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Short-chain fatty acids are known modulators of host–microbe interactions and can affect
human health, inflammation, and outcomes of microbial infections. Acetate is the most
abundant but least well-studied of these modulators, with most studies focusing on pro-
pionate and butyrate, which are considered to be more potent. In this mini-review, we
summarize current knowledge of acetate as an important anti-inflammatory modulator of
interactions between hosts and microorganisms. This includes a summary of the path-
ways by which acetate is metabolized by bacteria and human cells, the functions of
acetate in bacterial cells, and the impact that microbially derived acetate has on human
immune function.

Introduction
Short-chain fatty acids (SCFAs) are molecules with fewer than six carbon atoms in the aliphatic tail, and
in biological systems the most commonly found representatives are acetate (C2), propionate (C3), and
butyrate (C4). These SCFAs are ubiquitously found in natural environments, produced by bacterial,
fungal, and mammalian cells during anaerobic fermentation and aerobic fermentative respiration [1–10].
In the human body, SCFAs are found in the highest concentrations in the intestinal tract, where

bacteria metabolize indigestible saccharides and other molecules and release SCFAs as end products.
SCFA concentrations in the intestine range from 20 to 140 mM, with acetate accounting for 60–75%
of this and exceeding propionate and butyrate at least twofold in concentration [11,12]. It has been
estimated that 36% of colonic-derived acetate becomes systemically available, reaching 50–200 μM in
venous serum [11,13–18]. In other bacterially colonized body sites such as the oral cavity and urogeni-
tal tract, acetate is detected at 6–38 mM and up to 120 mM (depending on the presence or absence of
infection/inflammation), respectively [19]. Acetate is particularly suited to exerting systemic effects, as,
unlike propionate or butyrate, it can traverse cell membranes without requiring a specific uptake
system [20,21].

Bacterial acetate metabolism pathways are redundant
and tightly regulated
Acetate production by bacteria is mediated by two main pathways that often occur together in the
same microorganism and show functional redundancy. These pathways either involve acetate kinase
and phosphotransacetylase (AckA-Pta), a set of reactions that allows ATP production via substrate-
level phosphorylation, or a pyruvate : menaquinone oxidoreductase denoted PoxB or CidC [22–35]
(Figure 1). In addition to passive membrane permeability, acetate release and uptake can be effected
by either an acetate permease (encoded by actP) or an acetate/succinate symporter (encoded by satP)
[36,37] (Figure 1).
While acetate is mostly a metabolic endproduct in bacteria, there are also several mechanisms by

which bacteria can assimilate acetate into biomass, usually via the formation of acetyl-coenzyme A
(Ac-CoA) that can then be assimilated via the glyoxylate cycle and the TCA cycle, contributing to bio-
synthetic intermediate production and energy generation [32,33,38–41]. A typical enzyme in Ac-CoA
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production is Ac-CoA synthetase (ACS, also known as Ac-CoA ligase), which is found in diverse bacteria such
as Enterobacteria, Pseudomonads, Neisseria spp., and Mycobacterium spp. [24–32,34,39–49] (Figure 1). An add-
itional, reversible pathway that uses succinyl-CoA : Ac-CoA transferase and a succinyl-CoA synthetase has been
identified in flagellate protozoans [50], eukaryotes [51,52], and bacteria [53,54] (Figure 1). In bacteria, the
succinyl-CoA : Ac-CoA transferase can be used to consume acetate, e.g. in Acetobacter [54] while Cutibacteria
spp., present on skin and mucosal surfaces, use it to produce acetate [53]. Other mechanisms for acetate assimi-
lation include the methyl malonyl-CoA pathway [55–57] or glutamate-dependent acetate uptake into the TCA
cycle in Neisseria meningitidis, an organism that lacks isocitrate lyase and malate synthase [32,34] (Figure 1).
The AckA-Pta pathway that usually leads to acetate production has also been shown to be reversible. However,
it exhibits low overall activity in the reverse direction [42–45].
For the majority of bacteria, acetate is not the most preferred carbon source, and its utilization can be

subject to catabolite repression if glucose is present [26,27,58–62]. There is also evidence of RpoS-mediated

Figure 1. Schematic representation of the bacterial acetate metabolism pathways, at which acetyl-CoA (red) is a central

metabolite.

Acetate can be imported into the cell by acetate permease (ActP), an acetate/succinate symporter (SatP), and/or passive

diffusion. Acetate formation (blue) can occur via the reversible acetate kinase (AckA) and phosphotransacetylase (Pta) reaction,

a pyruvate:menaquinone oxidoreductase (PoxB), or the reversible succinyl-CoA : Ac-CoA transferase and succinyl-CoA

synthetase (SCACT/SCS). Acetate assimilation into Acetyl-CoA (green) can occur via acetyl-CoA synthetase (ACS) and/or

SCACT/SCS. Assimilation of Acetyl-CoA into biomass (yellow) can use multiple pathways, including assimilation into fatty acids

(ACC, acetyal-CoA carboxylase) of TCA cycle intermediates (AceA, isocitrate lyase; AceB, malate synthase). Abbreviations:

AMP, adenosine monophosphate; ADP, adenosine diphosphate; ATP, adenosine triphosphate; CoASH/CoA, coenzyme A; Pi,

phosphate; PPi, diphosphate; FAD, flavin adenine dinucleotide (quinone); FADH, flavin adenine dinucleotide (semiquinone);

CO2, carbon dioxide; H+, proton. This figure was created using BioRender.
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activation of acetate consumption during post-exponential growth [59,63–67]. During anaerobic/fermentative
growth, up-regulation of ackA-pta expression has been linked to the global anaerobic regulator Anr (Fnr
homolog) and integration host factor subunit alpha (lhfA) in bacteria such as Pseudomonas spp. and Neisseria
spp. [31,34,66,68], but there are also other known regulators, such as the CrbS/R two-component system
[28,29] that controls acetate consumption via ACS, and a LysR-type transcriptional regulator, CidR, for acetate
production via the pyruvate:menaquinone oxidoreductase [22,69,70].
While many bacteria can tolerate acetate reasonably well, acetate accumulation can impair growth and

inhibit the production of proteins and plasmid DNA [71–76]. This is best studied in Escherichia coli and
common human pathogens, Staphylococcus spp. and Pseudomonas spp., where acetate metabolism results in
intracellular acidification and respiratory inhibition [22,23,59,60,66,70,76–78]. Additionally, the production of
Ac-CoA and acetyl-phosphate can alter protein acetylation non-enzymatically, which has been shown to modu-
late bacterial virulence and metabolism [79,80].

Acetate is a host cell nutrient involved in epithelial barrier
integrity
As in bacteria, acetate is also a host cell nutrient, and its role has been best studied in the tumor microenviron-
ment [81]. Tumor cells show increased glucose uptake and pyruvate formation due to the predominance of
‘Warburg’ metabolism. This results in a metabolic imbalance with excess carbon being directed to lactate and
acetate formation via pyruvate decarboxylases or hydrolysis reactions that use protein deacetylases and Ac-CoA
hydrolase [4,81].
External acetate, that can be present both in a tumor environment and as a result of microbial action, is

transported into mammalian cells by members of the monocarboxylate transporter family, where it can then be
converted to Ac-CoA by Ac-CoA synthetases (ACSS) that are present in both mitochondrial (ACSS1) and cyto-
solic forms (ACSS2) [4,81]. The acetate-derived Ac-CoA can be used for ATP production, protein acetylation
via lysine acetyltransferases, and fatty acid synthesis [4,82,83].
In addition to being an energy source, acetate has also been shown to have beneficial effects on epithelial

integrity [84,85]. In intestinal epithelial cells, acetate triggers NLRP3 inflammasome activation, which, as
shown in nlrp3−/− mice, plays a key role in protection against colitis [86]. Wound healing, tight junction repair,
and changes to the actin cytoskeleton can also be induced by acetate [87–90].

Acetate is detected by GPCR-dependent and independent
mechanisms
Most molecular effects of acetate are mediated by G-protein coupled receptors (GPCRs), expressed on intestinal
enterocytes and other cell types found throughout the body, that can sense environmental acetate [91–95].
Both GPCR43 (also known as free fatty acid receptor (FFA2)) and GPCR41 (also known as FFA3) can sense
acetate, but most acetate signaling is mediated by GPCR43 that, unlike GPCR41, binds acetate preferentially
over other SCFAs. GPCR-dependent signaling mediates acetate-based chemoattraction [12,92,96,97] but has
also been shown to suppress chemoattractant ligands (CCLs) CCL1 and CCL2 and cytokine-induced neutrophil
chemoattractants (CINC) CINC-1 and CINC-2αβ [88,92,98–101]. Additional mechanisms for sensing acetate
are likely to exist, as GPCR43-independent acetate signaling via an as-yet-unknown mechanism has been
demonstrated [102].

Acetate affects host cell inflammation through
post-translational modification of histones and the NLRP3
inflammasome
High concentrations of acetate in or around the host cell can result in changes in protein acetylation following
Ac-CoA formation via ACSS1/ACSS2 [103–105]. Acetylation is a common post-translational modification on a
wide range of histone and non-histone proteins [106–108]. Acetylation of histones changes gene expression
[106], while acetylation of non-histone proteins affects their subcellular localization, DNA binding, transcrip-
tional activity, protein–protein interaction, and stability [107,108]. Protein acetylation depends on the forma-
tion of Ac-CoA from acetate and is moderated by histone acetylases (HACs) and histone deacetylases (HDACs)
which are ubiquitously expressed by host cells [18,109,110]. Previously it had been believed that acetate has no
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HDAC modulatory activity. However, there is increasing evidence that histone hyperacetylation, particularly on
histones H3 and H4, may not only be due to increased Ac-CoA concentrations, but is promoted by acetate-
mediated inhibition of HDACs [18,109–115]. HDAC inhibition has been linked to NF-κB inactivation and the
subsequent suppression of pro-inflammatory cytokines, including TNF-α, IL-1β, IL-18, and IL-6, and nitric
oxide (NO) production in different human epithelial cells (Figure 2) [18,88,99,116].
This acetate-based suppression of pro-inflammatory cytokines, primarily TNFα, IFN-γ, IL-1α, IL-6, IL-12,

and IL-18, and NF-κβ activation via HDAC inhibition has been demonstrated in activated macrophages, mono-
cytes, and neutrophils (Figure 2) [18,86,98,102,117–121]. In contrast, HIF-1α and the NLRP3 inflammasome
are activated by acetate, particularly lower concentrations (0.2–2 mM), as observed in neutrophils [122], leading
to increased IL-1β and NO production (Figure 2) [102,123]. However, NLRP3 expression can be down-
regulated by acetate signaling under hypoxic conditions, demonstrating that environmental oxygen availability
influences downstream responses to acetate, and this should be investigated further [99,100].
The presence of acetate also increases the production of prostaglandin E [2] (PGE(2)), which can have both

pro- and anti-inflammatory effects in neutrophils, monocytes, and T cells [98,124]. Lastly, while acetate
appears to have no effect on dendritic cell development and function [125], it has been shown to modulate the
function of CD4+ and CD8+ T cells through mTOR activation [110,126,127], PGE(2) up-regulation, and
HDAC inhibition, specifically increasing the expression of the anti-inflammatory IL-10 [110,124]. Additionally,

Figure 2. Schematic representation of the G-protein coupled receptor (GPCR) 43-dependent and independent acetate

signaling pathways in host epithelia and immune cells.

(A) Acetate signaling in host epithelial cells triggers NLRP3 and histone deacetylase (HDAC) inhibition, resulting in increased

epithelial integrity and wound healing, reduced expression of pro-inflammatory cytokines and nitric oxide (NO), and histone and

non-histone protein hyperacetylation. (B) Acetate triggers the differentiation of naïve T-cells to T-regulatory (Treg) and T-helper

(Th1, Th17, and Tfh) cells, increasing the expression of interferon-gamma (IFNγ), interleukin 17 (IL-17), interleukin 21 (IL-21),

and interleukin 10 (IL-10). (C) Phagocytic cells including macrophages, neutrophils, and monocytes, after sensing acetate,

reduce the expression of pro-inflammatory cytokines and NF-κβ but increase the expression of NLRP3 and HIF-1α, resulting in

increased interleukin 1β (IL-1β) and NO production. This figure was created using BioRender.
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acetate aids CD4+ T cell differentiation to Th1 and Th17 effector cells, which results in increased expression of
IFN-γ and IL-17, respectively (Figure 2) [110,124].

Acetate modulates inflammation in major microbially
colonized organs
Being primarily a microbial-derived metabolite, immunomodulatory effects of acetate generally occur in the
host where there is extensive microbial colonization, including major organs such as the skin, oral cavity,
gastrointestinal (GI), urogenital and respiratory tracts [128–132]. Acetate-mediated host–microbe interactions
are essential for the functioning of several physiological host processes, including tissue development, nutrient
absorption and metabolism, and the proper function of the immune system [12]. This has been best studied
for the GI tract [87–90].
The nutrient-rich human GI tract is inhabited by complex bacterial communities reaching up to 1011

bacteria/ml in the colon. In healthy individuals, these communities are dominated by Firmicutes and
Bacteroidetes with lower abundances of Actinobacteria and Proteobacteria [128]. Small populations of organ-
isms such as Clostridioides difficile that cause disease if they overgrow may also be present. The predominant
acetate-producing bacteria are Bacteroidetes as well as Prevotella spp., Bifidobacterium spp., and Akkermansia
muciniphila [1]. Acetate produced by these microbes can be used by GI tract inhabiting Firmicutes to produce
butyrate, another SCFA [91,92]. The composition of gut bacterial communities can be impacted by host diet,
where a high-fibre diet is associated with communities capable of greater SCFA production and other
microbial-derived metabolites [133]. In addition to dietary effects, drug treatments such as the administration
of antibiotics and host genetic factors can affect the prevalence of acetate-producing microorganisms in the GI
tract [86,134].
In healthy hosts, the same immunomodulatory mechanisms that control inflammation in response to the

normal microbiota also protect the bowel from invasion by pathogens [135]. In the GI tract, microbial-derived
acetate is associated with epithelial maintenance, wound healing, and improved barrier function [87–90].
Acetate also lowers colonic inflammation in mice [19,71,86,136] and has been shown to exert a probiotic effect
against enteropathogens [137]. Alterations in the microbial composition, particularly an increase in
Proteobacteria and/or Firmicutes, have been linked to multiple pathologies, such as obesity, colorectal cancer,
and inflammatory bowel diseases (IBD). In fact, acetate supplementation has been shown to alleviate the sever-
ity of IBD in acetate-fed, germ-free, GPCR43−/− mice and high-fibre diet mouse models [110,133,138].
The healthy skin microbiota have essential roles in protection against pathogens and the breakdown of

natural products such as lipids and proteins [139]. Similar to the GI tract, skin microbiota are comprised of
bacteria from the same four main phyla, Actinobacteria (36–51%), Firmicutes (24–34%), Proteobacteria (11–
16%), and Bacteroidetes (6–9%) [132]. However, in contrast with the GI tract, Bacteroidetes are not dominant
in a healthy skin microbiome. The specific composition of the microbiota differs depending on the physiology
of the skin site, where, for example, humid skin sites primarily harbor Staphylococcus (Firmicutes) and
Corynebacterium (Actinobacteria), while in oily sites, Cutibacterium (Actinobacteria) species are the most
common [129,139]. In this environment, microbial-derived acetate, primarily from Cutibacterium acnes and
Staphylococcus epidermidis, can decrease microbial biofilm formation; however, if present in excess, it can drive
inflammation observed e.g. in acne [140,141].
In the respiratory tract, the microbiota composition and relative abundance of each microbe are isolation

site-specific and reflect the health status and age of the host [142]. However, there are clear differences between
the microbiota of the upper and lower respiratory tract (LRT). The upper respiratory tract (URT), which con-
sists of the nasal and oral cavities, harbors commensals and opportunistic pathogens such as Staphylococcus
spp., C. acnes, Corynebacterium spp., Moraxella spp., Haemophilus spp., and Dolosigranulum spp. [130,131]. In
contrast, in the LRT, Prevotella, Veillonella spp., and Streptococcus spp. are the main bacterial colonizers in
healthy individuals [131,143–146]. Opportunistic nasal pathogens such as Streptococcus pneumoniae,
Haemophilus influenzae, and Moraxella catarrhalis are less commonly isolated from a healthy LRT, but their
presence is associated with diseases such as cystic fibrosis, pneumonia, and chronic obstructive pulmonary
disease [142,144–146].
In vitro, acetate can increase the ability of alveolar macrophages to kill bacteria and viruses, such as

Streptococcus spp., Staphylococcus spp., Klebsiella pneumoniae, and respiratory syncytial virus (RSV) [102,117–
119,147–149], i.e. it appeared to show pro-inflammatory rather than anti-inflammatory action in these assays.
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There are few detailed studies of the effects of acetate on lung microbiota; however, it is known that some
common respiratory tract colonizers, such as H. influenzae, produce high amounts of acetate as a metabolic
endproduct, while other species, such as Moraxella, use acetate as a preferred carbon source [150–154].
Additionally, increasing acetate concentrations in the LRT have been associated with dysbiosis and proposed to
be drivers of persistent neutrophilic inflammation [146]. However, there is also evidence that the cellular effects
of acetate can be actively modified by bacteria such as H. influenzae. A recent study showed that acetate
(7 mM) had an anti-inflammatory effect on human bronchial cells when live H. influenzae were present, but
increased inflammation when the bronchial cells were stimulated antigenically with heat-killed H. influenzae
[150]. This suggests that active metabolic interactions between bacteria and epithelial cells may be required for
an anti-inflammatory effect [150]. Similar results have also been reported for A549 lung carcinoma cells, where
H. influenzae culture supernatants induced a pro-inflammatory response [151]. Given that H. influenzae is a
commensal of the human nasopharynx, but not the LRT, one could speculate that in the nasopharynx H. influ-
enzae acetate production is a common process that promotes persistence. In contrast, acetate is an uncommon
metabolite in the LRT, and its production by H. influenzae or other microbes then drives dysbiosis and neutro-
philic airway inflammation.
Compared with the well-documented role of microbial-derived acetate in the GI tract, the role of acetate and

acetate-producing microbiota in the respiratory tract is less defined, with the switch between pro- and anti-
inflammatory effects and the dependency on the type of bacterial species present requiring further
examination.
Contrary to what has been observed for the human GI tract, skin, and respiratory system, acetate is not asso-

ciated with a healthy microbiome in the human urogenital tract. Here, lactate is normally present in high con-
centrations and is produced by a combination of Firmicutes, Lactobacillus and Streptococcus spp., which are the
dominant genera of the urogenital tract microbiota [132]. In addition to lactate, small amounts of acetate and
succinate have also been observed, and their concentrations increase during disease [155]. During disease, such
as neurogenic bladder dysfunction, interstitial cystitis, and urinary tract infection, there is a shift in the micro-
biota composition, with a particular increase in SCFA-producing bacteria, including Lactobacillus, E. coli, K.
pneumoniae, Proteus mirabilis, Enterococcus faecalis, and Staphylococcus saprophyticus [156,157]. While little is
known about the molecular effects of acetate on the epithelia of the urogenital tract, its presence is a consistent
disease marker, and the measurement of acetate in vaginal fluid samples has even been suggested as a diagnos-
tic tool for bacterial vaginosis [155].
In summary, while in the GI tract and skin acetate prevents inflammation and promotes the health of the

host tissue, the role of microbial-derived acetate in the respiratory tract is ambiguous, and in the urogenital
tract, it is a marker for inflammation. Further work is needed, especially in the respiratory and urogenital tract
to clarify the association of acetate with disease development.

Microbiota-derived acetate can have systemic effects on
the human body
In addition to local effects on individual organ systems, metabolites such as acetate can drive cross-talk
between GI tract microbiota and other organs, including the frequently discussed ‘gut-brain axis’ where acetate
guides microglial maturation and regulation during disease [111,141,148,158–163]. In other organs, for
example, despite evidence that local acetate production in the lung can drive dysbiosis [146], attenuation of
allergic airway inflammation was observed in parallel with an increase in the gut of SCFA-producing
Bacteroidaceae and Bifidobacteriaceae, particularly Bifidobacterium longum 51A, enhanced by a high-fibre diet
[164,165]. Similarly, a reduction in lung tissue injury during bronchopulmonary dysplasia was associated with
an increase in gut Ruminococcaceae, known to be important SCFA producers [100]. It has been proposed,
based on the studies presented above as well as extensive reviews [160,166–171], that this cross-talk is mediated
by SCFAs that originate from the GI tract and circulate systemically, as well as the conditioning of GI tract
immune cells by a healthy gut microbiota, resulting in the improved function of the overall immune system.

Conclusions and research gaps
Despite being less studied than the more potent SCFAs, propionate and butyrate, recent studies have documen-
ted the importance of acetate homeostasis for maintaining a healthy state, particularly in the GI tract. This is
mediated by bidirectional interactions between microbiota, host epithelia, and the host immune system, where,
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in many contexts, microbial-derived acetate reduced inflammation, improved epithelial barrier function, and
increased wound healing capabilities [86–90]. Moreover, acetate, which acts primarily through GPCR43, in
many cases, exerts an anti-inflammatory response by suppressing NF-κβ activation and HDAC activity to
attenuate downstream production of pro-inflammatory cytokines in a wide variety of cell types and may be
manipulated by host microbiota.
However, several aspects of these interactions need to be studied in more detail. Most research to date has

been performed using in vitro or ex vivo infection models, often using only abiotic stimulation or treatment
with exogenous acetate at different concentrations [41,70,102,116,121,149,172]. This makes understanding the
systemic effects of acetate, why acetate in the respiratory tract and urogenital tract can be a disease marker, and
the complex role of NLRP3 and how it responds to acetate challenging. To overcome this, the development of
coculture models that use differentiated primary cells as well as using complex bacterial communities that
reflect the in vivo environment and models that include epithelial and immune cells will be essential for future
research in this field.
Additionally, while numerous studies explore the role of acetate in disease states for organ systems such as

the URT/LRT or the urogenital tract, little is known about the role of acetate in healthy individuals.
Particularly intriguing is the currently little-studied molecular basis for the ability of acetate to cause both pro-
and anti-inflammatory effects. Similarly, more research is needed on the cross-feeding mechanisms between the
gut microbiota and other host organs, and on the therapeutic potential of acetate in different disease models.

Summary
• Acetate is an abundant, mostly microbial-derived SCFA in the human body.

• Acetate signaling occurs through GPCR43-dependent and independent methods and leads to
suppression of HDAC and NF-κβ activity, thus exerting an anti-inflammatory effect.

• Despite the overall anti-inflammatory effects of acetate, conditions have been identified where
acetate derived from human bacterial pathogens can trigger a pro-inflammatory response.

• Microbial-derived SCFAs from the GI tract can have systemic, immunomodulatory effects on
other major host organs, including the respiratory tract.
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