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Abstract

Background: An increased risk of neurocognitive deficits, anxiety, and depression has been 

reported in childhood cancer survivors.

Methods: We analyzed associations of neurocognitive deficits, as well as anxiety and depression, 

with common and rare genetic variants derived from whole-exome sequencing data of acute 

lymphoblastic leukemia (ALL) survivors from the PETALE cohort. In addition, significant 

associations were assessed using stratified and multivariable analyses. Next, top-ranking common 

associations were analyzed in an independent SJLIFE replication cohort of ALL survivors.

Results: Significant associations were identified in the entire discovery cohort (N=229) between 

the AK8 gene and changes in neurocognitive function, whereas PTPRZ1, MUC16, TNRC6C-AS1 
were associated with anxiety. Following stratification according to sex, the ZNF382 gene was 

linked to a neurocognitive deficit in males, whereas APOL2 and C6orf165 were associated with 

anxiety and EXO5 with depression. Following stratification according to prognostic risk groups, 
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the modulatory effect of rare variants on depression was additionally found in the CYP2W1 and 

PCMTD1 genes.

In the replication SJLIFE cohort (N=688), the male-specific association in the ZNF382 gene 

was not significant, however, a p-value<0.05 was observed when the entire SJLIFE cohort was 

analyzed. ZNF382 was significant in males in the combined cohorts as shown by meta-analyses as 

well as the depression-associated gene EXO5.

Conclusions: Further research is needed to confirm whether the current findings, along with 

other known risk factors, may be valuable in identifying patients at increased risk of these 

long-term complications.

Impact: Our results suggest that specific genes may be related to increased neuropsychological 

consequences.

INTRODUCTION

The survival rates in children diagnosed with acute lymphoblastic leukemia (ALL)(1, 

2), the most frequent childhood cancer(3), have dramatically increased over the past 

decades due to the introduction of multi-agent risk-adapted treatment regimens and 

outstanding improvements in care delivery. However, exposure to cytotoxic therapy during 

a vulnerable period of child development can have long-term consequences, including 

impaired neurocognitive functions(4, 5), and mood disorders(6, 7). Furthermore, childhood 

and adolescence are periods characterized by intensive development of the central nervous 

system(8, 9), which is pertinent in the context of the impact of cancer treatment on the 

integrity of the white matter(10–14). Indeed, numerous studies conducted in childhood 

ALL survivors(4, 15, 16) have reported an increased risk of neurocognitive deficits(6) 

in attention(15–20), working memory(21), processing speed(16, 22, 23), and executive 

functions, such as verbal fluency and cognitive flexibility(24); as well as depression, anxiety, 

behavioral difficulties, distress, and post-traumatic symptoms compared with siblings(25–

30).

Varying degrees of neurocognitive dysfunction and levels of emotional distress associated 

with cancer treatment have been observed that differ by patient characteristics, such as 

age and sex, and possibly reflecting different underlying mechanisms(5, 31, 32). Moreover, 

while some survivors may not experience any of these complications, others may have 

more than one. Factors contributing to this variability, include the type of treatment, the 

characteristics of the malignancy, the lifestyle, and the genetic makeup of the patient(33).

We examined whether common and rare genetic polymorphisms contribute to this variability 

by altering the risk of treatment-related neurocognitive deficits, as well as anxiety and 

depression in combination with non-genetic factors.

We previously analyzed these complications in a well-described cohort of ALL survivors 

(PETALE)(34) using a candidate gene approach(33); two associations between the MTR 
and CACNB2 genes and neurocognitive deficit were validated in an independent St. 

Jude Lifetime Cohort (SJLIFE) replication cohort (St. Jude Children’s Research Hospital, 

Memphis, USA)(33).
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Here, the association analyses are extended to a hypothesis-free approach – an exome-wide 

association study, which could identify additional genes as potential risk modulators of these 

complications.

MATERIALS AND METHODS

Discovery cohort

The discovery cohort included 229 patients diagnosed and treated for childhood ALL 

according to Dana Farber Cancer Institute (DFCI) ALL 87-01 to 05-01 protocols at Sainte-

Justine University Health Center (SJUHC), Montreal, (Quebec), Canada. The participants 

were recruited during 2013–2015 in the context of the PETALE study(34). Written informed 

consent was obtained from every patient or parent/legal guardian. The study was conducted 

in accordance with the Declaration of Helsinki and the protocol was approved by the Ethics 

Committee of SJUHC.

Eligible participants were of European descent, younger than 19 years old at diagnosis and 

older than 12 years at evaluation, at least 5 years after diagnosis of ALL, without a history 

of relapse or refractory ALL or Down syndrome and had not received a hematopoietic stem 

cell transplant. The median age of patients at the time of diagnosis was 4 years, the time 

from the end of treatment to evaluation ranged from 3–24 years with a median of 13 years 

(for 76.0% of participants, it was ≥10 years), both sexes were equally represented (51.1% 

of females). The patients were classified to standard (SR) and high relapse risk (HR) groups 

based on prognostic factors, including age, white blood cell count, immunophenotype, and 

central nervous system (CNS) status at diagnosis(35, 36). The frequency of patients assigned 

to SR and HR groups during the treatment was 45.9% and 54.1%, respectively.

Neuropsychological evaluation

A neurocognitive evaluation was performed using standardized testing procedures and 

scores from the Delis-Kaplan Executive Function System (D-KEFS)(37) and the Wechsler 

Adult Intelligence Scale-Fourth Edition (WAIS-IV)(38), and included the Trail Making Test 

(D-KEFS) score, the Verbal Fluency (D-KEFS) score, and the Digit span (WAIS-IV) total 

score, as described previously(39). The conversion of raw scores to age-adjusted scaled 

scores was based on population means(40); subsequently, neurocognitive outcomes were 

transformed into dichotomous variables and studied accordingly. For each of these variables, 

scores lower than one and a half standard deviations below the mean of the normative 

dataset were indicative of impairment(41), all other scores were considered non-impaired.

Anxiety and Depression

Categorization of participants into anxiety or depression groups was based on their 

symptoms exceeding age-specific norms as described previously(39). For participants under 

the age of 19, we employed the anxiety and depression modules of the Beck Youth 

Inventories - Second Edition (BYI) (42). For older participants (≥19 years) the Brief 

Symptom Inventory-18 (BSI-18 anxiety and depression score) was applied (43). The 

Cronbach’s alpha coefficients for internal consistency demonstrated satisfactory levels, all 
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exceeding 0.80(44). Scores adjusted for age that were one standard deviation above the 

population mean were regarded as indicative of impairment.

Sequencing and quality control

Whole-exome sequencing (WES) was performed on germline DNA, extracted from 

peripheral blood samples from participants in the PETALE cohort, using standard protocols 

as described previously(33). Whole exomes were captured in solution with Agilent’s 

SureSelect Human All Exon 50Mb kits and sequenced on either Life Technologies 

SOLiD System 4.0 (mean coverage = 40X) or Illumina HiSeq 2500 platform (mean 

coverage = 113.1X) at SJUHC integrated clinical genomic center in pediatrics as described 

previously(39, 45). Only missense, nonsense, and splicing common and rare variants with 

predicted functional impact (Sift (<0.1) and/or PolyPhen2 (≥0.85)) were considered(46, 47). 

Variants were defined as rare (minor allele frequency, MAF<5%) and common (MAF≥5%) 

according to the reported frequency for European populations in public datasets(48). 

Variants exceeding a missing rate of 20%, not in Hardy-Weinberg Equilibrium (p=0.05/

number of tests)(49), and common variants with pairwise linkage disequilibrium (LD, 

r2≥0.8) were excluded. Therefore, 5312 common genetic variants corresponding to 3793 

genes, and 58924 rare genetic variants corresponding to 11441 genes that satisfied the 

above-mentioned filtering criteria entered the association analyses.

Association analyses

The P-value threshold of 5 × 10−8, commonly used to identify an association between 

a common genetic variant and an outcome of interest in a typical GWAS(50–52) is not 

applicable to our study since variants for analysis were selected from WES data to focus 

on those predicted by various instruments to affect coding protein function(46, 47). As 

a result, 5312 common variants were analyzed, which is less than the typical number 

of GWAS variants; and the Benjamini-Hochberg procedure for false discovery rate (FDR)

(53, 54) was used to adjust for the number of variants tested with an adjusted cut-off 

value of <5% considered to be statistically significant(52). The analyses between common 

genetic variants and neurocognitive outcomes, and anxiety/depression were performed by 

the allelic chi-square or Fisher’s exact test implemented in PLINK v.1.07(55, 56). Analyses 

were performed in 229 sequenced patients and stratified by sex and risk groups with 

different treatment intensities because these factors have an established role in modulating 

neurocognitive outcomes(57, 58). For top-ranking associations, the best genotyping model 

was subsequently used in the univariate model as well as in multivariable logistic regression 

analysis to assess the effect of each genotype when controlling for non-genetic covariates. 

In cases when several genetic variants were associated with the same outcome, additional 

multivariable analyses were performed in which all genetic variants associated with that 

outcome were analyzed with non-genetic covariates in a single model. Non-genetic co-

variables included: age at the time of diagnosis (continuous variable); time since the 

end of treatment (continuous variable); sex: males/females (categorical variable); DFCI 

Protocol: 87-01=1, 91-01=2, 95-01=3, 00-01=4, 05-01=5 (categorical variable); risk: SR/HR 

(categorical variable); treatment variable with patients who received only chemotherapy 

and patients who received chemotherapy and cranial radiation (categorical variable). The 

associations that remained statistically significant through multivariable regression models 
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were retained for further analyses. The effect of genotype was quantified by odds ratio (OR) 

with 95% CI according to the best-fitting genetic model, which was either dominant or 

recessive in all cases. In addition, the potential additive effect of combining risk loci by 

recoding genotypes as having none, one, or two and more risk alleles has also been explored.

The effects of rare variants were evaluated using the SKAT-O test (Optimal Sequence Kernel 

Association Test)(59–61) implemented in SKAT package v.2.0.1(62). Only genes with at 

least two variants that satisfied filtering criteria were retained for the SKAT-O test. To 

evaluate individual variant contributions to association signals, a collapsing approach(63, 

64), with the iterative exclusion of every single variant, was additionally executed in SPSS 

v.25.0. Similar to the common variant analyses, genetic associations were assessed for each 

of the neurocognitive outcomes in the entire cohort, in different sex groups, as well as in 

SR and HR groups, and through multivariable models adjusted for the covariates described 

above. The multiple test adjustment (FDR) for the number of genes tested was included in 

all analyses.

Replication cohort

The replication cohort consisted of 688 childhood ALL survivors of European ancestry 

enrolled in the SJLIFE study with whole-genome sequencing data. The maximum number 

of participants in the replication cohort with available outcome data was 675; the total 

number varied depending on the outcomes and subgroup studied. Participants were selected 

to resemble the discovery cohort based on demographics and treatment characteristics. 

They were younger than 19 years at diagnosis, older than 12 years at evaluation, with no 

history of relapse within 5 years of the primary ALL diagnosis date, Down syndrome, or 

hematopoietic stem cell transplantation. The median age at diagnosis was 4.9 years, the 

median time since 5-year survival from ALL diagnosis was 25.8 years for neurocognitive 

evaluation, and 25.6 years for anxiety and depression evaluation; 50.4% of participants were 

males. All outcome measures were the same as in the discovery cohort with the exception of 

the Patient-Reported Outcomes Measurement Information System (PROMIS) Anxiety and 

Depression Scales(65, 66) that were used to assess anxiety and depression in participants 

under 18 years of age. Associations that remained significant in the discovery cohort using 

multivariable regression models were analyzed in the replication cohort by Fisher’s exact 

test for allelic contingency tables and logistic regression adjusting for continuous age at 

diagnosis, sex, the continuous time between the date of becoming a 5-year ALL survivor and 

date of test measurement, whether the survivor was treated with chemotherapy only versus 

chemotherapy plus radiation, and the top 20 principal components adjusting for genetic 

ancestry. Variant rs750295511 (MUC16) did not pass quality control and was excluded 

from the analysis. Stratification by the risk group designation was not available for the 

SJLIFE cohort. Rare variant replication analyses were not performed since rare variant 

associations in the discovery cohort were only detected in the risk group stratified analyses. 

The combined effect in the discovery and replication cohort was addressed through meta-

analysis performed using the Mantel-Haenszel method implemented in MedCalc software 

and assuming a fixed-effects model.
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Data Availability

The datasets used and/or analyzed during the current study are available from the 

corresponding author upon request and revision of the projects for which the data might 

be used.

RESULTS

Discovery cohort characteristics

Demographics and clinical characteristics of PETALE participants are presented in Table 1. 

The analyses were performed in either all patients or subgroups. These included patients 

assigned to standard (SR, 45.9%) and high risk (HR, 54.1%) groups, males (48.9%) and 

females (51.1%). The median age of ALL survivors at the time of evaluation was 21 

years. The most prevalent deficit in neurocognitive test performance was noted for digit 

span (19.7%) followed by verbal fluency (19.2%) and trail making test (8.7%). Moderate-

severe anxiety was noted in 9.2% survivors, whereas 10.5% of survivors were affected by 

moderate-severe depression.

Common variants

Among the common genetic variants, the top-ranking associations obtained using PLINK 

(Supplementary Tables S1–S3) were assessed through multivariate regression models that 

also included non-genetic co-variables. Only the associations that remained significant in 

these models were retained for further analyses (Supplementary Tables S4–S7).

Accordingly, significant associations were detected between Trail making test and 

rs17407084 variant in the AK8 gene (OR=7.3, 95% CI, 2.7–19.7; p=4.52E-04), as well as 

between Moderate-severe anxiety and the following variants: rs740965 in PTPRZ1 (OR=5.1, 

95% CI, 1.98–12.9; p=1.00E-03), rs750295511 in MUC16 (OR=8.3, 95% CI, 3.1–22.5; 

p=3.10E-05), and rs2748431in TNRC6C-AS1 (OR=6.1, 95% CI, 2.0–18.1; p=1.00E-03). 

These association are presented in their best genetic models (Tables 2 and 3) as well 

as by Manhattan plots (Supplementary Figures S1 and S2). Additionally, the combined 

effect of the rs740965 (PTPRZ1), rs750295511 (MUC16), and rs2748431 (TNRC6C-AS1) 
variants was identified by recoding genotypes as having none, one or two and more alleles 

at risk (Supplementary Figure S3). Following stratification according to sex we identified 

variant rs61732180 in the ZNF382 gene that was associated with the increased risk of 

deficit scores in the Trail making test in male participants (OR=20.2, 95% CI, 4.3–95.4; 

p=2.62E-04, Table 2). Male carriers of the variant alleles in the rs7285167 (APOL2) and 

rs61731441 (C6orf165) genes were more prone to Moderate-severe anxiety (OR=9.6, 95% 

CI, 2.3–40.5; p=3.00E-03 and OR=10.9, 95% CI, 2.5–47.0; p=2.00E-03, respectively, Table 

3), whereas male carriers of the variant allele in the rs35672330 (EXO5) gene were more 

prone to Moderate-severe depression (OR=20.3, 95% CI, 4.1–99.8; p=4.90E-04, Table 4). 

Additionally, the combined effect of the rs7285167 (APOL2) and rs61731441 (C6orf165) 

variants was seen when they were tested by recoding genotypes as having none, one or two 

and more alleles at risk (Supplementary Figure S4).
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We did not find any significant common variant association that would satisfy multiple 

testing adjustments when performing an exome-wide association with the remaining 

neurocognitive phenotypes either in entire group or following stratification.

Replication results.

Demographics and clinical characteristics of participants from the replication SJLIFE cohort 

are presented in Supplementary Table S8. Of the eight common variant associations that 

remained statistically significant in the discovery cohort using multivariable regression 

models, seven variants passed SJLIFE quality control (except for a variant rs750295511 

in MUC16) and were further analyzed for an association using the respective phenotype 

measures in the independent cohort of ALL survivors in the SJLIFE cohort (Tables 

5). An association between deficit in the trail making test performance and the minor 

allele of ZNF382 rs61732180 was not observed in males, however, it was seen in all 

survivors (OR=1.4; 95% CI, 1.04–1.90; p=0.025) with statistical significance in both allelic 

Fisher’s exact test and adjusted logistic regression analyses (Supplementary Table S9). 

Additionally, variant rs61732180 in the ZNF382 gene remained statistically significant in 

male participants of the combined discovery and replication set when assessed through 

meta-analysis (Figure 1a).

An allelic association between moderate-severe anxiety and APOL2 rs7285167 was seen 

with p-value<0.05 in the male-restricted adjusted logistic regression analysis and the full 

SJLIFE cohort allelic and adjusted logistic regression analyses (Table 5 and Supplementary 

Table S9); however, it had the opposite effect and therefore cannot be considered as 

replicated. In addition, although an association between moderate-severe depression and 

the minor allele of EXO5 rs35672330 was not observed in males, the effect of this allele was 

detected in the pooled discovery and replication cohort through the meta-analysis (Figure 

1b).

Rare variants

The analysis of functionally predicted rare variants in PETALE cohort led to the detection of 

the associations between the moderate-severe anxiety and rare variants in the PCMTD1 and 

CYP2W1 genes in the HR patients (p=9.4E-6 and p=1.3E-5, respectively, Table 6). Using 

the collapsing approach, we explored variant combinations that contributed to the observed 

association signal, consequently identifying two variants in PCMTD1 (rs201786115 and 

rs200377849), and one in CYP2W1 (rs3735684). No significant association was obtained 

for moderate-severe depression and neurocognitive outcomes through the rare variants’ 

analysis.

The detailed description of common and rare significant variants, including rs identifiers and 

their functional implication, is provided in Supplementary Table S10.
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DISCUSSION

Neurocognitive function

In our study, functionally predicted germline common variants in the AK8 and ZNF382 
genes were found to be significantly associated with deficits in the performance of the 

trail making test in PETALE participants. The association with the AK8 gene was detected 

when the entire cohort of survivors was analyzed and also in the standard-risk group, 

whereas that of ZNF382 was context-dependent, and was detected upon sex stratification. 

The detailed description of the AK8 gene function is provided in Supplementary Material 

(Supplementary Material S1).

Although the male specific ZNF382 association was not observed in males alone, it was 

detected within the entire replication cohort. Zinc finger protein 382, encoded by the 

ZNF382 gene, is a member of the largest family of transcriptional regulators - Krüppel-

associated box domain (KRAB) zinc finger proteins(67). It plays critical roles as a 

transcription inhibitor and has been suggested to be a tumor suppressor in various types 

of human cancer, including pediatric acute myeloid leukemia(68, 69). Interestingly, ZNF382 

inhibits the activating protein 1 (AP-1) and nuclear factor kappa-B (NF-kB) signaling. NF-

κB involvement was detected in the different categories of neurons including both excitatory 

(glutamatergic) and inhibitory (GABAergic), as well as in the neural sub-compartment of 

the synapse; thus suggesting that neuronal NF-κB signaling pathway functions under normal 

physiological conditions to promote synaptic growth and to improve synaptic activity and 

long-lasting forms of plasticity(70). Moreover, its activation by excitatory neurotransmission 

and participation in multiple forms of structural and synaptic plasticity is probably at 

the basis of the function of this transcription factor in cognitive behaviors(70). On the 

other hand, NF-κB, a key regulator of innate immunity, is over-activated in a number of 

neurodegenerative diseases, including Alzheimer’s disease(71). Although the male-specific 

association between the deficit score in neurocognitive test performance and the minor 

rs61732180 ZNF382 allele identified in our study was not observed in males from the 

SJLIFE replication cohort, a p-value<0.05 was obtained for the full SJLIFE population and 

in males of the pooled discovery and replication cohorts. Therefore, the involvement of the 

ZNF382 gene in neurocognitive function may warrant further investigation since the genetic 

variant might potentially play a role in the outcome regardless of gender.

Сhildhood ALL patients who have received CNS-directed chemotherapy demonstrate 

persistent and significant neurocognitive impairment that manifests after treatment(5, 72). 

Specifically, treatment of ALL may result in smaller gray and white matter volumes as well 

as alterations in white matter microstructure, often associated with decreased neurocognitive 

performance(73). Our previous work identified, using a candidate gene approach, a panel 

of several genes that showed an effect on neurocognitive decline in the PETALE cohort. 

Two variants, rs1805087 in the MTR gene and rs58225473 in the CACNB2 gene, deserve 

mention as these associations were confirmed in the independent SJLIFE replication cohort.

It is worth noting that standard-risk childhood ALL patients typically receive less intensive 

treatment than high-risk patients(4, 74, 75) and the modulation of the genetic association by 

the treatment might be more obvious in the high-risk group. On the other hand, some of the 
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drug doses did not differ between the two groups(74, 76). Moreover, epidemiological and 

neuroimaging results indicate that ALL survivors who received contemporary therapeutic 

protocols (which consist of intensified intravenous and intrathecal administration of 

chemotherapeutic drugs for standard risk patients(74, 77)) were still at risk of neurocognitive 

problems(4).

Interestingly, genes identified in the present study through a hypothesis-free approach 

regarding the impaired neurocognitive function are associated to varying degrees with 

oxidative stress (AK8 gene) or with immune regulation (ZNF382 gene); and all of them, 

in one way or another, are also related to the function of the CNS. There is a lot of evidence 

to suggest that the brain is very susceptible to oxidative damage due to its high metabolic 

demand(78, 79). The oxidative stress, which is related to elevated intracellular levels of 

reactive oxygen species (ROS) is a key mediator of neuroinflammation, metabolic changes, 

bioenergetic deficiency, and neuronal apoptosis (80). ROS generated during chemotherapy 

may be associated with various harmful events, including neurotoxicity(81). For example, 

methotrexate (MTX) promotes oxidative stress in several organs, including the brain(81). 

In addition, MTX inhibits the activation of NF-κB, the already mentioned protein complex, 

which, among other functions, plays a central role in DNA transcription and the regulation 

of inflammation(82, 83).

Anxiety and Depression

We found that functionally predicted germline common variants in the PTPRZ1, MUC16, 
TNRC6C-AS1, APOL2, and C6orf165 genes were significantly associated with moderate-

severe anxiety in ALL survivors; whereas the EXO5 gene was associated with the increased 

risk of moderate-severe depression. Noteworthy, most of the associations were sex-specific 

and were detected in males, which may be partly explained by the fact that self-reported 

anxiety/depression includes more social variance in females than in males(84). Additionally, 

an association was found between the moderate-severe anxiety in HR patients and rare 

variants enrichment in the PCMTD1 and CYP2W1 genes. The EXO5 association deserves 

special mention since its effect was also seen in the pooled discovery and replication cohort.

EXO5 (Exonuclease 5) is a single-stranded DNA-specific bidirectional exonuclease that 

functions in the repair of nuclear DNA(85). In a recent study, the EXO5 gene was identified 

as a risk gene involved in prostate tumorigenesis(86). Although there is no data available on 

the potential involvement of EXO5 in mood disorders or CNS function, it is interesting to 

note that the effect of the EXO5 gene detected in our cohort was also gender-specific and 

has been identified in male individuals.

The detailed description of the gene functions of the remaining associations is provided in 

Supplementary Material (Supplementary Material S1).

Emotional challenges that arise from diagnosis and treatment of cancer in childhood can 

be seen as a highly traumatic event and can have long-term consequences. There is 

growing evidence that exposure to psychological distress at an early age can seriously 

affect brain maturation and development(87); in addition, childhood stress can increase 

vulnerability to later development of mental disorders, such as depression and anxiety(88). 
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Particularly, during peri-adolescence, brain areas critical for emotional regulation, such 

as the prefrontal cortex, hippocampus, and amygdala are still developing and are highly 

sensitive to stress(87). In a similar stressful environment, individuals will respond to stress 

differently as only part of them will demonstrate vulnerability, while others will remain 

resilient(30, 89).

The loci reported in the current study have not previously been identified as potential 

risk predictors of anxiety and/or depression susceptibility, however, given their important 

biological role, may warrant further study. In addition, the significant combined effect 

demonstrated in our study indicates that a single marker and/or single genotype may 

not be sufficient to explain the etiology of psychological distress phenotypes, given their 

complexity and environmental influences.

We acknowledge that our study has certain limitations. For example, limited sample size 

may affect the accuracy of the results, since the power of the study and magnitude of the 

effect might be affected in the context of a stratified analysis. Some phenotypes, such as 

trail making test, appear to occur with the similar frequency as in the general population, 

but the cause of their development, including genetic predisposition, may differ between 

patients exposed to the treatment and untreated individuals(90). At the same time, it is also 

important to note that survivors may tend to systematically report lower or normal distress 

rates as a result of a tendency to over normalize their situation. If this is the case in the 

present group, then it is likely that those with moderate-severe levels experience feelings 

to an even more significant degree. Thus, despite the small number of affected individuals 

in the study group it is nevertheless legitimate to explore why some individuals are more 

vulnerable. The association results obtained for rare variants in the discovery cohort (not 

evaluated in the SJLIFE cohort) should be taken with caution given their low number. Most 

of the common variant associations found in the PETALE cohort were not replicated in the 

SJLIFE cohort. This can be explained by several reasons. Mainly, despite the use of similar 

inclusion/exclusion criteria and the use of similar outcomes between the two cohorts, it is 

possible that the small sample sizes in both cohorts, differences in treatment protocols, lack 

of evaluation according to risk groups and/or timing between ALL diagnosis and evaluation 

contributed to the observed discrepancies. Finally, we can not disregard the possibility that 

some of the associations observed in the discovery cohort could have been obtained by 

chance.

In conclusion, using WES data and a hypothesis-free approach, we identified several 

genes as potential modulators of the risk of developing treatment-related neurocognitive 

complications, as well as anxiety and depression. The association between deficit in the 

trail making test and variant rs61732180 in the ZNF382 and rs35672330 in EXO5 genes 

are of particular interest since associations were also found in the replication cohort or 

meta-analysis of discovery and replication cohorts.

Multiple evidence has been collected nowadays for potential genetic and epigenetic risk 

markers of the long-term treatment-related neurocognitive and emotional complications in 

survivors of childhood cancer. In addition, accumulating data suggest that genetic factors 

contribute significantly to resilient responses to trauma and stress(91). Large genome-wide 
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association studies on the genetic architecture of mental disorders indicate its polygenic 

nature(92–94). Therefore, future studies will be required not only to verify current results, 

but also for multilevel integration of several approaches including polygenic score models 

along with other non-genetic factors, in order to identify markers of neurocognitive and 

emotional disorders and implement them into clinical practice.
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ALL Acute lymphoblastic leukemia

PETALE Prévenir les Effets tardifs des Traitements de la leucémie 

Aiguë Lymphoblastique chez l’Enfant

SJUHC Sainte-Justine University Health Center

SJLIFE St. Jude Lifetime Cohort

WES Whole exome sequencing

DFCI Dana-Faber Cancer Institute

SJLIFE St-Jude Lifetime cohort

D-KEFS Delis-Kaplan Executive Function System

WAIS-IV Wechsler Adult Intelligence Scale-Fourth Edition

BYI Beck Youth Inventory

BSI-18 Brief Symptom Inventory-18
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PROMIS Patient-Reported Outcomes Measurement Information 

System

MAF Minor allele frequency

EAF Effect allele frequency

SKAT-O test Optimal Sequence Kernel Association Test

FDR False discovery rate

SR standard risk

HR high risk

OR odds ratio

CI confidence interval

CNS central nervous system

NF-kB nuclear factor kappa-B

ROS reactive oxygen species

ZNF382 Zinc finger protein 382

EXO5 Exonuclease 5

AK8 Adenylate Kinase 8 ATP-AMP Transphosphorylase 8

KIR3DL1 Killer Cell Immunoglobulin Like Receptor

PPARG Peroxisome Proliferator Activated Receptor Gamma

PLAUR Urokinase Plasminogen Activator Surface Receptor

DUOXA1 Dual Oxidase Maturation Factor 1

DUOX2 Dual Oxidase 2

PTPRZ1 Protein Tyrosine Phosphatase Receptor Type Z1

MUC16 Mucin 16, Cell Surface Associated

TNRC6C-AS1 TNRC6C antisense RNA 1

MICB MHC Class I Polypeptide-Related Sequence B

ARL16 ADP Ribosylation Factor Like GTPase 16

APOL2 Apoliprotein L2

C6orf165 Cilia And Flagella Associated Protein 206
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Figure 1. 
Meta-analysis of the effect of the variant rs61732180 ZNF382 on the neurocognitive 

deficit (a) and rs35672330 EXO5 on moderate-severe depression (b) in male participants 

of combined discovery and replication set.

Plot represents the associations in the discovery cohort (PETALE), the replication cohort 

(SJLIFE) and the combined cohort (Total). Odd ratios (OR) comparing carriers to non-

carriers, along with the 95% confidence intervals (95% CI) and the p-values of the 

associations are provided next to the combined patient set.
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Table 1.

Patient demographics and clinical characteristics, Discovery PETALE cohort, N=229.

N %

Sex

Males 112 48.9

Females 117 51.1

Prognostic risk group

Standard risk 105 45.9

High risk 124 54.1

Criteria for High-risk stratification*

Age 41 33.1

WBC 33 26.6

T-cell markers 5 4.1

Combination Age and/or WBC and/or T-cell markers 21 16.9

CNS involvement 16 12.9

MRD+ 2 1.6

Other** 6 4.8

DFCI protocol

(87–1) 18 7.9

(91–1) 47 20.5

(95–01) 68 29.7

(00–1) 72 31.4

(5–1) 24 10.5

Cranial radiation therapy (median 18 Gy)

Yes 134 58.5

No 95 41.5

Age at diagnosis, median (range)

4 (0–18)

Time since the end of treatment

More than 10 years 174 76

Less than 10 years 55 24

Median (range) 13 (3–24)

Tested outcomes

Affected Unaffected Missing

Neurocognitive outcomes

Trail making test 20 (8.7%) 209 (91.3%) 0 (0.0%)

Verbal fluency 44 (19.2 %) 184 (80.4%) 1 (0.4%)

Digit span 45 (19.7%) 187 (80.3%) 0 (0.0%)

Emotional distress outcomes

Moderate-severe anxiety 21 (9.2%) 180 (78.6%) 28 (12.2%)

Moderate-severe depression 24 (10.5%) 177 (77.3%) 28 (12.2%)

DFCI, Dana-Farber Cancer Institute. WBC: White Blood Cell; CNS: Central Nervous System; MRD: Minimal Residual Disease.
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*
Criteria for High-risk stratification was mainly attributed based on age, white blood cell count, immunophenotype (presence of T-cell markers) 

and combination of these factors; as well as central nervous system (CNS) status and Minimal residual disease at diagnosis.

**
This category represents patients with chromosomal abnormalities and/or combination of factors.
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Table 2.

Top-ranking associations of the common variants analysis regarding the performance of the Trail making test.

Genotype Case*, N 
(%)

Control*, N 
(%)

Model Case*, N 
(%)

Control*, N 
(%) P value** OR [95%-

CI]
P value 
adj***

AK8 rs17407084

All cohort, N=229

TT 11 (55.0) 188 (90.0) TT 11 (55.0) 188 (90.0)

2.16E-04d 7.3 [2.7–19.7] 4.52E-04TC 7 (35.0) 21 (10.0)
TC+CC 9 (45.0) 21 (10.0)

CC 2 (10.0) 0 (0.0)

ZNF382 rs61732180

Males, N=112

CC 3 (27.3) 65 (64.4) CC+CT 6 (54.5) 97 (96.0)

3.58E-04r 20.2 [4.3–
95.4] 2.62E-04CT 3 (27.3) 32 (31.6)

TT 5 (45.5) 4 (4.0)
TT 5 (45.4) 4 (4.0)

AK8 rs17407084

Standard risk, N=105

TT 2 (28.6) 90 (91.8) TT 2 (28.6) 90 (91.8)

2.44E-04d 28.1 [4.7–
168.8] 4.40E-04TC 4 (57.1) 8 (8.2)

TC+CC 5 (71.4) 8 (8.2)
CC 1 (14.3) 0 (0.0)

AK8: Adenylate Kinase 8; ZNF: Zinc Finger Protein 382; FDR: false discovery rate; OR: odds ratio. TT indicates homozygosity for the T allele; 
TC represents heterozygosity, with one copy of the T allele and one copy of the C allele; CC indicates homozygosity for the C allele.

*
Participants with and without indicated complications are defined as cases and controls, respectively.

**
P values are calculated by chi-square or Fisher exact test, as appropriate. The most representative genetic model used is indicated (a: Additive; d: 

Dominant, r: Recessive).

***
P value adj: p value from logistic regression adjusted for age at diagnosis, sex, time since the end of treatment, protocol, and treatment variable 

(chemotherapy only or chemotherapy and radiotherapy).
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Table 3.

Top-ranking associations between common variants and Moderate-severe anxiety.

Genotype Case*, N 
(%)

Control*, N 
(%)

Model Case*, N 
(%)

Control*, N 
(%) P value** OR [95%-

CI]
P value 
adj***

PTPRZ1 rs740965 

All cohort, N=200

TT 10 (47.6) 147 (82.1) TT 10 (47.6) 147 (82.1)

1.00E-03 5.1 [1.98–
12.9] 1.00E-03TG 8 (38.1) 31 (17.3)

TG+GG 11 (52.4) 32 (17.9)
GG 3 (14.3) 1 (0.6)

MUC16 rs750295511 

All cohort, N=197

AA 10 (50.0) 158 (89.3) AA 10 (50.0) 158 (89.3)

7.20E-05 8.3 [3.1–22.5] 3.10E-05TA 10 (50.0) 19 (10.7)
AT+TT 10 (50.0) 19 (10.7)

TT 0 (0.0) 0 (0.0)

TNRC6C-AS1 rs2748431 

All cohort, N=167

GG 12 (63.2) 135 (91.2) GG 12 (63.2) 135 (91.2)

2.00E-03 6.1 [2.0–18.1] 1.00E-03GA 5 (26.3) 11 (7.4)
GA+AA 7 (36.8) 13 (8.8)

AA 2 (10.5) 2 (1.4)

APOL2 rs7285167 

Males only, N=95

GG 5 (50.0) 77 (90.6) GG 5 (50.0) 77 (90.6)

4.00E-03 9.6 [2.3–40.5] 3.00E-03GA 4 (40.0) 8 (9.4)
GA+AA 5 (50.0) 8 (9.4)

AA 1 (10.0) 0 (0.0)

C6orf165 rs61731441 

Males only, N=95

GG 3 (30.0) 70 (82.4) GG 3 (30.0) 70 (82.4)

1.00E-03 10.9 [2.5–
47.0] 2.00E-03GA 6 (60.0) 15 (17.6)

GA+AA 7 (70.0) 15 (17.6)
AA 1 (10.0) 0 (0.0)

PTPRZ1: Protein Tyrosine Phosphatase Receptor Type Z1; MUC16: Mucin 16, Cell Surface Associated; TNRC6C-AS1: TNRC6C antisense 
RNA 1; APOL2: Apolipoprotein L2; C6orf165: Cilia And Flagella Associated Protein 206; FDR: false discovery rate; OR: odds ratio. TT 
indicates homozygosity for the T allele; TG represents heterozygosity, with one copy of the T allele and one copy of the G allele; GG indicates 
homozygosity for the G allele; AA indicates homozygosity for the A allele; TA represents heterozygosity, with one copy of the T allele and one 
copy of the A allele; GA represents heterozygosity, with one copy of the A allele and one copy of the G allele.

*
Participants with and without indicated complications are defined as cases and controls, respectively.

**
P values are calculated by chi-square or Fisher exact test, as appropriate. Given the low frequency of homozygotes for minor alleles, genetic 

model in all cases was dominant.

***
P value adj: p value from logistic regression adjusted for age at diagnosis, sex, time since the end of treatment, protocol, and treatment variable 

(chemotherapy only or chemotherapy and radiotherapy).
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Table 4.

Top-ranking associations between common variants and Moderate-severe depression.

Genotype Case*, N 
(%)

Control*, N 
(%)

Model Case*, N 
(%)

Control*, N 
(%) P value** OR [95%-

CI]
P value 
adj***

EXO5 rs35672330 

Males only, N=94

TT 4 (44.4) 81(94.2) TT 4 (44.4) 81(94.2)

4.52E-04d 20.3 [4.1–
99.8] 4.90E-04TC 4 (44.4) 5 (5.8)

TC+CC 5 (55.6) 5 (5.8)
CC 1 (11.2) 0 (0.0)

EXO5: Exonuclease 5; FDR: false discovery rate; OR: odds ratio. TT indicates homozygosity for the T allele; TC represents heterozygosity, with 
one copy of the T allele and one copy of the C allele; CC indicates homozygosity for the C allele.

*
Participants with and without indicated complications are defined as cases and controls, respectively.

**
P values are calculated by chi-square or Fisher exact test, as appropriate. Given the low frequency of homozygotes for minor alleles, genetic 

model in all cases was dominant.

***
P value adj: p value from logistic regression adjusted for age at diagnosis, sex, time since the end of treatment, protocol, and treatment variable 

(chemotherapy only or chemotherapy and radiotherapy).
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Table 5.

Replication results, SJLIFE cohort, N=688*.

Gene rs number EAF

cases controls Allelic Fisher exact test Logistic regression**

n.2 n.1 n.0 n.2 n.1 n.0 OR [95%CI] P value OR [95%CI] LRT P 
value

Trail making test

All cohort, N= 675*

AK8 rs17407084 0.05 0 12 140 1 52 470 0.76 [0.36–
1.45] 0.45 0.75 [0.36–

1.44] 0.39

Males only, N= 337

ZNF382 rs61732180 0.26 7 36 40 14 94 146 1.36 [0.90–
2.04] 0.13 1.40 [0.92– 

2.15] 0.12

Moderate-severe anxiety

All cohort, N= 675*

PTPRZ1 rs740965 0.15 2 20 45 13 150 445 1.29 [0.77–
2.09] 0.31 1.52 [0.90–

2.50] 0.11

TNRC6C-AS1 rs2748431 0.07 0 9 58 5 77 526 0.93 [0.40–
1.92] 1.00 0.86 [0.38–

1.70] 0.67

Males only, N= 340

APOL2 rs7285167 0.08 0 2 32 0 52 254 0.33 [0.04–
1.29] 0.15 0.24 [0.04–

0.94] 0.040

C6orf165 rs61731441 0.1 1 3 30 1 61 244 0.69 [0.21–
1.80] 0.53 0.71 [0.23–

1.83] 0.50

Moderate-severe depression

Males only, N= 339

EXO5 rs35672330 0.06 0 10 45 0 33 251 1.62 [0.69–
3.50] 0.20 2.18 [0.91–

4.97] 0.08

AK8: Adenylate Kinase 8; ZNF: Zinc Finger Protein 382; PTPRZ1: Protein Tyrosine Phosphatase Receptor Type Z1; TNRC6C-AS1: TNRC6C 
antisense RNA 1; APOL2: Apolipoprotein L2; C6orf165: Cilia And Flagella Associated Protein 206; EXO5: Exonuclease 5.

EAF: Effect allele frequency; n.2: 2 copies of the effect allele; n.1: 1 copy of the effect allele; n.0: 0 copies of the effect allele; OR: odds ratio for 
each additional copy of the effect allele; CI: confidence interval; LRT P value: Likelihood ratio test P value.

*
While the total replication SJLIFE cohort consisted of 688 participants, it’s noteworthy that when participants with non-missing data were 

selected for the Trail making test and Moderate-severe anxiety regressions, the number included happened to be identical, with 675 survivors in 
each analysis. However, these participants were not the exact same survivors in both analyses.

**
Logistic regression analyses adjusted for continuous age at diagnosis, sex, continuous time between date of becoming a 5-year ALL survivor and 

date of test measurement, whether the survivor was treated with chemotherapy only versus chemotherapy plus radiation, and the top 20 principal 
components adjusting for genetic ancestry.
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Table 6.

Top-ranking associations of the rare variants identified through the SKAT-O test regarding the Moderate-

severe anxiety in HR patients, N=124.

Gene

SNVs tested

MAF
P value 
SKAT-

O

FDR-
BH 11/12+22 11 12+22

P 
value 
Fisher 

test

OR 
[95% 
CI]position (hg19) rs number

PCMTD1

chr8:52732981* rs201786115 0.013

9.4E-06 0.03

21.5 
(4.4–

105.9)*

chr8:52733110 0.008

chr8:52733164 rs149898988 0.021 Significant combination of collapsed variants**

chr8:52733209 rs202074278 0.022
91/9

Affected
5 

(50.0%)
5 

(50.0%)
4E-04

chr8:52733214* rs200377849 0.025 Unaffected
86 

(95.6%)
4 

(4.4%)

chr8:52733227* 0.016

CYP2W1

chr7:1024855* rs3735684
0.038

1.3E-05 0.03

Individual contribution*

21.9 
(4.2–

114.8)*

chr7:1024874
0.005

85/8
Affected

6 
(54.5%)

5 
(45.5%)

4E-04

chr7:1024921 0.005 Unaffected
79 

(96.3%)
3 

(3.7%)

PCMTD1: Protein-L-Isoaspartate (D-Aspartate) O-Methyltransferase Domain Containing 1; CYP2W1: Cytochrome P450 Family 2 Subfamily W 
Member 1; SNV: single nucleotide variation; MAF: minor allele frequency; FDR-BH: Benjamini–Hochberg false discovery rate; OR: odds ratio; 
CI: confidence interval.

*
SNVs that are identified as the most important contributors to the association signal are highlighted.

**
Collapsed variants (carriers of at least one of rare variants were included into the model, variants with missing values were excluded.

Genotypes were recoded as follows:11-homozygote wild type; 12-heterozygote variant; 22-homozygote variant.
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