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Abstract

Many techniques in machine learning attempt explicitly or implicitly to infer a low-dimensional 

manifold structure of an underlying physical phenomenon from measurements without an explicit 

model of the phenomenon or the measurement apparatus. This paper presents a cautionary tale 

regarding the discrepancy between the geometry of measurements and the geometry of the 

underlying phenomenon in a benign setting. The deformation in the metric illustrated in this 

paper is mathematically straightforward and unavoidable in the general case, and it is only one 

of several similar effects. While this is not always problematic, we provide an example of an 

arguably standard and harmless data processing procedure where this effect leads to an incorrect 

answer to a seemingly simple question. Although we focus on manifold learning, these issues 

apply broadly to dimensionality reduction and unsupervised learning.

I. Background

The abundance of data in many applications in recent years allows scientists to sidestep the 

need for parametric models and discover the structure of underlying phenomena directly 

from some form of intrinsic geometry in the measurements. Such concepts frequently appear 

in unsupervised learning, manifold learning, non-parametric statistics and, more broadly, 

machine learning. Often, a scientist may have in mind a concept of the “natural” geometry 

or parametrization of the phenomenon; in other cases, they may implicitly assume that 

only one such objective geometry exists even if they do not know what it is. This paper 

aims to illustrate the difference between the structure of observed data and some notion 

of natural or unique objective structure. To this end, we offer a concrete example with an 

obvious underlying natural geometry (up to symmetries) and demonstrate the existence of 

discrepancies between the data and the natural variables, even in this benign setting.

In our example, described more formally below, a simplified instance of a physical 

phenomenon is represented by a rigid 3D model of a horse on a spinning table. The 

measurement device is a fixed camera that takes images of the object. The orientation angles 

of the horse are distributed uniformly. Here, a natural variable is the angle at which the 
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figure is oriented at the time of the measurement. A simple example of a scientific question 

is to find the mode of the distribution, which is intuitively the most prevalent orientation 

angle (we know that the correct answer is that the distribution is uniform and, therefore, we 

do not expect to find a clear mode). Since this is meant to be a simplified, intuitive version 

of a generic problem with no obvious underlying model, we consider generic algorithms 

and forgo in advance image analysis and computer vision methods that use of the special 

properties of images and the specific rotating motion of the object.

This benign task yields results that we find surprising yet predictable. The naive analysis 

discovers clear modes of the distribution, which are inconsistent with the true uniform 

distribution. In Appendix A3, we demonstrate that these modes are not invariant to the 

measurement modality.

In our discussion, we explain the reasons for the experiment’s results and refer the reader 

to existing work on special cases where the problem can be corrected. However, there is no 

method for correcting the problem in the general case. We conclude by pointing to where 

care should be taken in defining the problem and using the output in downstream tasks.

We emphasize that this paper aims to highlight an omission that we observe in the practical 

use of manifold-related machine learning algorithms in applications. The purpose of this 

paper is not to advocate against these methods but rather to suggest that care should be taken 

in stating and interpreting their output.

II. The problem

The mathematical setting of the experiment is simple: let X ⊂ ℝd and Y ⊂ ℝD be two 

manifolds with d ≪ D and f:X Y be a diffeomorphism. We refer to X and Y as 

the phenomenon manifold and the measurement manifold respectively and to f as the 

measurement function. In our simple experiment, the phenomenon manifold X is the one-

dimensional torus representing the orientation of the horse with respect to a fixed frame of 

reference (independent of the camera), the measurement function f outputs an image of the 

horse as captured by the camera, and the measurement manifold Y is the manifold of images 

obtained by the camera. In particular, a sample x ∈ X is the angle of the horse at a specific 

point in time, and the corresponding measurement f x ∈ Y is the image of the horse at the 

same point in time. In a typical setting, we are given a large set of measurements yi i = 1
n ⊂ Y

of a set of samples xi i = 1
n  drawn from a distribution D on X. Here, we take the distribution 

D of the orientation angles of the horse to be uniform, which would be unknown in an actual 

experiment. We only have access to the measurements yi i = 1
n  (the images of the horse), 

which we assume to be noise-free for simplicity, and we are interested in uncovering the 

low-dimensional organization of the samples of angles xi i = 1
n , for example, their empirical 

distribution on X. The setting of this numerical experiment is illustrated in Figure 1. For 

simplicity and concreteness, we apply common techniques to answer a simple question: 

what is the most dominant physical state? We know that the ground truth answer is, in this 

case, that there is no dominant state; the data are generated with uniform distribution over 

the orientation angles of the horse.
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We follow a common practice of assuming a low-dimensional structure and apply 

a manifold learning algorithm. This produces the map ρ:Y Ƶ, which yields a low-

dimensional embedding of the measurements ρ yi ∈ Ƶ for i = 1, …, n and Ƶ ⊂ ℝs with 

d ≤ s ≪ D. In our experimental setting, the low-dimensional assumption is clearly true: 

the orientation angles of the horse lie on the one-dimensional torus manifold, while the 

measurements are clearly high-dimensional (the number of pixels of each image). For 

simplicity, in our numerical experiment, we use the diffusion maps algorithm, whose 

theoretical properties are well understood [1, 2], and we retain only the first two diffusion 

coordinates, a standard practice in this simple case. The output we expect to see is an 

embedding of the one-dimensional torus in ℝ2: a circle.

It is common in applications to apply a machine learning or manifold learning algorithm to 

the measurements yi i = 1
n , and consider the low-dimensional embeddings ρ yi i = 1

n  to be a 

proxy for the geometry of the actual samples xi i = 1
n ; the potential effects of the measurement 

function f are omitted. The aim of this manuscript is to demonstrate that even in the most 

benign setting, the measurements distort the physical problem in a way that can impact a 

seemingly straightforward analysis.

Many algorithms for manifold learning and visualization have been developed over the years 

and have been found useful in applications. Often, these algorithms start with the pair-wise 

distances ∥ yi − yj ∥ (in some norm), for i, j = 1, …, n, as a measure of (inverse) similarity, but 

diverge in their precise formulation of the problem. One of the notable departures from this 

approach is the use of the latent space estimated in the training of deep neural networks as 

the manifold embedding, with the variational autoencoder (VAE) [3] being one of a number 

of popular approaches.

The diffusion maps algorithm produces coordinates that are related to the geometry of the 

data through a diffusion operator on the data manifold. While there are technical nuances 

in the metric defined by diffusion maps (and other algorithms) and in retaining only two 

dimensions, this example is particularly benign, symmetric, and without boundary effects. 

Therefore, one expects the leading eigenvectors of the discretized diffusion operator to 

preserve the local geometry of the data (up to scaling). For a formal description of the 

diffusion maps algorithm and its properties, see [1, 2]. One of the appealing properties of 

the diffusion maps algorithm is that it is (asymptotically) invariant to the local density of 

the data and captures only its local geometry. This property and the algorithm’s explicit 

relationship to the geometry of the data made it a good choice for our experiments.

Indeed, a diffusion map of the points on X preserves the geometry and the uniform 

distribution (shown in Appendix A1). However, our measurement function is not necessarily 

an isometry (even up to scaling), and therefore, it distorts the geometry and the local 

pair-wise distances.

The low-dimensional embedding obtained by applying the diffusion maps algorithm to a 

dataset yi i = 1
n  of size n = 1000 and ambient dimension D = 108000 (180 × 200 size images 

with 3 color channels) in our experimental setting1 is shown in Figure 2. Both panels show a 
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scatter plot using the first two embedding coordinates given by the diffusion maps algorithm. 

The points in panel (a) are colored according to the true angle xi for i = 1, …, n. Visually, it 

appears that the algorithm reveals the correct topology and it organizes the images correctly 

by their angle. It is compelling to say that the embedding is a good approximation of the 

angles (up to shift). However, taking a closer look at the distribution of the points in panel 

(b), we see that that their local density2 has not been preserved on the embedding manifold 

Ƶ: while the distribution D of the points xi i = 1
n  on X is uniform (by construction!), the 

distribution of the embedded points ρ yi i = 1
n  on Ƶ is not uniform. Moreover, the distribution 

of the embedded points has two clear modes, with no indication that they are an artifact of 

the analysis.

An additional experiment showing how the distribution of the embedded points varies when 

the viewing angle is changed is described in Appendix A3, and the specific implementation 

of the diffusion maps algorithm that we used in our experiments is presented in Appendix B.

III. Discussion

In the previous section, we empirically showed how the distribution of the points on the 

embedding manifold Ƶ does not reflect the true distribution of the points on the phenomenon 

manifold X: the distribution on Ƶ has two distinct modes, while the distribution on X is 

uniform. To see that this is a metric-related issue, it is worth examining the modes of the 

distribution on Ƶ.

In Figure 3, we show measurements at a high and a low-density point on Ƶ. It is revealed 

that the high-density regions correspond to images where the three-dimensional object is 

perpendicular (or nearly perpendicular) to the viewing direction of the camera, while the 

low-density regions correspond to the object facing toward or away from the camera. This 

is because, according to our chosen metric on Y (i.e., the Euclidean norm on the space of 

vectorized images), a small difference Δx between two angles in X is not transformed to 

the same distance in different regions of X: two images of the object facing the camera that 

differ by Δx have a larger Euclidean distance than two images of the object facing sideways 

that are separated by the same angle. The metric based on the measurements alone does not 

account for the distortion introduced by the measurement function f on the true metric on X, 

namely the wrap-around distance on 0, 2π .

The discrepancy between the metric on the phenomenon manifold, which is the metric we 

want to recover, and the arguably arbitrary metric produced by the measurement modality 

can be corrected in some special cases. For example, when bursts of measurements around 

each point on X are available, one can use the Jacobian of the measurement function to 

define metrics that are invariant to the measurement modality (see, for example, [4–8]). 

1The code and dataset to reproduce the numerical experiments described in this paper can be downloaded from https://github.com/
bogdantoader/ManifoldLearningInPlatosCave.
2We define the local density at a point zi on the embedded manifold Ƶ as the number of points zj in the ball centered at zi with radius 
r, for a given r > 0, normalized so that the densities sum up to one, and using the metric on Ƶ. Since in these experiments, we used 
the diffusion maps algorithm with a two-dimensional latent space, the diffusion metric on Ƶ corresponds to the Euclidean metric on 

ℝ2.
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Such metrics might still not be the “desired” metrics we want to conceptualize, but they 

are “Platonic” in the sense that they are defined on the phenomenon manifold X and 

are invariant to the arbitrary measurement function. Other works such as [9–12] correct 

the metric distortion introduced by the embedding ρ from the measurement manifold Y
to the embedded manifold Ƶ; these works do not correct the discrepancy between the 

measurements and the metric on the phenomenon manifold.

We emphasize that the problem illustrated here is not due to a failure of the diffusion maps 

or other algorithms; the algorithm performs as expected and characterizes the measurement 
manifold very well. However, the metric of this measured manifold is incompatible with the 

natural metric of in-plane rotation angles. As a result, we identify modes of the distribution 

in the measurement space, but these do not correspond to modes of the underlying 

distribution of angles.

We note that the problem discussed here is not unique to the diffusion maps algorithm or the 

setup we chose; in fact, other algorithms are not as well-understood as diffusion maps, and 

applications are rarely as simple as our illustrative example. Many modern algorithms add 

layers of complexity to the problem. For instance, deep learning approaches that generate 

latent variables, such as VAEs, are often combined with more standard manifold learning 

algorithms to obtain low-dimensional data representations. In [13, 14], the distortions 

introduced by popular algorithms like t-SNE and UMAP are analyzed in the context of 

single-cell genomics, although the focus is on the discrepancy between the high dimension 

of the measurement space and the very low dimension (2 or 3) of the embedding space, 

rather than on the choice of metric. While such algorithms provide valuable new insights 

into datasets, practitioners should be aware that the results they generate, even when they 

perform as intended, may have a subtle relation to the “Platonic” physical reality. These 

outputs should arguably mainly be used for visualization and confirmed by other means. 

Indeed some of the original work on popular non-linear dimensionality reduction algorithms 

defines them as tools for visualization [15, 16].

IV. Conclusions

This paper illustrates one of the discrepancies between the measured manifold and a 

perceived natural parametrization of the underlying phenomenon. In addition, Appendix 

A3 demonstrates how this discrepancy depends on the measurement modality and how the 

measured manifold is not invariant to measurements. The discrepancy presented here is by 

no means the only type of discrepancy; we defer the discussion of additional effects to 

future work. While the existence of this discrepancy is a natural consequence of various 

mathematical formulations of manifold learning problems (with the exception of special 

cases where the metric can be corrected), it is occasionally omitted, which may lead to 

incorrect and inconsistent answers to seemingly simple scientific questions. In the absence 

of a general solution to the problem, we suggest the following points to consider when using 

these methods.

• A good rule of thumb is that manifold learning and dimensionality reduction 

can provide (when they “work”) an embedding, but they may not provide the 
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embedding (that we might have in mind). In fact, without a good definition of the 

desired embedding, the embedding is not unique.

• Sometimes, the effects can be controlled if there is knowledge of the structure 

of the measurement function (e.g., Lipschitz constant). However, nuances in 

definitions of the output of algorithms, the increased complexity of algorithms, 

and the practice of layering algorithms on top of each other may make it 

much more difficult to control such effects. In some special cases, additional 

measurements may allow one to reverse the effect [4–8].

• In many (but not all) applications, the inferred manifold may reveal enough 

about the topology of the problem, or the distortion in the metric might be 

sufficiently small to be a sufficiently good proxy for the geometry. What is 

“sufficiently good” may depend on the downstream task. For example, the low-

dimensional manifold may be a starting point for an analysis by an expert, 

regression or careful clustering, suspected outliers detection, and even for 

identification of clear modes. It may not be as helpful for aligning data collected 

using different modalities (or even different algorithms applied to the same data) 

with different distortions (see Appendix A3), or for certain analyses of free 

energy associated with the distribution.
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Appendix

A. Additional experiments

This appendix shows several plots and numerical experiments that further illustrate the 

discrepancy between the phenomenon manifold and the measurement manifold.

1) Manifold learning on the phenomenon manifold:

We have shown in the main text of the paper how applying a manifold learning algorithm to 

the points on Y leads to modes in the data, while we know that the samples are uniformly 

distributed on the phenomenon manifold X (the orientation angles of the horse). In this 

section, we present the same manifold learning algorithm applied directly to the points 

in X (which are not available to us as measurements in our original problem setup) as a 

benchmark for comparison to the results in the main text, where we apply the algorithm 

to the measurements. In Figure 4, we ran the diffusion maps algorithm to the set of angles 

that generated the images, where we represented each angle by a complex number with the 

magnitude of one and the given angle, and we used the Euclidean distance between them as 

the distance on X. As expected, the embedded points have constant local density (i.e., they 

are uniformly distributed).
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2) Local density of the measured data points:

The central claim of this paper is that applying manifold learning to measured data without 

careful attention to the metric on Y can lead to wrong conclusions about certain questions. 

The point where metric distortions due to the measurement function are introduced in the 

processing pipeline is when computing pair-wise distances between the points on Y. As a 

further check that this is indeed the case, in Figure 5 we show the local density of the images 

themselves (the points on Y): the coordinates of each image are its embedding coordinates 

(the same as in the main text), and the coloring is given by the local density of the images in 

panel (a) and the local density of the embeddings in panel (b). The radius r of the ball used 

to approximate the local density in (a) was chosen so that the maximum value of the local 

density is approximately the same as the maximum value of the local density in (b). Figure 

5 shows that the same modes seen in the embedding are also present in the measured data. 

The specific value may not be numerically identical due to subtleties in the definition of the 

embedding and the nature of the approximation. However, the same kind of effect is clearly 

visible.

3) Two modalities and non-uniqueness:

To further illustrate the problem raised in this article, we now consider a slightly modified 

setup to demonstrate the non-uniqueness of the parametrization. Instead of one camera, we 

take photographs of the spinning rigid object using two different cameras placed at two 

distinct locations. We denote the two measurement functions by f1 and f2 and the two 

datasets by yi
1

i = 1
n ⊂ Y1 and yi

2
i = 1
n ⊂ Y2. The images yi

1 and yi
2 at index i taken by the two 

cameras respectively correspond to the same ground truth point xi. This setup is illustrated in 

Figure 6. The ambient dimension is D = 108000, the number of images taken by each camera 

is n = 1000, and the measurements are taken at equal time intervals, so the distribution of the 

data on the phenomenon manifold X is uniform.

We apply the diffusion maps algorithm separately to each dataset, corresponding to samples 

from the two measurement manifolds Y1 and Y2. The resulting two-dimensional embeddings 

are shown in Figure 7: the left column shows the embedding ρ1 yi
1

i = 1
n  obtained from the 

measurements yi
1

i = 1
n ⊂ Y1 and the right column shows the embedding ρ2 yi

2
i = 1
n  obtained 

from yi
2

i = 1
n ⊂ Y2. In each panel, we show a scatter plot using the first two embedding 

coordinates given by the diffusion maps algorithm. We denote by Ƶ1 and Ƶ2 the resulting 

low-dimensional manifolds. Similarly to the one-camera experiment described in the main 

text, the one-dimensional torus topology of the orientation angles of the object is correctly 

identified (panels (a) and (b)). However, panels (c) and (d) show that the metric is distorted. 

In particular, the distributions of the images in both datasets are incorrectly shown to have 

two modes (we know that the true distribution is uniform). Moreover, the modes are not 

compatible: the mode observed in one camera does not correspond to the same true angles 

as those observed in the other camera. This can be seen in Figure 8, where images from 

high and low-density regions on Ƶ1 correspond to seemingly arbitrary points on Ƶ2, whose 

high and low-density regions correspond to different orientations on X. This is, of course, 
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not surprising, given that each camera takes the photographs from different directions and 

considering the symmetries in this problem.

In this paper, we showed how attempts to solve a simple problem, such as identifying the 

dominant state of a system, can lead to incorrect answers when applying manifold learning 

to the measured data. While the experiment presented in the main text of the article shows 

that the answer we obtain can be incorrect in a non-obvious way, the two-camera experiment 

presented in this appendix demonstrates that different measurement modalities can produce 

different answers, with no way to compare the quality of the two answers objectively. 

More generally, this shows that the estimated measurement manifold is not unique and not 

invariant to the measurement modality.

This experiment corresponds to several relatively common real-life settings. One example 

is when multiple different algorithms are applied to the same data, perhaps with different 

processing pipelines. The processing pipelines are analogous to our different cameras and 

may not produce the same result.

Another real-life setting is when attempting to align measurements of an underlying 

phenomenon, acquired using two distinct modalities, calibrated differently and possibly 

taken on different days. This is the case, for example, when the data is collected in two 

separate batches, potentially in different laboratories. In this case, even if the two datasets 

are assumed to have the same distribution, batch effects are present due to potentially 

different experimental settings. Our experiments show that a rigid transformation cannot 

align embeddings obtained from such datasets.

4) Top view measurements:

In the previous experiment, we showed that different measurement functions lead to 

embeddings where the metric is distorted in different ways without knowing which one 

is more accurate. To further strengthen this argument, we show an example where the 

measurement function distorts the distances but preserves the local geometry. The images 

of the rotating horse are captured from the top, and the resulting embedding and density 

are shown in Figure 9. In practice, there is no way of knowing, only from the data, that 

we are in a case where the local geometry on X is preserved. This experiment and the 

one in Appendix A3 reinforce that the embedding we obtain depends heavily on how the 

measurements are taken and that the solution we expect to see is not objectively better than 

other possible solutions, given the data.

B. Diffusion maps

For completeness, we present the diffusion maps algorithm used throughout the article, as 

described in [1] and adapted in [17]. The phenomena discussed in this paper are not specific 

to diffusion maps. Broadly interpreted, these issues appear in many machine learning and 

manifold learning problems in one form or another, except for special cases where they can 

be corrected or “defined away.”
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Fig. 1: 
The phenomenon manifold X is a one-dimensional torus corresponding to the in-plane 

orientation angle of a rigid object rotating around the z-axis, and the measurement manifold 

Y is the manifold of images of the object as captured by a camera at a fixed location.
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Fig. 2: 
Low-dimensional embedding of the images of the spinning horse. The coloring is given by 

the true orientation angle of the horse in panel (a) and the local density of points r = 0.05  in 

panel (b).
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Fig. 3: 
The low-dimensional embedding with example images corresponding to samples from the 

estimated distribution. The image to the left of the embedding plot is chosen to be at a low 

local density in the embedding, and the image to the right is chosen to be at the maximum 

density point.
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Fig. 4: 
The embedding resulting from applying diffusion maps to the angles directly, represented as 

complex numbers of magnitude one. The coloring is given by the true angle in panel (a) and 

the local density with r = 0.05 in panel (b).
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Fig. 5: 
Local density of the points on Y in (a) and on Ƶ in (b). The coordinates of the points are 

given by the embedding in Ƶ in both plots. The radius for computing the local density on 

Y, r = 9, was chosen so that the maximum value of the density matches the maximum value 

of the density on Ƶ.
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Fig. 6: 
Setup of the numerical experiment with two measured datasets. Using two cameras at 

different locations, we collect two distinct sets of images on the measurement manifolds Y1

and Y2, respectively.
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Fig. 7: 
Embeddings obtained using images from the left camera (left column) and the right camera 

(right column). The coloring is given by the true angle in the top row and the local density of 

points r = 0.05  in the bottom row.

Lederman and Toader Page 17

Int Conf Sampl Theory Appl SampTA. Author manuscript; available in PMC 2024 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8: 
The embeddings with example images from the estimated distributions. The images in the 

top row correspond to a point in a high-density region of the left camera embedding, and the 

images in the bottom row correspond to a point in a low-density region of the left camera 

embedding. In each row of images, we show the top view of the object displaying the true 

orientation angle (left), the object as seen by the left camera (middle), and the object as seen 

by the right camera (right).
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Fig. 9: 
Low-dimensional embedding of the images of the spinning horse viewed from the top. The 

coloring is given by the true orientation angle of the horse in panel (a) and the local density 

of points r = 0.05  in panel (b).
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