for endoscopy are the arthropod and
the dragonfly eye, both providing powerful modes of perception. The
first advantage of their hemispherical apposition design would consist
of exceptionally wide FOV, without off-axis aberrations. This can allow
GIT lesions at different angular positions to be imaged with comparable
clarity, without anomalous blurring or aberrations. Equivalent imaging
modes are difficult or impossible to obtain using planar detector tech-
nologies even with sophisticated fish-eye lenses, spherical mirrors, or
other specialized optics. The second key attribute of such CECs is their
nearly infinite depth-of-field that results from the short focal length of
each microlens in the array and the nature of image formation. This
attribute translates to the fact that when an object moves away from the
camera, the size of the image decreases but remains in focus.44 Such fea-
tures would play a key role in reducing the time required for the endo-
scopic procedure, helping the specialist performing it to avoid time on
focusing tasks aimed to deblur the images of features of interest or to
readjust the position of the distal tip to image regions not contained in

BOX 1: Advantages offered by GastroAce, a potential next-
generation endoscope featuring biomimetic video systems, NLO
and DL

A potential configuration of GastroAce is presented in Fig. 5.
Such a system would allow the entire mucosal surface of the
GIT to be surveyed by using a video system comprising CEC
that exploit the advantages of vision systems found in arthro-
pods and other species, such as extended field-of-view,44,46 very
high depth of field,44,50 great sensitivity,51 or capabilities for
polarization resolved imaging.202 The FOV enabled by such a
video system would cover almost completely all cardinal direc-
tions by exploiting hardware coupling strategies.,46 and pano-
ramic image reconstruction methods.47,203 This feature would
result in significant reduction of the time required for the endo-
scopic session, which would be further augmented by the intrin-
sic depth of field capabilities of arthropod-inspired CECs,
resulting in all imaged GIT areas being in focus. These features
would allow the gastroenterologists to focus on identifying
lesions, instead of spending time on repositioning the endo-
scope, thus enhancing the final output of the procedure. A sec-
ond key feature of GastroAce would consist in capabilities for
label-free in vivo characterization of suspicious lesions in the
GIT by using an NLO endomicroscopy module inspired by
recent proposals, e.g., Refs. 107 and 204, which could simulta-
neously collect NLO data at depths up to 1mm, and even
beyond, depending on the tissue composition, excitation wave-
length and other imaging parameters.73,74 Optical imaging with
NLO could be performed based on both endogenous contrast
(autofluorescence—TPEF, higher-harmonic generation—SHG,
vibration energy of interatomic bonds in molecules—CARS/

SRS), as in the vast majority of reported studies, but also based
on exogenous agents specifically developed for NLO imag-
ing.78 In the design presented in Fig. 5, we propose the use of
two NLO detection paths, one based on a Gradient-Index
(GRIN) lens objective deployable via the functional channel of
the endoscope, and a second one based on a liquid tunable
lens and a rotating mirror, enabling the probing of NLO sig-
nals via a circular “window” on the endoscope body, allowing
thus access to GIT lesions positioned in anatomically difficult
locations, geometrically unavailable to the GRIN lens objec-
tive. The third important feature of GastroAce would stand in
its capability for automated diagnostics. This feature would be
provided by a DL framework capable of reliable automated
identification of GIT lesions in the video streams captured by
the biomimetic video system (or by an HD-WLE imaging sys-
tem, which can be used in tandem)171 and automated interpre-
tation176,188 of NLO data collected at suspect tissue sites. The
in-tandem use of DL for both the detection and characteriza-
tion stages would significantly boost the overall efficiency of
the endoscopic exam. GastroAce’s DL platform would yield in
real-time an automated diagnostic of the lesions imaged using
the NLO module or could supply additional information
helping the specialist performing an endoscopy session to vali-
date/consolidate his/her diagnostic in computer-assisted
assays.157,158 NLO and DL could also help a surgeon to assess
in real-time the tissue pathology, for accurately defining the
resection margins of macroscopically invisible dysplasia or
cancer.75,102 Furthermore, besides diagnostic purposes, the DL
framework could potentially be used to predict microsatellite
instability, and thus the patient’s response to immunother-
apy.205 Last, but not least, the femtosecond lasers used for
NLO imaging could also be used for selectively closing blood
vessels via multiphoton photothermolysis,206 in cases when
surgery/excisional biopsy is needed.
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the FOV. Simultaneously, other valuable characteristics could be added
to potential CEC-based video systems for endoscopy, such as
polarization-resolved imaging, whose importance for the early diagnosis
of flat cancerous lesions has been previously discussed.207 Such imaging
approaches exploit the fact that the polarization state of light encodes
various intrinsic properties of the visualized media or objects,40 such as
three-dimensional morphology or structural composition. Similar
features are present in many animal species that exploit them for navi-
gation, communication, or others, and recent works202,208 have demon-
strated artificial systems possessing such properties. Facile exploration
of difficult anatomic sites in the GIT with wide-FOV CEC featuring
various other biomimetic characteristics such as those mentioned above
would offer important advantages for endoscopy, with direct implica-
tions for the procedure duration and the level of extracted information.
However, a series of technological challenges still need to be addressed
before we can witness such CECs in clinical applications for GIT imag-
ing. The resolution and optical efficiency of current CECs are still not at

the level required for commercial products. However, the current vol-
ume of efforts in the field is likely to generate soon important ideas for
cost-effective mass production of such imaging systems with enhanced
optical efficiency, capable of producing high-resolution images, and
available in small form packages. For instance, Lee et al.209 has pro-
posed a computational CEC (COMPU-EYE) solution that increases
acceptance angles and uses a modern digital signal processing tech-
nique. The proposed COMPU-EYE yielded a fourfold improvement in
spatial resolution, and more recent works showed that COMPU-EYE
can also be modified to estimate depth, which is useful for assessing the
distance between distinct objects contained in the FOV.210 Recent pro-
gress on virtual super-resolution via Generative Adversarial
Networks211,212 represents as well a great promise to overcome resolu-
tion challenges related to the technical architectures of current biomi-
metic CECs. Other ways of overcoming the resolution challenge could
rely on the integration of discrete components to replicate biomimetic
CE models,47 as presented in Fig. 2(d). Such approaches could even

FIG. 5. Graphical representation of GastroAce, a potential next-generation endoscopy/endomicroscopy system. (a) 3D model of the bio-inspired wide FOV endoscope, includ-
ing standard forward-viewing cameras and forward- and side-viewing CECs; panels on the right-side depict the FOV capabilities. The CECs, depicted in blue color, are inten-
tionally represented oversized. In the front side, a camera for standard HD-WLE is depicted in dark grey color, and two LEDs for uniform illumination are represented in light
grey color. (b) Conceptual image of the multifunctional 3D compound eye image sensors. Flexible nanostructured color filters could be integrated on the top of imaging pixels.
(c) Representation of GastroAce’s embedded system for NLO endomicroscopy. It allows NLO imaging on both the lateral and front sides. The first, by 360� rotating scanning
and fast tunable focusing and the latter by a retractable tip that allows a close and high-resolution view of the tissue, using GRIN lens technology. Such imaging can be simulta-
neously correlated with the wide-field imaging made by the four multifunctional CEC.
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combine distinct biomimetic notions, for example, compound eye
architectures (e.g., inspired from insect vision) with other biomimetic
vision concepts.61,66

A remaining challenge in translating emerging compound eye cam-
eras to the field of endoscopy is miniaturization. While a small footprint
is a mandatory prerequisite for using CECs in endoscopy applications, in
many configurations, the resolution depends on the number, and diver-
sity, of contained optical elements. The emerging field of micro-optics
fabrication with femtosecond multiphoton direct laser writing213 is
highly relevant to mention in this regard, given the superb capabilities of
such approaches to potentially enable the fabrication of ultracompact
compound lens systems. Not only that these technologies hold significant
potential for miniaturizing CECs deployable on the body of a conven-
tional endoscope, but they can also be used to fabricate miniaturized
endoscopes, sized<1mm, realized by applying various fs laser fabricated
micro-optical elements directly on the optical fiber tip.214,215 These con-
structs could eventually be deployed via the functional channel of the
conventional endoscope to access and probe anatomically difficult
regions, such as hardly accessible tissue areas positioned between the
stomach folds. This field of fs laser fabricated micro-optics is rapidly
developing, and recent progress in tip-enhanced fs modification of the
refractive index of optical materials, which allows the processing of
regions sized well beyond the diffraction limit,216 promises to consis-
tently push forward the frontiers of this field in the coming years.

In addition to their technical capabilities, another challenge with
respect to using CEC cameras in the GIT refers to maintaining their integ-
rity while exposed to the corresponding harsh environment. For this,
the advent of protective coatings that defend them from the acidic envi-
ronment of the gastric fluids, and the agents used for system cleaning/
sterilization is of utmost importance. Such coatings should possess proper-
ties such as high transparency, in order not to affect the signal intensity
and consequently image contrast and brightness. Low surface roughness
and low coefficient of friction should also be considered, for avoiding tissue
damage, and finally, high hydrophobicity would be important for keeping
the lenses clean during the procedure, and protecting them from the acidic
liquid environments in the GIT. Intelligent bioinspired solutions217 could
represent a solid solution to address some of these problems.

Toward in vivo characterization of gastrointestinal
tissues with NLO

Commercial NLO systems in the form of clinically-certified mul-
tiphoton tomographs have already been used in various hospital set-
tings throughout Europe, Australia, China, Russia, and the US, to
investigate diverse dermatological pathologies and disorders such as
skin cancer or inflammation,85,218,219 and even brain tumors.85,220

NLO endomicroscopy, which could enable in vivo GC diagnostics as
discussed earlier, has been demonstrated in several important studies
that report ingenious configurations, e.g., Refs. 107, 204, and 221–225,
and has recently been demonstrated in vivo inside the gastrointestinal
system in an animal model,107 but not yet in the human body. While
the problem of miniaturization seems to be well addressed at the time
being, an important challenge that still exists with respect to reliably
collecting NLO images inside the GIT is represented by the pulsatory
motion inherent to soft tissues inside the human body which makes
the collection of artifact-free data difficult. If the tissue region that is
being characterized changes position with respect to the objective dur-
ing image acquisition, the collected image may either contain signal

inhomogeneities or be entirely compromised. Such issues can be par-
tially addressed with image processing techniques,226,227 but more
robust alternatives would be of great benefit. We hypothesize that such
alternative solutions could consist in applying surface coatings to the
optical element that collects the NLO signals (e.g., the GRIN objective),
with properties custom designed to allow their temporary coupling to
the tissue regions that need to be imaged. With such coupling, when
the tissue moves during image acquisition, the optical element would
move together in the same direction, while maintaining the focus.
From a chemical engineering point of view, such coatings could poten-
tially be achieved using materials that rearrange between hydrophilic/
hydrophobic states.228–230 Among the potential methods for controlled
switching between such states, we consider that those based on excita-
tion with laser pulses of specific properties in terms of intensity, wave-
length, or pulse duration could be worth pursuing. Such strategies
would allow for the hydrophilic state of the coating to be turned on via
laser beam triggering before tissue imaging commences, and the objec-
tive coating to be similarly switched to a hydrophobic state when the
imaging is completed, and the objective can disengage from the tissue
site. Key attention in the design and synthesis of such coatings capable
of photoactivated hydrophilic/hydrophobic switching should be given
so that they do not interfere with the properties of the optical signals
collected from the imaged region. Furthermore, as with any micros-
copy technique, another important challenge of NLO endomicroscopy
is resolution. While the resolution of conventional benchtop or endo-
microscopy NLO systems used to date for GIT imaging is limited by
the light diffraction phenomenon to approximately half the excitation
wavelength, superior resolutions would be useful for investigating sub-
cellular details sized below this limit. Such resolutions could be
achieved by exploiting recent imaging concepts for super-resolved
laser scanning microscopy, such as the image scanning,231,232 or re-
scan233 strategies. With respect to the latter, a resolution advantage of
1.4 for re-scan SHG and 1.5 for re-scan TPEF over diffraction-limited
SHG and TPEF, respectively, was recently demonstrated.234

An important advantage of nonlinear optical microscopies is
their penetration depth, given the use of near-infrared wavelengths
which are less scattered in tissues compared to visible radiation used
in other bioimaging techniques, such as conventional confocal micros-
copy. However, the potential of NLO techniques is still biased by vari-
ous beam aberrations caused by the propagation of a numerical
aperture beam through the different epithelial layers. A potential
workaround has been proposed in the recent work of Marini et al.,235

where instead of imaging via a high NA objective, tissue excitation is
performed by microlenses, fabricated using a two-photon laser proc-
essing methodology, inspired from previous works214,215 (discussed
earlier in this article, also in the context of endoscopic CEC perspec-
tives). A key application of such microlenses could stand in their direct
coupling to micro scaffolds, implanted in vivo, serving as “windows”
to specific tissue regions. Such developments would be highly impor-
tant for better understanding diseases progression or therapeutic pro-
cesses, by providing optical access to deep tissue layers.

Toward automated GC diagnostic with Deep Learning
augmented NLO

To enable intelligent and automated diagnostics, next-generation
endoscopes could exploit advanced artificial intelligence methods
based on DL, capable to detect lesions in the video streams of standard
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HD cameras, e.g., Refs. 165–167 (or of future endoscopic CEC), and
also capable of analyzing NLO datasets in real-time. This would enable
automated identification of suspicious lesions in the GIT, followed by
reliable tissue characterization, which is required for GC diagnostic (or
GC risk assessment). A fast route toward achieving this second pur-
pose can consist in using data collected in ex vivo assays to train the
DNNs so that these can later perform classification using the NLO
imaging modalities available in vivo (e.g., TPEF, SHG, FLIM or
others). The utility of such potential approaches derives from the fact
that DNNs are most effective when applied on large training sets, but
the availability of such large NLO datasets collected in vivo from
patients is difficult to expect in the forthcoming years. Therefore, to
develop such a DL framework for automated GC diagnostics based on
in vivo NLO imaging of GIT tissues, a route worthy to pursue could
rely on the use of DNNs pre-trained with large scale NLO datasets col-
lected with benchtop systems on fixed, or freshly excised, tissues, in
relevant pathological states. An additional route for circumventing the
problem of training data availability could consist in using transfer
learning to exploit knowledge learned by the DNNs from images col-
lected with conventional microscopes on fixed GC tissue fragments
processed according to traditional histological protocols, e.g.,
Hematoxylin and Eosin or Masson’s trichrome staining. Such
approaches could potentially be merged, by using DNNs that exploit
the information collected by using a wide variety of techniques and
methodologies, capable to extrapolate what they learn from images

collected on fixed or ex vivo tissue samples to the case of in vivo GC
diagnostics, Fig. 6. The architecture of such DL methods developed for
intelligent diagnostics should be flexible so that once NLO datasets
collected in vivo will become available they can be easily included in
the learning cores of the original DNNs, for their diagnostic capabili-
ties to continuously evolve over time. In addition to spatial intensity
information (images), the DL framework for automated GC diagnos-
tics could also exploit other specific NLO information such as fluores-
cence spectra or SHG polarization signatures.116 Distinct DL methods
included in the framework could independently address such distinct
information categories, each providing its own diagnostic forecast.
Further on, the outputs of such independent DL experiments could
potentially be merged in majority vote schemes or other multiple
expert decision strategies for enhanced diagnostic accuracy.

A key bottleneck in the further development of DL methods for
NLO bioimaging stands in the limited availability of public datasets, with
highly useful data usually being confined to the groups possessing expen-
sive NLO instrumentation. Recent initiatives to publish curated NLO
datasets236–238 will hopefully inspire future similar efforts, which are
highly necessary for expanding the field of DL-assisted NLO diagnostics.

Conclusions

A potential next-generation endoscopic system combining bio-
mimetic CEC video systems, NLO and DL, could offer valuable new

FIG. 6. A potential DL framework for classification of images collected in vivo with non-linear optical microscopies on gastrointestinal tissues using transfer learning. In this
architecture, each imaging modality has unique low-level feature extracting layers, and shared mid- and high-level layers; this modular structure of the DNNs would support
both single-modal and multi-modal diagnosis. Such architectures could enable the accurate classification of datasets collected with any combination of NLO in vivo imaging
modalities (e.g., TPEF, SHG, and FLIM, depicted here), based on a priori training with datasets collected with various other imaging modalities in the frame of in vivo, ex vivo,
or in histology assays.
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possibilities for GC prevention, diagnosis, and prognosis, leading
toward more timely intervention and more efficient therapeutic
approaches. Combining these technologies could also significantly
lower the costs associated with a patient’s gastrointestinal screening
and diagnosis as a result of faster processing imaging procedures and
lower requirements for highly specialized staff. All these could play an
important role concerning the sustainability of healthcare systems
across the globe in the forthcoming context of predicted population
aging.
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