Table 2.
Summary of model performance metrics.
| Metric model | Accuracy | Precision | Recall | F1 | AUC |
|---|---|---|---|---|---|
| LR | 0.6719 ± 0.0530 | 0.7196 ± 0.0499 | 0.7058 ± 0.0711 | 0.7106 ± 0.0492 | 0.7350 ± 0.0511 |
| MLP | 0.6714 ± 0.0479 | 0.6883 ± 0.0447 | 0.7896 ± 0.0820 | 0.7325 ± 0.0430 | 0.7333 ± 0.0515 |
| RF | 0.6588 ± 0.0470 | 0.7162 ± 0.0460 | 0.6750 ± 0.0740 | 0.6926 ± 0.0489 | 0.7079 ± 0.0545 |
| SVM | 0.6717 ± 0.0482 | 0.7196 ± 0.0475 | 0.7049 ± 0.0654 | 0.7103 ± 0.0451 | 0.7324 ± 0.0493 |
| TRACK | 0.6278 ± 0.0470 | 0.7061 ± 0.0511 | 0.6049 ± 0.0672 | 0.6495 ± 0.0503 | 0.6757 ± 0.0518 |
| TRUST | 0.6189 ± 0.0526 | 0.6491 ± 0.0459 | 0.7494 ± 0.1453 | 0.6840 ± 0.0890 | 0.6622 ± 0.0519 |
AUC=area under the curve; LR=logistic regression; MLP=multi-layer perceptron; RF=random forest; SVM=support vector machine; TRACK=Transfusion Risk and Clinical Knowledge; TRUST=Transfusion Risk Understanding Scoring Tool