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ABSTRACT

Intrinsically disordered proteins (IDPs) are proteins that lack rigid 3D structure. Hence, they are often misconceived to present a challenge
to Anfinsen’s dogma. However, IDPs exist as ensembles that sample a quasi-continuum of rapidly interconverting conformations and, as
such, may represent proteins at the extreme limit of the Anfinsen postulate. IDPs play important biological roles and are key components of
the cellular protein interaction network (PIN). Many IDPs can interconvert between disordered and ordered states as they bind to appropri-
ate partners. Conformational dynamics of IDPs contribute to conformational noise in the cell. Thus, the dysregulation of IDPs contributes to
increased noise and “promiscuous” interactions. This leads to PIN rewiring to output an appropriate response underscoring the critical role
of IDPs in cellular decision making. Nonetheless, IDPs are not easily tractable experimentally. Furthermore, in the absence of a reference
conformation, discerning the energy landscape representation of the weakly funneled IDPs in terms of reaction coordinates is challenging.
To understand conformational dynamics in real time and decipher how IDPs recognize multiple binding partners with high specificity, sev-
eral sophisticated knowledge-based and physics-based in silico sampling techniques have been developed. Here, using specific examples, we
highlight recent advances in energy landscape visualization and molecular dynamics simulations to discern conformational dynamics and
discuss how the conformational preferences of IDPs modulate their function, especially in phenotypic switching. Finally, we discuss recent
progress in identifying small molecules targeting IDPs underscoring the potential therapeutic value of IDPs. Understanding structure and
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function of IDPs can not only provide new insight on cellular decision making but may also help to refine and extend Anfinsen’s structure/
function paradigm.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0080512
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I. INTRODUCTION

For well over half a century, Anfinsen’s dogma enunciated that a
protein sequence/function paradigm constituted the foundation of our
understanding of the protein universe. Anfinsen postulated that under
favorable conditions, a protein will fold consistently into a native state
structure, that is, effectively encoded in its amino acid sequence. The
contextual nature (under favorable conditions) was implicit in the
proclamation, “the native conformation is determined by the totality of
interatomic interactions and hence by the amino acid sequence, in a
given environment” (Anfinsen et al., 1961 and Anfinsen, 1973). Per
this view, proteins have unique tertiary structures characterized by the
fixed positions of their atoms and backbone dihedral angles that vary

slightly around their equilibrium positions because of the low-
amplitude thermal fluctuations.

However, the discovery that a significant portion of the proteome
in all domains of life and all viral proteomes examined comprise
intrinsically disordered proteins (IDPs) (or regions within ordered
proteins, referred to as intrinsically disordered regions or IDRs) that
lack rigid structure in the native state has drastically changed our per-
ception of proteins (Ward et al., 2004; Uversky, 2010; Schad et al.,
2011; Dyson, 2011; Xue et al., 2012; Pancsa and Tompa, 2012; Midic
and Obradovic, 2012; Korneta and Bujnicki, 2012; Hegyi and Tompa,
2012; Di Domenico et al., 2013; van der Lee et al., 2014; and Peng
et al., 2015). Furthermore, numerous computational studies have also
revealed that the proportion of disorder increases with organism com-
plexity (Dunker et al., 2001; Ward et al., 2004; Uversky, 2010; and Xue
et al., 2012). Thus, while the fraction of sequences predicted to have
long IDPRs (�30 residues) is approximately equal in bacteria and
archaea, it is significantly higher in eukaryotes (Dunker et al., 2000;
Ward et al., 2004; Xue et al., 2010; Xue et al., 2012; Na et al., 2013; and
Peng et al., 2015).

Despite the ubiquitous presence and evolutionary conservation,
the IDP field was met with skepticism in the early years. In fact, the
then unique, perhaps, tantalizing, observation that some proteins
lacked ordered structures in isolation was considered as a mere artifact.
On the contrary, it was tacitly assumed that, in the crowded cellular
environment, such proteins would assume the native state. Thus, dis-
order was hardly considered as being important in orchestrating sev-
eral of the molecular events in cell and developmental biology
(Uversky and Dunker, 2010; Dyson and Wright, 2019; Fusco and
Gianni, 2021; and for an interesting historical perspective, see Uversky
and Kulkarni, 2021). Furthermore, because of the “apparent” lack of
structure, IDPs are often misinterpreted by some as posing a challenge
to Anfinsen’s dogma (Potenza et al., 2015; Das et al., 2018; and Baul
et al., 2019). However, contrary to this view, IDPs abide by the
Anfinsen’s postulate albeit at its extreme limits (Vila, 2020 and
Kulkarni, 2021). Therefore, despite lacking a single, well-defined equi-
librium structure, IDPs exist as heterogeneous ensembles whose con-
formational properties do not abide by a single set of coordinates or
backbone Ramachandran angles (Dunker et al., 2013).

A. Order and disorder represent a structural and
dynamic continuum rather than binary states

The description of proteins as ordered (folded) or disordered
(unfolded) is predicated on their conformational ensembles. Ordered
proteins tend to have thermally accessible states that resemble the
ensemble average; however, disordered proteins sample an ensemble
of dissimilar conformations during their biological lifetime (Wright
and Dyson, 1999). Thus, while the native state of an ordered protein
corresponds to a global energy minimum, that is, distinct from a large
number of high energy states, disordered proteins display energy sur-
faces that contain multiple local energy minima that are separated by
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low energy barriers. This helps ensure the rapid exchange between dis-
similar states during the lifetime of the protein (Csermely et al., 2010;
Jensen et al., 2014; Burger et al., 2016; Schneider et al., 2019; and
Adamski et al., 2019). Furthermore, the disorder spectrum covers a
range of different entities from almost completely disordered and mol-
ten globules, to folded domains connected by disordered linkers and
folded proteins flanked by disordered tails (Dyson and Wright, 2005;
Uversky, 2013a; and van der Lee et al., 2014). Therefore, although
order and disorder are typically thought of as binary states, they form
a continuum (DeForte and Uversky, 2016). Thus, in contrast to the
lock-and-key analogy that represents a protein as highly ordered mole-
cule, in reality, a protein molecule represents a complex system with
remarkable spatiotemporal heterogeneity. Thus, a protein is likely to
embody fragments with different structural complexities and folding
complicities, such as foldons, inducible foldons, morphing inducible
foldons, semi-foldons, and non-foldons (Uversky, 2013b; Uversky,
2016a; Uversky, 2016b; and Uversky, 2019b). This spatiotemporal het-
erogeneity of IDPs/IDRs is manifested in their multifunctionality with
different (dis)ordered regions engaging in different functions
(Uversky, 2015 and Uversky, 2016a). It also defines a structure-
function continuum concept (Uversky, 2016b; Uversky, 2016c;
Uversky, 2019a; and Uversky, 2019b); instead of the “one gene–one
protein–one structure–one function” model, a protein molecule is a
highly dynamic conformational ensemble with remarkable multifunc-
tionality and binding promiscuity (Kulkarni et al., 2018; Fonin et al.,
2019; Uversky, 2016b; and Uversky, 2019b).

The continuum also includes the specificity of interaction. This
may explain the larger interactomes of the IDPs that are enabled by
their flexibility and propensity to engage in promiscuous interactions.
These properties allow IDPs to explore novel mechanisms such as
facilitated exchange through trimer formation and ultra-sensitivity via
threshold effects, and ensemble redistribution (Teilum et al., 2021).
Indeed, emerging evidence indicates that, like their ordered counter-
parts that exhibit allostery wherein the binding of the ligand stabilizes
specific states and shifts the conformational ensemble (Kern and
Zuiderweg, 2003; Gunasekaran et al., 2004; and Tsai and Nussinov,
2014), IDPs can also exhibit allosteric effects (Garcia-Pino et al., 2010;
Motlagh et al., 2012; Tompa, 2012; Ferreon et al., 2013; Motlagh et al.,
2014; Krishnan et al., 2014; Choi et al., 2015; Garcia-Pino et al., 2016;
Zhang et al., 2018; Li et al., 2018; Berlow et al., 2018; and Rehman
et al., 2019). The glucocorticoid receptor that contains a large IDR
characteristic of the hormone receptor family of proteins further illu-
minates the degree of sophistication adopted by IDPs. In this case,
genetically tunable “energetic frustration” controls allostery. Here,
energetic frustration is defined the activity of the protein results from
the combination of the opposing interactions, while the term geneti-
cally tunable refers to the splice variants with varying degrees of intrin-
sic disorder. Furthermore, the disordered regions can have opposing
effects on other regions of the protein. Thus, energetic frustration can
be envisaged as a “tug-of-war” whereby protein activity is predicated
on a combination of the opposing interactions (Li et al., 2017).

B. Structural plasticity enhances functionality

Because of the enormous conformational plasticity, IDPs occupy
key nodal (hub) positions in cellular protein interaction networks
(PINs) (Dunker et al., 2005; Haynes et al., 2006; Gsponer and Babu,
2009; Patil et al., 2010; and Hu et al., 2017). PINs that adopt a scale-

free architecture serve as a conduit for channeling information flow
within the cell (Barabasi and Albert, 1999; Barab�asi and Oltvai, 2004;
and Barab�asi, 2009). However, because IDPs engage in promiscuous
interactions when overexpressed (Vavouri et al., 2009), they can also
rewire PINs affording the system a robust degree of plasticity (Buljan
et al., 2013). It is, therefore, not surprising that the organization and
properties of the PINs appear to be evolutionarily conserved
(Rangarajan et al., 2015).

In addition to channeling information, IDPs play important roles
in numerous biological processes, including transcriptional regulation,
splicing, signaling and development, and differentiation (Uversky
et al., 2008; Wright and Dyson, 1999; Dunker et al., 2002; Uversky and
Dunker, 2010; Xue et al., 2012; Oldfield and Dunker, 2014; Uversky,
2015; Wright and Dyson, 2015; Berlow et al., 2015; Fung et al., 2018;
Deiana et al., 2019; and Csermely et al., 2020). The physical character-
istics of IDPs such as interactions characterized by high specificity but
low affinity, and kinetic advantages in signaling, allow for an exquisite
level of control of cellular signaling processes (Pontius, 1993; Wright
and Dyson, 1999; Dyson and Wright, 2005; Oldfield et al., 2005; and
Wright and Dyson, 2015). Post-translational modifications (PTMs),
for example, phosphorylation, further fine-tune the functions of IDPs
to behave as sophisticated and sensitive switches and rheostats in the
regulatory circuits they modulate (Dyson and Wright, 2005; Gsponer
and Babu, 2009; Lee et al., 2010; Van Roey et al., 2012; and Van Roey
et al., 2013).

In addition, IDPs play important roles in many cellular processes
such as regulation of the cell division cycle (Galea et al., 2008; Yoon
et al., 2012; Mitrea et al., 2012; Buske et al., 2015; and Tsytlonok et al.,
2019), circadian rhythmicity (Hurley et al., 2013; Dong et al., 2016;
Pelham et al., 2018; Pelham et al., 2020; and Diernfellner and Brunner,
2020), stress response (Boothby et al., 2017), and phenotypic plasticity
(Mooney et al., 2016; Jia et al., 2017; and Kulkarni et al., 2020).
Furthermore, several IDPs are reported to prion-like functions to actu-
ate protein-based molecular memories underlying the emergence and
inheritance of biological traits (Chakrabortee et al., 2016), underscor-
ing their importance in phenotype switching. Indeed, based on these
observations, IDPs have also been implicated as playing a role in mul-
ticellularity, a cornerstone in major evolutionary transitions (Kulkarni
and Uversky, 2018a and Kulkarni, 2021). Moreover, when dysregu-
lated, IDPs can also cause pathological states (Iakoucheva et al., 2002;
Uversky et al., 2008; Uversky, 2014; and Uversky et al., 2014) (Vavouri
et al., 2009 andMarcotte and Tsechansky, 2009). Consistent with these
observations, IDPs are dysregulated in several chronic human diseases,
including cancer, diabetes, neurodegenerative diseases, and several
genetic diseases (Uversky et al., 2008; Babu et al., 2011; Uversky, 2014;
Kulkarni and Uversky, 2019; Santofimia-Casta~no et al., 2020; Brocca
et al., 2020; Midic et al., 2009; and Uversky et al., 2009). It is, therefore,
not surprising that cellular IDP levels are tightly regulated from syn-
thesis to degradation (Gsponer et al., 2008 and Edwards et al., 2009).

Paradoxically, however, some IDPs are important in protein fold-
ing (Lermyte, 2020). For example, several stress-response proteins and
chaperone proteins are IDPs (Tompa and Kovacs, 2010; Uversky,
2011; and Webster et al., 2019). Consistent with a chaperone function,
deleting a disordered 23-residue C-terminal portion of GroEL that
faces the central cavity of the bacterial GroEL-GroES complex in
which folding occurs compromises chaperone function (Machida
et al., 2008). In tardigrades that can endure extreme conditions, IDPs
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are found to respond to these challenges (Janis et al., 2018 and
Hesgrove and Boothby, 2020). Similarly, several stress response pro-
teins in plants (Covarrubias et al., 2017; Balcerowicz, 2020; and Rae
et al., 2014) and proteins that mediate plant immune responses to
pathogens are IDPs (Sun et al., 2014). Furthermore, IDPs play a role
in regulation of plant growth (Sun et al., 2010), development, and sig-
naling, often by integrating signals from multiple plant growth regula-
tory inputs (Sun et al., 2011 and Sun et al., 2013). Similarly, in the
human, IDRs are found in the small heat shock proteins Hsp22 and
aB-crystallin (Kazakov et al., 2009 and Sudnitsyna et al., 2012),
highlighting the link between stress and IDPs both in plants and
animals.

C. Mechanisms underlying IDP interactions

In light of the incredible functional repertoire of the IDPs, under-
standing how they interact with partners in spite of (the perceived)
lack of structure is of significant interest. It is now evident that some
IDPs can undergo transitions from disorder to order upon binding to
their cognate targets, a phenomenon referred to as “coupled folding
and binding” (Dyson and Wright, 2002; Oldfield et al., 2005; Mohan
et al., 2006; Cheng et al., 2007; Vacic et al., 2007; and Oldfield et al.,
2008). Two models have been advanced supporting this concept.
While the “induced fit” mechanism postulates that folding occurs after
association of the IDP with the target, the “conformational selection”
mechanism suggests that all potential conformations of the ensemble
exist a priori and the ligand then “selects” the most favored prefolded
state from this preexisting pool (Boehr et al., 2009). However, in stud-
ies on the interaction between pKID/KIX and KIX/Myb (Arai et al.,
2015) and the C-terminal domain (CTD) of the measles virus nucleo-
protein (Wang et al., 2013), some combination of both these mecha-
nisms may also be applicable, suggesting that the exact binding
mechanism is determined by the intrinsic secondary structure propen-
sities of the IDPs (Wright and Dyson, 2015).

Coupled folding and binding is a complex process involving at
least two steps—binding to the partner and folding of the IDP (Wright
and Dyson, 1999; Uversky, 2002; Wright and Dyson, 2005; Tompa
and Fuxreiter, 2008; Tompa, 2011; Kiefhaber et al., 2012; Habchi et al.,
2014; and Gianni et al., 2016). However, it is important to recognize
that mechanistically, there are distinct differences between the classical
spontaneous folding of globular proteins and binding-induced folding
of IDPs. More specifically, while globular proteins fold via a robust
mechanism consolidated by the presence of a loosely formed yet spe-
cific nucleus (Fersht, 1995 and Itzhaki et al., 1995), IDPs appear to
fold by heterogeneous nucleation via an overall mechanism, that is,
induced by interaction with the partner (Rogers et al., 2014a; Rogers
et al., 2014b; Toto and Gianni, 2016; Toto et al., 2016; and Bonetti
et al., 2018). A recent study on protein folding employing molecular
dynamics simulations with all-atom force fields, with folding pathways
interpreted in terms of soliton structures, examined the presence of
systematic dynamical patterns of self-organization that may govern
protein folding. Simulations were performed on the conformational
transformations of three different proteins, namely, the ordered region
of the oncoprotein MYC, amylin, and indolicidin (IDPs with different
length and binding dynamics). Interestingly, the authors observed the
emergence of soliton-mediated secondary motifs only in the case of
IDPs suggesting that, indeed, the folding mechanisms in IDP folds are
different, and that soliton-like quasi-ordered conformations may serve

as an important intermediate stage in this process (Ilieva et al.,
2016). Consistent with this observation, a previous study (Austin
et al., 2009) on the protein myoglobin showed that there is no
long-lived Davydov soliton, at least in this highly ordered protein.
Similarly, a theoretical study on intrinsic localized modes (ILMs),
which are members of the large soliton family (Nicola€ı et al., 2015),
found that the probability of ILMs playing a significant functional
role in the flexible regions of the proteins and in proteins in a non-
native state is significantly higher than in folded proteins/regions
lending further credence to the idea that soliton-mediated struc-
tural events may be prevalent in IDPs. Furthermore, in model sys-
tems, it was demonstrated that structural disorder facilitates
transmission of solitons (Kartashov et al., 2011).

Thus, it follows that the mechanisms of disorder-to-order
induced folding in IDPs could be intrinsically different from the
mechanisms seen in globular proteins. However, there are impor-
tant similarities. For example, the cooperative nature of the reac-
tion underlying disorder-to-order transitions in IDPs is
comparable to that of ordered proteins. However, their folding
pathways are strikingly more malleable because of the heteroge-
neous nature inherent in their folding nuclei (Toto et al., 2020).
Furthermore, the timescale that governs the conformational
dynamics is an important factor in the binding mode for IDPs
(Choi et al., 2019). In the induced fit model, rapid conformational
dynamics play an important role. In many cases, the energy from
order transitions is coupled to the recognition event. On the other
hand, the disorder persists even in the bound state in some IDPs
(Borgia et al., 2018 and Tsytlonok et al., 2019). If the conforma-
tional dynamics are slow, then the binding mode is limited to con-
formational selection. In this case, interactions can only occur in
the presence of the binding-competent configuration.

Another model is the “extended conformational selection,” which
is a repertoire of selection and adjustment processes (Csermely et al.,
2010). Here, the contribution of induced fit that constitutes a subset of
this repertoire is affected by the bonds, which stabilize the interaction
and the differences between the partners. Per this model, segments, or
regions of the proteins with dynamics distinct from the rest of the
molecule referred to as “discrete breathers,” can impact conforma-
tional transitions and the propagation of allosteric signals that occur
along with the binding processes.

Aside from the scenarios described above, some IDPs do not
appear to assume any discernable structure even when bound to a cog-
nate ligand. For example, regions of caldesmon (Permyakov et al.,
2003 and Permyakov et al., 2015), anhydrin (Chakrabortee et al.,
2010), c-Myc (Andresen et al., 2012), prostate-associated Gene 4
(PAGE4) (He et al., 2015), and the transcription factors (TFs) Sp1 and
TAF4 (Hibino and Hoshino, 2020) remain largely disordered even
while interacting with their cognate partners. Such interactions are
described as “fuzzy complexes” (Tompa and Fuxreiter, 2008) sugges-
ting yet another molecular mechanism underlying IDP interactions
(Choi et al., 2011 and Latysheva et al., 2015). Therefore, IDPs can
form tight complexes in the absence of any ordered structure (Borgia
et al., 2018) while retaining long-range flexibility and highly dynamic
character (Mittag et al., 2010 and Borgia et al., 2018). Thus, the confor-
mational equilibria present in even the bound states facilitate pleiotro-
pic functions of IDPs (Tompa et al., 2005) underscoring their
importance in regulatory processes (Berlow et al., 2015).
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D. IDP interactions involve specific motifs

Interaction of IDPs with binding partners involves short
sequence motifs referred to as short linear motifs (SLiMs) and molecu-
lar recognition features (MoRFs) as well as low-complexity sequences
(Mohan et al., 2006; Davey et al., 2012; and van der Lee et al., 2014).
Frequently, two or more of such motifs are found in the same IDP
underscoring multivalent interactions (Davey et al., 2012; van der Lee
et al., 2014; Van Roey et al., 2014; Krystkowiak and Davey, 2017; and
Bhowmick et al., 2015) and increasing the overall avidity of the inter-
action by exploring conformational ensembles that are recognized by
distinct binding partners (Fung et al., 2018 and Uversky et al., 2008).
Thus, the same binding region can bind to several different partners
with very similar affinities (Oldfield et al., 2008).

Interactions of IDPs that involve SLiMs often involve contribu-
tions from the flanking regions and/or such interactions are contex-
tual. These contributions are typically electrostatic acting through
either highly negatively charged proteins, for example Rb binding pro-
teins (Palopoli et al., 2018), or positively charged proteins such as the
PCNA binding PIP-box (Prestel et al., 2019). However, some flanking
regions have also been observed to be hydrophobic (Alanen et al.,
2011). Furthermore, the structure and dynamics of the flanking
regions can contribute to competition, cooperativity, and allosteric
regulation (Berlow et al., 2017) in addition to ensuring proper orienta-
tion and the velocity with which interactions occur (Fuxreiter et al.,
2007). Nonetheless, the underlying thermodynamics and the exact
structural requirements of such interactions are not fully understood
(Bugge et al., 2020).

E. Conformational dynamics and conformational noise

In addition to the energetics of binding reactions, conformational
dynamics also enables IDPs to control and regulate their hydrody-
namic volume and spacing. For example, conformational exchange
allows IDPs to explore a large volume while seeking binding partners
appropriately dubbed as the “fly-casting” model (Shoemaker et al.,
2000; Hoffman et al., 2006; and Metskas and Rhoades, 2015).
Similarly, the entropic clock model demonstrates how the degree of
extension of an IDP linker region between a pore and its blocking
domain modulates timing of an ion channel (Podlaha and Zhang,
2003). Finally, the entropic bristle model revealed how IDPs regulate
protein interactions by exploring large search space before populating
an appropriate conformation (Hoh, 1998). Together, these unique
aspects of IDPs underscore how the timescale and the range of confor-
mational sampling within the ensemble modulates their structural
properties.

In addition to affecting structural properties of the IDPs, confor-
mational dynamics also results in noise referred to as “conformational
noise” (Mahmoudabadi et al., 2013; Kulkarni and Kulkarni, 2019; and
Kulkarni, 2020) that it is distinct from transcriptional noise (Eldar and
Elowitz, 2010 and Hansen et al., 2018). In biology, noise is defined as
the random variability in biomolecular quantities. Such variation arises
even in the absence of any genetic contribution, and as a result, even
cells that are isogenic can exhibit significant stochastic fluctuations in
protein levels that are leveraged to facilitate probabilistic bet-hedging
decisions (Jolly et al., 2018 and Hansen and Weinberger, 2019).
Indeed, transcriptional noise that arises due to stochasticity in gene
expression is well documented (Raj and van Oudenaarden, 2009 and

Hansen et al., 2018), and isogenic cells in a population are observed to
switch states (phenotypes) and behave differently in response to the
same stimulus (Brock et al., 2009 and Huang, 2009). Indeed, noise-
driven phenotypic switching is now acknowledged to play an impor-
tant role in development, stress response, disease pathological, and
evolution (Mahmoudabadi et al., 2013). Furthermore, stochasticity in
phenotypic switching has been reported to modulate differentiation
(Eldar and Elowitz, 2010 and Simon et al., 2018), stem cell reprogram-
ming (MacArthur et al., 2008; Yamanaka, 2009; Wakao et al., 2013;
Chung et al., 2014; Lin et al., 2018a; Lin et al., 2018b; and Raina et al.,
2021), and the conversion of cancer cells to cancer stem-like cells
(Gupta et al., 2011 and Sehl et al., 2015).

Aside from transcription, noise also significantly affects informa-
tion transduced in cellular PINs (Ladbury and Arold, 2012), especially
noise contributed by random protein interactions (Kuwahara and
Gao, 2013) due to promiscuous interactions (Kontogeorgaki et al.,
2017 and Azpeitia et al., 2020). Consistent with this argument, most
transcription factors (Liu et al., 2006; Niklas et al., 2015; Strzyz, 2018;
and Brodsky et al., 2020) and hub proteins in cellular PINs are IDPs
(Haynes et al., 2006; Doszt�anyi et al., 2006; Gsponer and Babu, 2009;
and Patil et al., 2010). Therefore, in response to extrinsic or intrinsic
perturbations, IDPs can unmask latent interactions to cause pheno-
typic switching (Mahmoudabadi et al., 2013 and Kulkarni and
Kulkarni, 2019). IDP conformational noise is implied as noise due to
the random variability in sampling ensemble. Further, although inter-
conversions of IDP conformations are in fast exchange, they are typi-
cally modified by post-translational modifications such as
phosphorylation, which can result in variant conformational ensem-
bles to have significantly longer half-lives (Kulkarni and Kulkarni,
2019).

Though conformational switching and even fold switching are
well documented in folded/metamorphic proteins (Kulkarni et al.,
2018), some IDPs can switch between discrete conformational ensem-
bles even while remaining disordered in both states (Choi et al., 2011
and Choi et al., 2019). While such transitions possess many common
features, several IDPs stochastically switch between distinct states
within the entire conformational space or display dynamics on slow
timescales. Therefore, an in-depth understanding of the conforma-
tional dynamics beyond just the minimum energy states that charac-
terize the ensemble both in terms of the landscape, that is, accessible,
and the timescales is necessary to gain more insight into IDP structure
and function.

F. Characterizing IDPs

Experimental characterization of IDPs, especially large proteins
or regions within proteins, remains a challenge. X-ray crystallography
and cryo-EM, which recover high-resolution images of proteins in
their crystalline and frozen states, respectively, and provide a static
view, are not well suited (Kaptein and Wagner, 2019). However, tech-
niques, such as nuclear magnetic resonance (NMR), small-angle x-ray
scattering (SAXS), single-molecule F€orster resonance energy transfer
(FRET), dynamic light scattering (DLS), and two-focus fluorescence
correlation spectroscopy (2f-FCS), atomic force microscopy (AFM),
circular dichroism (CD), fluorescence, Fourier transform infrared
spectroscopy (FTIR) and Raman spectroscopy, and mass spectrometry
(MS), are adapt at identifying the conformational transitions sampled
by IDPs (Kjaergaard et al., 2010a; Kjaergaard et al., 2010b; Jurneczko
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et al., 2012; Camilloni et al., 2012; Bernad�o and Svergun, 2012; Jensen
et al., 2013; Sterckx et al., 2014; Borgia et al., 2016; Khan et al., 2017;
Cordeiro et al., 2017; Gomes and Gradinaru, 2017; LeBlanc et al.,
2018; Dyson andWright, 2019; Chan-Yao-Chong et al., 2019; Bax and
Clore, 2019; Metskas and Rhoades, 2020; Casuso et al., 2020; and
Dyson andWright, 2021) since they performmeasurements of protein
molecules as they fluctuate in their “natural” environment. On the
other hand, the measurements provided by the above techniques are
of limited resolution. Therefore, they are inadequate to discern the dis-
tribution of the multiple distinct IDP conformational ensembles.
Molecular simulations that can complement and even validate the
experimental observations, have emerged as increasingly important
tools to elucidate IDP conformational ensembles (Bhattacharya and
Lin, 2019; Hsu et al., 2020; Dokholyan, 2020; Zhao et al., 2020; and
Wang, 2021). Nonetheless, visualizing their energy landscape presents
a formidable challenge.

In this review, using specific examples of IDPs, we highlight
recent advances in molecular dynamics simulations and in energy
landscape visualization techniques that have shed new light on their
conformational dynamics and its functional implications at a systems
level. In addition, we also discuss the emerging role of IDPs as thera-
peutic targets that, until recently, were regarded as “undruggable.”
Thus, a deeper understanding of the IDPs can not only provide new
insight on cellular decision making with wider implications in biology
and medicine but may also help to refine and extend the structure/
function paradigm beyond Anfinsen’s postulate.

II. ENERGY LANDSCAPE
A. Molecular dynamics simulations (MD)

The energy landscape theory has provided a general conceptual
framework to understand the folding and functional properties of pro-
teins (Frauenfelder et al., 1991; Onuchic and Wolynes, 2004; and
Thirumalai et al., 2010). Based on the principle of minimal frustration
(Bryngelson and Wolynes, 1987 and Ferreiro et al., 2018) and
grounded on statistical mechanics principles, this approach led to the
description of the protein folding funnel (Leopold et al., 1992 and
Bryngelson et al., 1995), which has brought a comprehensive under-
standing of biomolecular processes, bridging theory and experiments
(Hills and Brooks, 2009; Onuchic et al., 1997; and Chung et al., 2009).
Indeed, these techniques not only aid the study of protein folding but
also help elucidate the functional dynamics, which can involve large-
scale conformational changes (Takada et al., 2015), motor-like energy
transfer, and assembly (Hirokawa et al., 2009).

The general goal of this approach has been to describe the
dynamics and thermodynamics of biological molecules in the context
of funnel-like landscapes, which takes into account the interplay of
topological, energetic, and entropic aspects (Koga and Takada, 2001).
Despite the fact that protein folding and functional dynamics are
intrinsically multidimensional, the energy landscape approach accu-
rately describes the kinetic and thermodynamic properties in terms of
a few key quantities that are used as reaction coordinates. The compu-
tational description is highly simplified when there are reference con-
formations, such as native or functional state, which are used as
reaction coordinates and correlated with measurable experimental
variables.

The analysis of MD trajectories seeks to capture properties of a
system, such as the dominant kinetics and structural features of the

transition state ensembles, as a function of few-dimensional reaction
coordinates. Beyond the straightforward structure-based coordinates,
such as the fraction of native contacts and the root mean square dis-
tance (RMSD) from reference structures, there are alternative strate-
gies for inferring suitable reaction coordinates to describe the energy
landscape. For instance, transition-path analysis can be used to find
the coordinates that best portray the underlying free-energy barrier
(Best and Hummer, 2016). On the other hand, time-correlation analy-
sis (No�e and Clementi, 2017) allows defining classes of collective varia-
bles (CVs) associated with the slowest motions. A common limitation
of these techniques is that they require, in general, a priori definition
of coordinates, which can be time-consuming and computationally
expensive. Moreover, applying putative coordinates may hide the rich-
ness of the dynamics.

Other approaches for representing the landscape involve deter-
mining a connectivity map between long-lived states, which can be
inferred by Markov state models (MSMs) (Chodera and No�e, 2014;
Zimmerman et al., 2017; and Jacobs and Shakhnovich, 2018). Local
minima can be individually addressed and go beyond one-
dimensional representation (Wales, 2010), and the visualization of dis-
tances between local minima in a hierarchical representation is also an
appealing way to probe the energy landscape (Wales, 2018). The above
methods suit well to investigate funnel-like landscapes with well-
defined energy basins. However, IDPs are far more challenging sys-
tems due to the high disorder, shallow energy minima, and lack of ref-
erence structures.

B. Energy landscape visualization method (ELViM)

A novel approach called the energy landscape visualization
method (ELViM) (Oliveira et al., 2014 and Oliveira et al., 2019) that
relies upon a multidimensional scaling (MDS) method to examine
IDP structure appears quite promising. This method is a reaction
coordinate-free method, and it is based on pairwise distances between
all structures of the ensemble (Ragonnet-Cronin et al., 2013). Using a
local structural similarity metric (Hardin et al., 2000), one can survey
and triangulate a high-dimensional conformational phase space and
project the ensembles to two optimal dimensions but, at the same, pre-
serve the local proximities. Thus, ELViM permits an intuitive visual
analysis of the energy landscape. Moreover, different ensembles can be
mapped into a single phase-space, which allows comparisons of
ensembles investigated under different physical and chemical
conditions.

Using the ELViM method, the authors focused on prostate-
associated Gene 4 (PAGE4) in which three different phosphorylated
versions of the PAGE4 protein were analyzed [wild type (WT)-
PAGE4, HIPK1-PAGE4, and CLK2-PAGE4)] (Oliveira et al., 2021).
In the ELViM 2D projection, each conformation is represented by a
point, which can be fully examined, calculating any desirable variable,
such as radius of gyration or specific distances between residues
[Fig. 1(a)]. Moreover, ensembles can be analyzed separately, from
which the density of states and free energies can be estimated
[Fig. 1(b)]. In another study, the same group leveraged ELViM to
amyloid-b (Ab) monomer variants, all IPDs, to discern their propensi-
ties for fiber formation (Sanches et al., 2022). Figure 2 shows the
ELViM projection of different ensembles of amyloid-b monomers, all
projected in the same 2D effective phase space. Each conformation of
the dataset can be examined individually, and any chosen variable can
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be tracked and colored accordingly. As an example, Fig. 2(b) shows all
conformations of the amyloid-b monomers colored according to their
radius of gyration (Rg), and examples of the conformations from dif-
ferent regions of the phase space are also shown. Therefore, one would
expect that if such projection makes sense, meaningful coordinates
would be “well behaved” and vary continuously throughout the 2D
representation, which is shown by Rg in Fig. 2(b). Considered together,
this MDS strategy appears to provide an insightful representation of
IDP energy landscape.

C. Parallel tempering (PT)

IDPs exist in shallow rugged free energy landscapes with multiple
conformational populations that are in dynamic equilibrium with each
other. As such, it is difficult to structurally resolve them at high-
resolution with experimental techniques. Of late, in order to elucidate
the structural and dynamical features of IDPs at higher resolution,
molecular simulation is being routinely used in conjunction with low-
resolution ensemble-averaged data (Lindorff-Larsen et al., 2012;
Bonomi et al., 2017; Best, 2017; Peterson et al., 2017; Bottaro and
Lindorff-Larsen, 2018; Kasahara et al., 2019; Gomes et al., 2020; and
Kassem et al., 2021) from experiments such as SAXS (Henriques et al.,
2015; Hub, 2018; Hermann and Hub, 2019; Chan-Yao-Chong et al.,
2019; Ahmed et al., 2021; and Kassem et al., 2021), NMR (Fawzi et al.,
2008; Robustelli et al., 2010; Fisette et al., 2012; Fu and Vendruscolo,
2015; Salvi et al., 2016; Papaleo et al., 2018; Chan-Yao-Chong et al.,
2019; Heller et al., 2020; and Kassem et al., 2021), FRET (LeBlanc
et al., 2018 and Lerner et al., 2021), and cryo-electron microscopy
(Bonomi and Vendruscolo, 2019 and Nierzwicki and Palermo, 2021).
Despite the many advances, extracting experimentally consistent
ensemble for an IDP remains highly challenging. This, in large part, is
due to the presence of diverse conformational states in an ensemble
that render the experimental data noisy, sparse, and/or ambiguous. On
the other hand, the molecular simulations typically sample only a tiny
phase space of an IDP ensemble despite the underlying free energy
landscape being shallow in nature. The presence of significant entropic
barriers between different population clusters is an often-overlooked
aspect of IDPs sampling and the primary reason for samples not
reproducing the ensemble and thermodynamic averages of experi-
ments. Also, modeling extremely fuzzy IDPs with very low hydropho-
bicity and high net charge is yet another example of entropically
stabilized systems that are not sampled properly and need to be
addressed post haste due to emerging roles of such IDPs in

FIG. 1. The different PAGE4 ensembles
represented in a single conformational
phase space using the energy landscape
visualization method. (a) Each conforma-
tion displayed by a point in the effective
phase space. (b) Contour plots showing
the density of states of the wild type (WT)
and phosphorylated PAGE4. Each free
energy valley is characterized by specific
conformations that entail particular binding
affinities. For WT-PAGE4, through a fly-
casting mechanism, the C-terminal region
is extended, facilitating its interaction with
partner protiens. In the case of HIPK1-
PAGE4, the lower free energy of the com-
pact state decreases the affinity for c-Jun,
while the extended conformations of
CLK2-PAGE4 due to hyperphosporylation
inhibit this interaction.

FIG. 2. Conformational phase space of the simulated amyloid-b (Ab) structures. (a)
Distinct Ab ensembles present in the projection with the Ab-40 (purple), Ab-42
(beige), and the Ab-40 mutants (green). (b) Each point represents a conformation,
which is colored as function of radius of gyration. Typical conformation examples of
each region are displayed around the projection.
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interactions, both at single molecule recognition level (Jephthah et al.,
2019; Schuler et al., 2020; and Sottini et al., 2020) and in assemblies (Li
et al., 2001 and Rauscher and Pomès, 2017).

The determination of experimentally consistent ensemble data
from simulation mandates adequate sampling, which is generally
achieved in advanced sampling approaches by either applying struc-
tural restraints using collective variables or by reweighting the
obtained conformations to arrive at the Boltzmann weighted popula-
tions (Cavalli et al., 2013; Rangan et al., 2018; and K€ofinger et al.,
2019). Parallel tempering (PT) sampling is an attractive alternative
since it can be used effectively without any reweighing and restraining
and without the need to have a low-dimensional collective variable
(CV) to define the ensemble states. Moreover, instances when sam-
pling outcomes are not commensurate with experimental data, PT can
be coupled seamlessly with other CV-based restraining methods or
reweighted appropriately to solve the problems of interest (Do et al.,
2014; Zerze et al., 2015; Awasthi and Nair, 2017; and Liu et al., 2020).
In the classical version of this method (Sugita and Okamoto, 1999)
called temperature replica exchange MD (TREMD), multiple replicas
are simulated simultaneously at a series of low and high temperatures
and neighboring replicas are stochastically swapped at regular intervals
based on criteria that honor detailed balance. These random walk
swaps allow the broader phase space explored at the high temperature
replicas to be accessed by the low temperature replicas, thereby gener-
ating an unbiased Boltzmann-weighted ensemble of conformations at
a given temperature. The acceptance probability of swapping depends
on the extent of potential energy overlap between the adjacent replicas
and as the system size increases, more and more numbers of replicas
are required for effective sampling (Baumketner and Shea, 2007;
Wang et al., 2013; Zerze et al., 2015; and Jain et al., 2021). This prob-
lem is particularly exacerbated when simulating large proteins in
explicit solvent where the bulk of solvent molecules contributes
majorly toward the poor overlap. For instance, about 96 replicas were
needed to sample a 20-residues long disordered N-tail of measles
envelop virus protein in solvent, and 180 replicas were needed for
effectively sampling a 63-residues long alpha-synuclein (Wang et al.,
2013 and Baumketner and Shea, 2007).

Several variants of PT have evolved in recent years to alleviate the
huge computational expenses of classical TREMD. One of the popular
approaches is the replica exchange with solute tempering/scaling
(REST/REST2 and gREST), where the Hamiltonian is designed in
such a way that it effectively heats up the solute while keeping the sol-
vent at room temperature (Liu et al., 2005; Wang et al., 2011; and
Kamiya and Sugita, 2018). This transformation drastically reduces the
required number of replicas as the exchange probability now depends
only on the solute degrees of freedom and forgoes the calculations
from the expensive solvent self-interactions. This method has found
tremendous applications in sampling IDPs (Musiani et al., 2013;
Brown et al., 2014; Smith et al., 2016; Peng et al., 2017; Shrestha et al.,
2019; Liu and Chen, 2019; and Shrestha et al., 2021) and also on stud-
ies related to IDPs binding to their cognate partners (Miller et al.,
2014; Smith et al., 2019; Khayat et al., 2020; Noda et al., 2020; Zhao
et al., 2021; and Gopal et al., 2021).

The success of REST2, the evolved version of REST, is highly
dependent on the choice of forcefield. In most of the cases, the com-
bined application of REST2 with a99SB-disp forcefield (Robustelli
et al., 2018) recapitulated almost all the experimental measurements

(Liu and Chen, 2019 and Shrestha et al., 2021). For instance, in
p53-TAD, the REST2-a99SB-disp duo generated ensemble captures
multiple local and long-range structural properties, including chain
dimension, residual secondary structures, and transient long-range
contacts in consistent with measurements from NMR, smFRET, and
TR-FRET experiments. Whereas with other state-of-the-art forcefields
including Charmm36m (Huang et al., 2017) and Amberff99SB-ILDN/
TIP4PD (Lindorff-Larsen et al., 2010 and Piana et al., 2015), the
REST2 either suffered with inadequate convergence or over-
compaction issue (Liu and Chen, 2019). REST2 was also used in study-
ing the coupled folding induced binding in c-Myb/KIX (Gopal et al.,
2021) and Bcl-XL/PUMA (Liu et al., 2017) complexes. In these simu-
lations, the REST2-a99SB-disp combination provided high-precision
accurate structural properties when compared to circular dichroism
and secondary chemical shifts. However, the predicted nuclear
Overhauser effect (NOE)-like distances show significant violations
from the NMR derived values particularly at the interface residues.
This indicates the formidable challenge of sampling tertiary packing of
IDP segments likely originated from inadequate sampling and conver-
gence in these simulations (Smith et al., 2016 and Liu et al., 2017).

In addition to poor convergence and inadequate sampling in
some cases, the REST2 also suffers with poor mixing of replicas
between the high and low temperature regimes in complex proteins
(Huang et al., 2007 and Smith et al., 2016), where friction between the
protein and solvent determines the rate of conformational transition,
and most existing methods suffer in overcoming the solvent-imposed
(entropy driven) free-energy bottlenecks. This aspect is amply
highlighted in a recent study where REST2-derived conformations at
high and low temperatures are shown trapped in local temperature
basins with nominal exchange taking place between them (Appadurai
et al., 2021). In this work, the entropic lock problem is solved by
enabling differential tempering of both the solute and solvent in the
Hamiltonian (Fig. 3). This scheme, called as replica exchange with
hybrid tempering (REHT), specifically allows faster decay of water
reorientation dynamics at non-base replica that, in turn, facilitates the
faster and converged conformational sampling at the base replica
(Appadurai et al., 2021). REHT is able to reproduce SAXS and
Chemical Shift data for a range of proteins with a variety of free-
energy landscape (folded, metamorphic as well as IDPs) without any
need to restrain or reweight the ensemble. The details of REHT simu-
lation setup and scripts for generating the input files are available at
the github repository, https://doi.org/10.5281/zenodo.4361714.

Across these different sampling methods and forcefields, it is
clear that the correct modeling of protein–solvent interactions is criti-
cal for generating ensembles to a level of precision sufficient to draw
physical conclusions. At this point, it is important to point out again
how sampling and forcefield are very interconnected and need to be
addressed simultaneously. Here, we would like to mention how the
popular IDP forcefield Charmm36m, which does not work well with
REST2, seems to generate excellent results with REHT. REHT has its
origin from REST2, and it solves an old problem arising out of “cold
solvent” effects in REST2 while keeping the computational require-
ments tractable. There is a substantially shortened round trip of repli-
cas in REHT with the same forcefield, and this is due to the way it
treats the water self-interaction (in non-base replicas). This is, in some
sense, equivalent to the ideas in work with optimized forcefields of
water interactions for better sampling (Best et al., 2014; Piana et al.,
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2015; and Robustelli et al., 2018). Entropic barrier is more acute in
larger IDPs (>100 residues long), and REHT has opened the door to
extract the experimentally commensurate conformational ensemble at
atomic resolutions for very long IDPs.

III. CONFORMATIONAL DYNAMICS AND PHENOTYPIC
SWITCHING
A. IDP dynamics and stochasticity

Conformational noise can have important implications in cellular
behavior. Our current understanding of noise in biological systems is
largely focused on stochasticity arising due to the low copy number of
biomolecules (Bal�azsi et al., 2011). Stochasticity can be seen at various
regulatory levels: signaling cascades, transcription (DNA binding/
unbinding), translation (microRNA-mRNA binding/unbinding),
chromatin organization (Guillemin and Stumpf, 2021), eventually
impacting cellular decision-making, and enabling phenotypic hetero-
geneity. Similar implications of stochasticity can also arise due to con-
formational noise. With IDPs acting as hubs in PINs, the interaction
strength between members of the PIN and even the connections
between them becomes a dynamical variable instead of fixed parame-
ters in the “static” regulatory networks we often imagine. Thus, con-
formational noise can drive time-varying PIN(s) and/or regulatory
network(s) where the interactions among the nodes change dynami-
cally over time (Fig. 4). Such traits can amplify any preexisting cell-to-
cell variability, despite identical genotype, facilitating non-genetic
heterogeneity. Thus, it becomes important to delineate the impact of
conformational noise and IDPs on phenotypic heterogeneity and plas-
ticity (ability of cells to reversibly switch to a different cell-state, often

as an emergent property of underlying network dynamics) (Hari et al.,
2020).

Various molecules involved in cell-state transitions and cellular
transformation are known to be IDPs. For instance, various oncogenes
and tumor-suppressor genes have IDRs. Similarly, transcription fac-
tors (TFs) such as ZEB1, SNAII, and OVOL1 and OVOL2 that are
involved in phenotypic plasticity during cancer metastasis and therapy
resistance have been shown to be IDPs (Mooney et al., 2016). These

FIG. 3. Schematic diagram of different parallel tempering simulations. (a) In parallel tempering simulations, a series of low and high temperature replicas are simulated. The
replicas in the conventional REMD differ by increasing bath temperatures across the ladder. Thus, the probability of accepting the exchange between adjacent replicas
depends on the difference in the complete Hamiltonian of the system, including solute–solute, solute–solvent, and solvent–solvent contributions, which results in poor scaling
in large systems. REST2 scales the energy function in a particle-wise manner, such that the solute is effectively heated up while keeping the solvent cold. Thus, the exchange
acceptance probability depends on the energy difference in solute–solute interactions mainly and solute–solvent interactions subtly. The imbalance between hot solute and
cold solvent causes entropic trap. REHT optimally heats the solute as well as the surrounding solvent by associating the replicas to different bath temperatures in addition to
scaling down the potential function. Note that the base replica in all the cases is unbiased and has the same forcefield parameters and temperature conditions. (b) Stochastic
swapping of replicas at regular intervals facilitates the equilibrium sampling at the base replica. (c) Schematic of energy landscape illustrating accessibility of broader conforma-
tional space facilitated by the high temperature replica.

FIG. 4. Dynamic protein interaction networks. A “static” network consisting of IDPs
(center) can be altered in terms of relative strengths of interactions across the
nodes, in the presence of conformational noise. Orange hammer shows inhibition;
green arrows show activation. Thicker lines show stronger activation or inhibition
than weaker ones. These “dynamic” networks can interchange among themselves
as well due to changes in conformational structure of IDPs/IDPRs involved.
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TFs are the master regulators of epithelial-mesenchymal transition
(EMT) and its reverse mesenchymal-epithelial transition (MET)—cel-
lular processes, which enable cancer cells to alter their adhesion,
migration, and invasion traits dynamically during different steps of the
metastatic cascade. Even, the crucial drug targets for prostate and
breast cancer, respectively—androgen receptor (AR) and estrogen
receptor (ER)—contain IDRs (Myung et al., 2013 and Peng et al.,
2019). EMT/MET can also impact drug resistance in cells by influenc-
ing the levels and/or activity of ER and AR (Graham et al., 2010;
Anose and Sanders, 2011; and Sahoo et al., 2021) and vice versa. This
crosstalk can lead to a dynamic PIN between these key nodes and can
impact cancer cell fitness dynamics.

PAGE4, yet another IDP implicated in PCa, can show various
conformations (He et al., 2015). It can be phosphorylated at two resi-
dues (S9 and T51) by the kinase HIPK1; phosphorylation of PAGE4
enables its interactions with AP-1 transcription factor complex
(Mooney et al., 2014). PAGE4 can also be phosphorylated by another
kinase CLK2, and these two phosphorylated versions of PAGE4
(HIPK1-PAGE4 and CLK2-PAGE4) have opposing functions due to
their different conformational dynamics. HIPK1-PAGE4 has a com-
pact conformational ensemble that can bind AP-1 and potentiate c-
Jun, but CLK2-PAGE4 has a reduced affinity for AP-1 due to its ran-
dom coil-like structure (Kulkarni et al., 2017 and Lin et al., 2018a).

Because c-Jun potentiation can indirectly enhance CLK2 levels
through AR, a negative feedback loop is formed, which can lead to
oscillations [Fig. 5(a)] in the levels of AR and those of differently phos-
phorylated versions of PAGE4 (Kulkarni et al., 2017). Such oscillations
can generate non-genetic heterogeneity in a clonal prostate cancer cell
population and also manifest in dynamic levels of AR in individual
cells, impacting their therapeutic sensitivity.

B. Non-genetic heterogeneity due to conformational
noise

Upon investigating the coupled dynamics of this negative feed-
back loop with that of EMT, a wider repertoire of cellular behavior can
be realized. A core EMT circuit comprised of a mutually inhibitory
loop between ZEB1 and microRNA family miR-200, driven by SNAI1,
can lead to three distinct interconverting cell-states: epithelial (E; high
miR-200 and low ZEB1), mesenchymal (M; low miR-200 and high
ZEB1), and hybrid E/M (medium miR-200 and medium ZEB1) (Jolly
et al., 2017). Also, ZEB1 and AR can inhibit each other (Singh et al.,
2021). On coupling EMT and PAGE4/AR circuits, we see that these
oscillations of PAGE4 circuit can convert to bistable behavior.
Depending on the interaction strength between AR and ZEB, this cou-
pled circuit can show both oscillations (sustained or damped) and

FIG. 5. Coupled dynamics of EMT and PAGE4 circuits containing IDPs. (a) Coupled network of EMT and PAGE4 circuit. Solid red hammer heads correspond to transcriptional
inhibition, and dotted red hammer heads correspond to post transcriptional inhibition due to micro-RNA interaction. Solid black arrows correspond to transcriptional activation,
and dotted arrows stand for phosphorylation. (b) and (c) Dynamics of AR: AR levels over time for two different values of interaction strength with ZEB. (d) Induction of EMT via
SNAI1 leads to oscillations converting to bistability. Phase plot between interaction strengths of AR and Zeb, as EMT is induced via SNAI1, Zeb inhibits AR more strongly and
leads to oscillations converting to bistability. [Adapted from Singh et al., Entropy (Basel) 23(3), 288 (2021). Copyright 2021 MDPI].
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multistability—both of which are different examples of non-genetic
heterogeneity in cancer cell populations [Fig. 5(b)].

Such non-genetic heterogeneity can often subvert the efficacy of
therapeutic treatments. Because the interaction strength between
members of these dynamic PINs can change, some cells may exhibit
oscillatory dynamics for AR, while others may enable bistability
(enabling cells to spontaneously switch from AR-high to AR-low state
and vice versa). This diverse arsenal of cellular dynamics makes it diffi-
cult to design targeted therapies aimed to kill these cancer cells, thus
aggravating disease progression in many patients.

IV. INTRINSICALLY DISORDERED REGIONS IN CELLULAR
FUNCTIONING AND MALFUNCTIONING: CLASSIC CASE
OF KIRSTEN RAT SARCOMA VIRUS (KRAS)

In addition to IDPs, proteins containing IDRs are abundantly
found in modulating cellular functioning (Romero et al., 2006 and
Oldfield and Dunker, 2014). Most IDR regions are involved in
membrane-associated activities and cell signaling (Buljan et al., 2013;
Wright and Dyson, 2015; Nussinov et al., 2018; and Cornish et al.,
2020). The Ras superfamily of small GTPases represents a classic
example where such signaling proteins act like binary molecular
switches that regulate cell growth, proliferation, and differentiation
(Colicelli, 2004 and Cox and Der, 2010). The switching function of
Ras regulates an inactive GDP-bound off-state and active guanosine-
50-triphosphate (GTP)-bound on-state. Hyperactivation of RAS sig-
naling is often triggered by direct mutations leading to Ras-induced
cancer development (Biankin et al., 2012 andWood et al., 2016).

A. Dynamics of disordered regions influence catalytic
activity of KRAS: Insights from experimental data

Amongst RAS isoforms, KRAS is the most frequently mutated
oncogene found in human cancers (Pleasance et al., 2010 and Prior
et al., 2012). Only in the activated GTP-bound state, KRAS can associ-
ate with its effector protein like RAF-kinases, PI3K, and RalGDS to
activate them (Pantsar, 2019 and Nussinov et al., 2019). The activation
of KRAS, however, depends on the guanosine exchange factor (GEF)
that helps to replace GDP with GTP when the cellular concentration
of GTP is higher [Fig. 6(a)]. On the other hand, despite having low
intrinsic GTPase activity, the inactivation of KRAS is often induced by
GTPase activating proteins (GAP) that catalyze GTP hydrolysis to
GDP (Milburn et al., 1990 and Bos et al., 2007). For their catalytic
function, all RAS isoforms have a very similar catalytic domain (resi-
due: 1–166), including the N-terminal residues. This catalytic domain
contains highly disordered functionally critical switch regions (switch
1: residues 25–40 and switch 2: residues 57–75). In particular, the posi-
tively charged hypervariable region (HVR), (residues 167–179) in the
C terminus, and the flexible switch regions of small GTPases have
drawn much attention of the recent investigations on the effects of
such IDRs on the regulation and modulation of signaling output com-
pared to its wild type (WT) and oncogenic variants (Gorfe, 2010;
Abraham et al., 2010; and Hunter et al., 2014). The HVRmainly medi-
ates membrane association [Fig. 6(b)]. A recent paramagnetic relaxa-
tion enhancement (PRE) NMR study has provided mechanistic
insight into membrane-dependent RAS dimerization and the implica-
tions of the HVR region with membrane association (Lee et al., 2020).
In both the monomeric and the dimeric states of KRAS4B, the basic
poly-lysine stretch in the C-terminal HVR through electrostatic

interactions helps to anchor the anionic lipid head groups of the mem-
brane [Fig. 6(b)]. Although RAS dimerization has been proposed as an
essential step in the cascade of RAS signaling, the oligomerization state
of KRAS remains elusive. It has been proposed that its membrane
association occurs only in the monomeric state (Chung et al., 2018);
however, other suggestions include dimers, trimers, and even oligom-
ers (Muratcioglu et al., 2015; Sarkar-Banerjee et al., 2017; and Barklis
et al., 2019).

Dynamical behavior of the flexible switch regions was first
obtained via NMR spectroscopy where switch-I is found in two differ-
ent conformations: open and closed states (Spoerner et al., 2001). The
closed state is essentially found when it is bound to other effector pro-
teins. Specific mutations in the switch regions, such as D33E in the
switch-I and A59G in the switch-II regions, have the potential to lock
the conformation in its open form when one considers only the cata-
lytic G-domain (Lu et al., 2018). However, for the full-length RAS the
equilibrium shifts toward the closed state. While such mutated open
conformations are stated as an inactive GTP-bound state, these
mutants show similar affinity to the RAS binding effector protein,
RAF, when compared to the WT KRAS. This possibly occurs as the
overall structure eventually moves toward the closed conformation
leaving the open state presumably as an intermediate functional con-
formation where the disordered dynamics of switch regions still helps
to maintain the association and affinity toward other effector proteins.
NMR data also showed that the equilibrium-shift toward the open
state is attainable if one perturbs Y32 position by replacing it with
other amino acids in the dynamic switch-I region (Spoerner et al.,
2010). As dynamic switch-I is in the immediate close region of the cat-
alytic cavity, this region is identical in all RAS isomers.

The allosteric behavior of RAS has been well-studied previously
(Buhrman et al., 2010 and Buhrman et al., 2011) to elucidate its allo-
steric function. In WT RAS-GTP, an allosteric switch is found to pro-
mote disorder to order transition of switch-II through a network of
H-bonding interactions connecting the allosteric site to switch-II
involving key residues crucial for catalysis. These studies revealed that
an “on” state of the allosteric switch may enhance the hydrolysis rate
in a GAP-independent pathway with the signal being turned off.
Again, when the allosteric switch is in the “off” state, GTP-hydrolysis
is deprived and signaling remains on. While RAS and its effector RAF
are crucial driver proteins to control the RAS/RAF/MEK/ERK (extra-
cellular signal-regulated kinase 1) signaling pathway, several oncogenic
mutations including Gly12 and Gln61 are found to impair the GTPase
activity of RAS and are abundantly found in human cancer (Prior
et al., 2012). Thus, the allosteric mechanism helped to explain how
such oncogenic mutations could affect the catalytic process.

B. Advancement of drug development to target
oncogenic mutations of KRAS and drug resistance

Until recently, KRAS was considered undruggable. AMG510 was
one of the first KRAS (G12C) inhibitors that was efficacious against
KRAS G12C tumors (AMG510, 2019 and Canon et al., 2019). Soon
after, MRTX849 was found to be a potent mutant selective covalent
inhibitor of KRAS G12C. MRTX849 is highly efficacious in tumor
regression in KRAS G12C mutant cell lines, patient-derived xenograft
models from multiple tumor types, and in lung and colon cancer
patients.
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Mutations in KRAS are frequently observed in lung, pancreatic,
and colorectal cancers. Lung adenocarcinoma has the highest percent-
age of KRAS mutations, and the most frequent mutations include sub-
stitution of glycine 12 with either cysteine, valine, aspartic acid,
alanine, serine, or asparagine. Each of these substitutions leads to con-
formational changes in the KRAS molecule, which impinge on its bio-
physical property. For example, Moghadamchargari et al. (2019)
reported that KRAS has intrinsic GTPase activity, that is, also involved
in the conversion of the KRAS-GTP active form to KRAS-GDP inac-
tive form, and this activity is higher in the native (WT), G12C, or
G12D KRAS mutants, but lower in the G12A, G12V, G12S, and G12R
mutants. Similarly, based on the affinity for Ras binding domain
(RBD), KRAS can be grouped into a high affinity group (WT, G12A,
and G12C) and a low affinity group (G12V, G12R, and G12D)
(Hunter et al., 2015). Since KRAS lacks a groove or pocket except the
GTP binding domain for the small molecules to bind, GTP analogs
were used to compete against the cellular GTP for the GTP binding

pockets of KRAS but that approach did not work (Noonan et al.,
1991). The other option to target KRAS signaling was by targeting the
upstream and downstream signaling pathways. Thus, various inhibi-
tors of the RAF-MEK-ERK and AKT serine/threonine kinase 1-
mTOR pathways were developed that were able to suppress the
growth of KRAS driven tumor. Unfortunately, the activation of overly
complex network of positive and negative feedback loops associated
with KRAS signaling reduced the efficacy of these drugs and, eventu-
ally, caused tumor relapse. Therefore, a more directed approach was
tried to target the KRAS molecules and block its activation.

The proposal was to block the KRAS function by developing the
covalent inhibitors, which could covalently interact with KRAS and
block its conversion from KRAS-GDP (inactive sate) to KRAS-GTP
(active state). In the initial study, the small molecules were designed to
covalently interact with the thiol group of cysteine (G12C) residue and
lock KRAS in GDP-bound state. The inhibitors like SML-10–70-1
appeared selective for the KRAS G12C compared to the WT, inhibited

FIG. 6. The structure/function cycle of KRAS. (a) Activation/deactivation cycle of KRAS GTPase. GDP/GTP exchange in this cycle is mediated by two other proteins: guanine
nucleotide-exchange factors (GEFs) and GTPase activating proteins (GAPs). While GEFs catalyze the exchange from GDP to GTP, GAPs enhance the rate of exchange from
GTP to GDP. (b) NMR-driven structure of KRAS4B-GTP on a lipid bilayer (pdb id:6W4E) (Lee et al., 2020). The positively charged intrinsically disordered hypervariable region
(HVR) is shown in gray to highlight its mode of association with the lipid membrane. (c) Three-dimensional structure of inactive GDP-bound human KRAS highlighting the
dynamic switch regions: Switch I (green) and Switch II (red) (pdb id: 4OBE) (Hunter et al., 2014). These two switch regions are connected via two parallel b strands: b2 and
b3. (d) The switch dynamics and their correlation with b2-b3 fluctuation are compared in GDP and GTP-bound states. The dynamics are assessed by quantifying the distance
between two residues R41 (located in b2) and D54 (located in b3). The distance distribution indicates enhanced conformation fluctuation of the switches in the GDP-bound
state. [Adapted from Vatansever et al., Sci. Rep. 6, 37012 (2016). Copyright 2016 Author(s), licensed under a Creative Commons Attribution 4.0 License.]
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activation of AKT and ERK, and increased accumulation of KRAS-
GDP (Lim et al., 2014 and Hunter et al., 2014). However, its ability to
inhibit tumor expressing KRAS G12S mutants raised questions about
its specificity. Other inhibitors such as vinyl sulfonamide and acrylam-
ide analogs were developed by either changing the positions or altering
the electrophilic group for efficient interaction with KRAS G12C.
Compound 12 was developed, which could interact with the new allo-
steric pocket and change the preference of KRAS G12C for GDP com-
pared to GTP (Ostrem et al., 2013). The compound was selective for
KRAS G12C but had poor pharmacological properties. Compound 12
was further modified and developed to ARS853, which had 600-fold
more affinity for KRAS G12C and locked it in the inactive GDP bound
state. However, the compound had lower metabolic stability in the
plasma and poor oral bioavailability in mice, which restricted its use
for in vivo studies.

Janes et al. (2018) reported a new covalent inhibitor ARS1620,
which was based on the structure of ARS-853 by scaffold optimiza-
tion. X-ray crystallography studies showed the binding on the
ARS1620 to the allosteric pocket region located beneath the switch
II loop of KRAS-GDP. It is a biochemically stable and orally bio-
available compound shown to inhibit KRAS G12C activity in vitro
and in vivo, but it has suboptimal potency owing to small volume
of pocket being occupied (Canon et al., 2019). The crystallographic
structure of ARS1620-KRAS G12C revealed a hydrogen bonding
between the ARS1620 and histidine 95 residue. Canon et al. (2019)
reported that this histidine residue could flip up and reveal a hid-
den groove, which could be targeted by covalent inhibitors leading
to the discovery of the KRAS inhibitor AMG510 (Canon et al.,
2019). ARS1620 and AMG510 have structural similarity but
enhanced the interaction of AMG510 with the H95 groove, which
increases its potency by ten-fold compared to ARS1620.

MRTX849 also binds to cysteine 12 residue irreversibly and locks
it in an inactive GDP-bound state inhibiting the KRAS driven down-
stream signaling pathways. It is highly selective against the KRAS
G12C, and in vivo data demonstrate that it is effective against several
solid tumors, including lung, pancreas, and colon. In in vitro studies,
the drug was also shown to be effective against cell lines that have co-
mutations in genes like P53, STK11, KEAP1, HER, or CDKN2A
(Hallin et al., 2020).

C. Investigations of conformational ensembles
and disordered dynamics of KRAS by computer
simulation methods

Several microsecond simulations have been performed for differ-
ent RAS isoforms (HRAS, NRAS, and KRAS) to sample their confor-
mational ensembles and understand the conformational dynamics in
their GDP- and GTP-bound states (Kapoor and Travesset, 2015 and
Prakash and Gorfe, 2013). These simulations capture the high flexibil-
ity of the switch regions, and the range of flexibility differs in different
RAS isoforms. In wild-type KRAS, dynamics of switch regions are
observed to influence the closure of two immediate parallel b-strands
located between switch-I and switch-II regions [Fig. 6(c)]. The differ-
ential switch dynamics in GDP- and GTP-bound states are reflected
when the distance closure between these two parallel b-strands (b2
and b3) is measured [Fig. 6(d)]. The distance distribution between b2
and b3 indicates that GTP-binding increases KRAS stiffness by
restraining the switch dynamics, which possibly helps enable its

GTPase activity (Vatansever et al., 2016). However, recent NMR anal-
ysis of GDP-bound G12V-HRAS and G12V-HRAS (GMPPNP, a sta-
ble GTP analog) obtained a different result, which shows that the
latter is more flexible (Chen et al., 2021). Investigations on WT-
HRAS, WT-KRAS, and other RAS mutants are consistent with that
recent NMR analysis (Kraulis et al., 1994; Araki et al., 2011; O’Connor
and Kovrigin, 2008; Vo et al., 2013; Fetics et al., 2015; Matsumoto
et al., 2016; and Yin et al., 2017). Moreover, HRAS (GMPPNP) is
more susceptible to proteolytic cleavage by an engineered subtilisin
protease than the GDP form. Protease recognition occurs specifically
at the Switch II YSAM site, with cleavage right after the methionine.
This region is in the alpha2 helix in the GDP form but is more disor-
dered in the GTP form, thus making it more accessible to proteolysis
(Chen et al., 2021). Early MD simulations showed that these intrinsi-
cally flexible switch regions belong to an evolutionarily conserved
nucleotide-binding lobe-1 (residue 1–86), which has an isoform-
specific communication pathway with C-terminal lobe-2 (residue
87–171) (Gorfe et al., 2008).

Apart from classical MD, accelerated MD and targeted MD
approaches have also been employed to probe the large timescale
and extensive length-scale conformational dynamics that are asso-
ciated with GDP and GTP binding processes (Milburn et al., 1990;
Diaz et al., 1997; and Grant et al., 2009). It was proposed that the
conformation selection and the population shift mechanisms
might play an important role where allosteric interference is also
associated in such ligand-binding phenomena. Allosteric regula-
tions have an immense role in post-translation modifications
(PTMs) of such signaling proteins (Nussinov et al., 2012 and
Ahearn et al., 2018). PTMs that occur away from the functional
site yet propagating through conformational and dynamical
changes are called allosteric PTMs, while PTM events taking place
at the functional site via direct recognition are often known as an
orthosteric PTMs (Nussinov et al., 2012 and Clausen et al., 2015).
However, a theoretical dynamic energy landscape combining equi-
librium fluctuation concepts has been proposed to explain such
dynamic conformational changes of the substrate regulated by allo-
steric event (Kar et al., 2010). Such a concept also shows promises
with the allosteric drugs that allow modulation of signal and
responses in comparison to targeted drug binding at active sites.

The full-length KRAS including the IDR dynamics of HVR
regions in solution along with their oncogenic mutations was also
investigated using large microsecond simulation data (Chavan et al.,
2015; Jang et al., 2016; Sayyed-Ahmad et al., 2017; and Pantsar et al.,
2018). The orientational dynamics of KRAS has also been studied
including the membrane, and the results correlated well with the
experimental findings (Li and Buck, 2017). Apart from early
membrane-associated simulation with KRAS displaying distinct
rotational conformations, a recent microsecond long membrane-
associated simulation of G12V KRAS shows three unique conforma-
tions (Prakash et al., 2019). These conformations are also found in the
case of G12D and Q61H mutants but in a different population
(Prakash and Gorfe, 2019). Coarse-grained simulation approaches
have also been adopted to model clusters of inactive or lipid anchored
RAS embedded in a phase-separating lipid mixture of DPPC, choles-
terol (CHOL), and DLiPC (Janosi et al., 2012). The lipid mixture was
found to segregate between CHOL/DPPC containing the ordered
domain and DLiPC containing disordered domain to form a raft and
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non-raft like domains, respectively, indicating how asymmetric RAS-
binding induces bilayer deformation.

Among different computational and theoretical studies, most
investigations have focused on the G-domain. Conformational
dynamics comparing WT KRAS and its different oncogenic mutants,
namely, G12C, G12D, G12V, G13D, and Q61H, have been studied
using microsecond long simulations, and differences were assessed
using a residual contact probability network (Lu et al., 2016 and
Vatansever et al., 2020). Simulation studies have been performed on
all KRAS G12 missense mutants, and analyses were made using
Markov state models (MSMs). MSMs highlight seven metastable con-
formational ensembles indicating different dynamic states and confor-
mational plasticity of the flexible switch regions. MSMs also help
evaluate the transition probabilities of those conformational ensembles
(Husic and Pande, 2018). Comparing different oncogenic mutated
KRAS variants, it appears that the dynamical shift in KRAS results in
an allosteric manner, and that a mutation can rewire the crosstalk
between the switch regions maneuvering the switch flexibility.
However, current understanding is still not adequate to discern the
driving force behind such allosteric communication and mutation-
induced re-wiring mechanism, which is required for targeted inhibi-
tion of mutated KRAS.

MD simulations have also rationalized our understanding of how
KRAS interacts with its effector proteins to instigate their activation
process. To study the KRAS induced P13Ka activation mechanism,
KRas4B and its interaction with the Ras binding domain (RBD) of
PI3Ka in solution were investigated through extensive atomistic simu-
lation of 10 ls. This study suggests that Ras recruitment shifts confor-
mational ensemble of PI3Ka in such a way that it is likely to determine
the recruitment and restriction of the PI3Ka population at the mem-
brane (Zhang et al., 2019). Recent computational modeling also pro-
vided mechanistic insight into how farnesylated/methylated KRAS4B
interacts with calmodulin (CaM). Due to multiple interaction modes,
various conformational ensembles of the KRas4B-CaM complex have
been distinguished, effectively helping to activate PI3Ka/AKT signal-
ing by recruiting PI3Ka to the plasma membrane (Jang et al., 2019).

V. RATIONAL DRUG DISCOVERY TARGETING IDPs

As discussed above, IDPs constitute a significant portion of the
human proteome, and their involvement in multiple diseases has been
well documented (Uversky et al., 2008 and Babu et al., 2011). The
pathological role of IDPs is related to their altered PTMs and their
expression and lifetime in the cell since they can rewire PINs, leading
to the activation of latent pathways (Babu, 2016 and Salgia and
Kulkarni, 2018). Aggregation of IDPs such as the tau-protein is associ-
ated with neurodegenerative diseases. Moreover, dysregulated splicing
in certain cancers such as chronic lymphocytic leukemia and colorectal
carcinoma can produce novel spliced proteins that behave as IDPs
(Sciarrillo et al., 2020 and Romero et al., 2006). These proteins are,
therefore, considered promising yet challenging drug targets.
Currently, some of the major obstacles involved in rational drug dis-
covery targeting IDPs are (i) the identification of structurally stable
druggable pockets (Ruan et al., 2019; Joshi and Vendruscolo, 2015;
and Cheng et al., 2006), (ii) weak affinity of binders (Metallo, 2010),
and (iii) lack of selectivity to the target (Metallo, 2010).

A. Computer aided drug discovery

Computer aided drug discovery relies on well-defined protein
structures with druggable pockets that are deep, with a fair number of
hydrophobic patches to facilitate partitioning of drug molecules from
solvent (Volkamer et al., 2012), although exceptions to these rules exist
(Nisius et al., 2012; and Zheng et al., 2013). It is conceivable that IDPs,
due to their inherent flexibility, may not fit into the above paradigm.
Many IDPs show significantly higher fraction of hydrophilic residues
in the sequence compared to folded proteins, implying that hydropho-
bic pockets that can bind drugs may be rare among IDPs. Yet, the pos-
sibility of stable hydrophobic pockets has been shown in certain IDPs
such as the nuclear protein 1 (NUPR1) (Neira et al., 2017). In other
cases, such as the oncogenic transcription factor c-Myc, small mole-
cules have been shown to bind to the disordered regions of the protein
(Follis et al., 2008 and Hammoudeh et al., 2009). In the case of
NUPR1, the binding compounds targeted the part of the protein
sequence with lower flexibility than the rest of the protein. In a more
recent study, a compound (epigallocatechin gallate or EGCG) was
reported to bind to the disordered N terminal domain (NTD) of P53,
which disrupted its interaction with the ligase MDM2 and stabilized
P53 for enhanced antitumor activities (Zhao et al., 2021). SAXS and
NMR experiments showed that EGCG introduced subtle conforma-
tional changes to the P53 NTD, leading to a more compact conforma-
tional ensemble. The NMR and enhanced replica exchange MD
simulations further revealed that EGCG interacts with the NTD
through many dynamic contacts, as opposed to a few stable ones. Such
reports regarding the interaction of small molecules with IDPs or
IDRs are becoming increasingly frequent (Santofimia-Casta~no et al.,
2020), while only a few years back, disordered proteins such as tran-
scription factors were considered undruggable (Henley and Koehler,
2021).

In addition to small molecules, several alternative strategies have
been promising in targeting IDPs. One such approach involves the use
of peptide aptamers, which are short peptide sequences as part of a
loop within a protein scaffold. Aptamers can be designed through a
directed evolutionary process in live cells, where the aptamer sequen-
ces that result in the best desired phenotypes can be selected over sev-
eral rounds of optimization. Since the aptamer sequences are
constrained within a protein loop, they suffer less entropic loss upon
binding compared to free peptides and, therefore, can achieve high
binding affinities. Using yeast-based screening assays and in-cell
NMR, the peptide aptamers were designed to bind to the disordered
region of the ubiquitin-like protein Pup with nanomolar affinity
(Cobbert et al., 2015). These three aptamers were shown to interact
with a disordered segment in Pup that folds into an alpha-helix upon
binding to the partner Mpa. Despite targeting the same protein and
roughly similar regions, the three aptamers led to different functional
effects, underscoring the complexity in targeting IDPs for functional
inhibition.

In computational drug discovery, IDPs as drug targets offer
unprecedented opportunities, but with significant challenges. Some
likely improvizations necessary for developing in silico pipelines for
designing IDP binders are (i) methods to account for entropy loss
upon binding of drugs, (ii) machine learning approaches, (iii) consid-
eration of folding upon binding of IDPs to partner proteins, and (iv)
application of MD, enhancedMD and NMR generated protein ensem-
bles in the binder screening, among others. Recently, a virtual
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screening method was reported that utilized the mechanism of
disorder-to-order transition in IDPs to screen for inhibitors (Na et al.,
2020). The method involves generating short (20 AA) peptide confor-
mations from the IDP region that undergoes order-to-disorder transi-
tion and docking small molecule libraries to these peptide
conformations. Using a discriminatory score that combines peptide-
compound interactions with peptide structural stability, the authors
successfully identified the known inhibitor for the proto-oncogene
Myc from among thousands of negatives.

B. In silico strategy to design peptide sequences

In contrast to the disorder-to-order mechanism, where a specific
segment of the IDP interacts with the partner protein, many IDPs
remain disordered upon binding to the partner (Freiberger et al.,
2021). In such cases, multiple residues in the disordered segment typi-
cally form transient contacts with a focused region in the partner pro-
tein, which is normally folded. This mechanism is referred to as the
many-to-one mode of interaction. Such interactions can be targeted
for inhibitor design, if the interaction hotspots in the partner protein
cavity are known and the IDP conformations that interact with the
partner protein can be resolved using NMR, MD, or other approaches.
Recently, utilizing the above-described principle, Bhattacharya and co-
workers designed an inhibitory peptide for the carbohydrate binding
protein galectin-3 (Bhattacharya et al., 2021). Galectin-3 consists of a
disordered N terminal domain (NTD) that interacts with a folded C
terminal domain (CTD). By combining accelerated MD simulations of
full-length galectin-3 with available chemical shift perturbations, the
ensemble of NTD that interacts with the CTD was determined.
This ensemble was used to derive peptide scaffolds, and a hierarchical
in silico strategy was used to design peptide sequences that were
predicted to disrupt the NTD–CTD interaction. The sensitivity of this
approach was demonstrated where one out of only three tested pepti-
des was found to be a positive hit. Such approaches can be easily
applied to other IDPs, which bind to folded partners, for which experi-
mental structural data in the form of NMR or SAXS are available.
Moreover, the inhibitory peptide sequences and their bound structures
can be used to construct pharmacophores for searching large libraries
of small molecules for potential lead compounds.

The purpose of a therapeutic agent is to modulate the biological
function of its target. Since IDPs are multi-functional proteins, target-
ing IDPs requires the consideration not only of the thermodynamic
and structural aspects of the drug binding, but also of the specific func-
tion, that is, being targeted. Examples include targeting a transcription
factor for disrupting DNA binding vs preventing phosphorylation via
interaction with kinases or inhibiting the formation of liquid–liquid
separated granules. A single IDP can carry out each of these functions,
through different structural regions. Targeting such specific functions
not only improves the selectivity of the therapeutic agent but also
requires deeper structural understanding of the mechanisms govern-
ing IDPs. Rational designing of agents targeting an IDP and its specific
function should, therefore, begin with the accurate determination of
the segment of the protein sequence, that is, responsible for the func-
tional effect. Next, a variety of methods can be applied to search for
binders, which can include both in silico methods and directed evolu-
tion to find aptamers. Another promising avenue is to search for small
molecule fragments (molecular weight< 200Da) that bind to the
region of interest using high throughput screening methods such as

differential scanning fluorimetry, solution small angle x ray scattering,
and isothermal titration calorimetry (Murray and Rees, 2009). The
most promising fragments can then be linked together through appro-
priate linkers to develop drug molecules with high affinity. Such
approaches have been proposed as viable avenues for targeting IDP
related pathologies, such as aggregation (Joshi et al., 2016).

VI. CONCLUSIONS AND FUTURE DIRECTIONS

Since their discovery>20 years ago (see Dyson andWright, 2019
and Uversky and Kulkarni, 2021, for historical accounts), there has
been an explosion in the IDP field. Almost 10 000 papers dedicated to
IDPs were published by the end of 2021 with more than 350 000 cita-
tions (Fig. 7). These statistics confirm the increased attention that the
IDPs have attracted and will undoubtedly continue to do so in the
years to come. The challenges they pose have led to new thinking such
as IDPs and dynamical systems theory (Uversky, 2014 and Kulkarni,
2020) and new technical advances such as mass spectrometry technol-
ogies for protein structure analysis, “footprinting” studies, and cryo-
electron microscopy (Nwanochie and Uversky, 2019 and Chance
et al., 2020). Concomitant with these developments, we have also seen
significant advances in computational methods such as new develop-
ments in force field strategies (Huang and MacKerell, 2018; Masetti
et al., 2020; Hsu et al., 2020; Ahmed et al., 2020; Mu et al., 2021;

FIG. 7. An explosion in the protein intrinsic disorder literature. The plots represent
the time-courses of the increase in the number of publications dealing with the
intrinsic disorder and the number of papers citing those publications (inset). Plot
shows total publications per year and accumulative number of publications. Inset
shows the data for the sum of times cited per year and accumulative sum of times
cited. Data for these plots were retrieved from Web of Science on November 17,
2021 using the following search criteria: TOPIC: (intrinsically disordered) OR
TOPIC: (natively unfolded) OR TOPIC: (intrinsically unstructured) OR TOPIC:
(natively unstructured) OR TOPIC: (intrinsically unfolded protein).
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Wang, 2021; and Gopal et al., 2021) and physics-based computational
and theoretical approaches (Shea et al., 2021 and Sieradzan et al.,
2021).

Aside from the biological functions discussed here, IDPs are
important constituents of proteinaceous membrane-less organelles
(PMLOs). PMLOs are formed by liquid–liquid phase separation when
a polypeptide coalesces into a dense phase in an aqueous solution
(Uversky, 2021). PMLOs play important roles in myriad cellular pro-
cesses from responding to stress to transcriptional regulation of gene
expression. Furthermore, it is also postulated that PMLOs very likely
played a critical role in prebiotic evolution of the predecessor of the
first universal common ancestor (Kulkarni and Uversky, 2018b). We
suspect that these aspects of the IDPs would be intensely investigated
going forward. Finally, since several proteins associated with drug-
resistance in cancer and prion proteins associated with neurodegenera-
tive disease are IDPs (Kulkarni and Uversky, 2019 and Salahuddin
et al., 2021), a deeper understanding of IDPs can help better under-
stand their role in phenotypic switching and adaptive evolution via
non-genetic, protein-based mechanisms (Kulkarni, 2020).

To further inspire work on IDPs, we put forth the Janus challenge
(Kulkarni and Uversky, 2018b). We believe that meeting this challenge
is likely to lead to technological advances with important biomedical
applications. Finally, IDPs, for example, c-Myc and KRAS, that were
once considered as “undruggable” are emerging as favorite therapeutic
targets. Thus, it is very likely that IDPs including many transcription
factors (Tsafou et al., 2018), will be targeted for therapeutic develop-
ment. The availability of several dedicated databases to the community
that house a wealth of information related to IDPs (Hatos et al., 2020;
Lazar et al., 2021; Piovesan et al., 2021; and Quaglia et al., 2021) as
well as powerful tools to analyze big data that are designed using
machine learning and artificial intelligence (Katuwawala et al., 2019;
Ramanathan et al., 2021; Lindorff-Larsen and Kragelund, 2021; and
Strodel, 2021) should help realize the full potential of IDPs.

Although IDPs are incorrectly perceived to lack structure and, hence,
presumed to defy Anfinsen’s dogma, IDPs are not random coils but exist as
conformational ensembles. However, IDP ensembles have conformational
preferences. Therefore, IDPs do have “structure” (or a set of interconverting
structures), albeit subtle perhaps, at the limit of Anfinsen’s dogma. In fact,
being dynamicalmultifunctional systems, IDPs represent a logical extension
to the Anfinsen’s dogma, since different members of their conformational
ensemblesmight have different functions.
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