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Meiotic recombination is crucial for human genetic diversity and chromosome segregation accuracy. Understanding its var-

iation across individuals and the processes by which it goes awry are long-standing goals in human genetics. Current ap-

proaches for inferring recombination landscapes rely either on population genetic patterns of linkage disequilibrium

(LD)—capturing a time-averaged view—or on direct detection of crossovers in gametes or multigeneration pedigrees, which

limits data set scale and availability. Here, we introduce an approach for inferring sex-specific recombination landscapes

using data from preimplantation genetic testing for aneuploidy (PGT-A). This method relies on low-coverage (<0.05×)

whole-genome sequencing of in vitro fertilized (IVF) embryo biopsies. To overcome the data sparsity, our method exploits

its inherent relatedness structure, knowledge of haplotypes from external population reference panels, and the frequent

occurrence of monosomies in embryos, whereby the remaining chromosome is phased by default. Extensive simulations

show our method’s high accuracy, even at coverages as low as 0.02×. Applying this method to PGT-A data from 18,967

embryos, we mapped 70,660 recombination events with ∼150 kbp resolution, replicating established sex-specific recombi-

nation patterns. We observed a reduced total length of the female genetic map in trisomies compared with disomies, as well

as chromosome-specific alterations in crossover distributions. Based on haplotype configurations in pericentromeric re-

gions, our data indicate chromosome-specific propensities for different mechanisms of meiotic error. Our results provide

a comprehensive view of the role of aberrant meiotic recombination in the origins of human aneuploidies and offer a ver-

satile tool for mapping crossovers in low-coverage sequencing data from multiple siblings.

[Supplemental material is available for this article.]

Recombination between homologous chromosomes is a key
source of human genetic diversity (Lynn et al. 2004; Peñalba and
Wolf 2020). The crossovers that mediate such genetic exchanges
during meiosis are also important for ensuring the accuracy of
chromosome segregation (Lister et al. 2010; Webster and Schuh
2017). Notably, female meiosis initiates during fetal development,
when homologs pair, acquire double-strand breaks, and establish
crossovers that form physical linkages (chiasmata) to stabilize
the chromosomes. Such chiasmata must then be maintained
over decades-long meiotic arrest, until meiosis resumes at ovula-
tion. Abnormal number and/or location of crossovers may predis-
pose oocytes to gains or losses of whole chromosomes
(aneuploidies), which are the leading cause of human pregnancy
loss and congenital disorders (Hassold and Hunt 2001).
Hypotheses about the role of recombination in aneuploidy forma-
tion largely originated from studies of model organisms (Lamb
et al. 2005; Lister et al. 2010; Herbert et al. 2015). Meanwhile,
the smaller number of studies in humans have primarily focused
on the subset of trisomies that are compatible with in utero devel-
opment (Zaragoza et al. 1994; Kong et al. 2004; Oliver et al. 2008;
Middlebrooks et al. 2014), with less focus on themost common tri-
somies (Chr 15, Chr 16, and Chr 22) observed in oocytes and pre-

implantation embryos (although see Hassold et al. 1995; Robinson
et al. 1998; Hall et al. 2007). To overcome this limitation, several
previous studies have analyzed all products ofmeiosis (i.e., the first
and second polar body, as well as a biopsy of the corresponding
embryo) (Capalbo et al. 2013; Ottolini et al. 2015). Although in-
sightful, such sampling is technically demanding, limiting sample
sizes and, in turn, limiting power and resolution for comparing ge-
netic maps.

Over the past decade, several studies on human embryos have
been conducted within the framework of preimplantation genetic
testing for monogenic disorders (PGT-M) using methods such as
karyomapping (Handyside et al. 2010), siCHILD/haplarithmisis
(Zamani Esteki et al. 2015), OnePGT (Masset et al. 2019), and
GENType (DeWitte et al. 2022), whereby parental DNA is assayed
along with that of the embryos, and unaffected embryos are prior-
itized for transfer. These genome-wide haplotypingmethods allow
mapping ofmaternal and paternal crossovers along chromosomes.
However, the number of patients that undergo PGT-M is small
compared with the number of patients that undergo preimplanta-
tion genetic testing for aneuploidy (PGT-A), again limiting an-
swers to broader questions about the crossover landscape. For
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example, a recent PGT-M study by Tšuiko et al. (2021) inferred the
parental and mechanistic origin of chromosome abnormalities in
2706 embryos from PGT-Mpatients and found 269 trisomies in to-
tal. A similar PGT-M study of recombination byMa et al. (2023) an-
alyzed 1519 embryos and 353 autosomal aneuploidies.

Other current approaches for inferring the landscape of
recombination rely either on population patterns of linkage dis-
equilibrium (LD)—capturing a time-averaged view of historical re-
combination events—or on direct detection of crossovers based
on genotyping of haploid gametes or multigeneration pedigrees
(e.g., parent–offspring trios), again limiting the scale and availabil-
ity of relevant data sets (Auton and McVean 2007; Halldorsson
et al. 2019; Spence and Song 2019; Adrion et al. 2020). Moreover,
most of thesemethods are designed for discovering recombination
using data from normal, disomic chromosomes. Mapping meiotic
crossovers in large samples of both normal and aneuploid embryos
using a unified statistical framework would allow a robust test of
the role of recombination in the genesis of aneuploidy.

To this end, we introduce a statistical approach tailored to
sequencing data from PGT-A, which is based on low-coverage
(<0.05× per homolog) whole-genome sequencing of biopsies
from in vitro fertilized (IVF) embryos. We retrospectively apply
ourmethod to normal disomic chromosomes identified in existing
low-coverage PGT-A data from 18,967 embryos and replicate fea-
tures of sex-specific recombination maps that were previously de-
scribed based on large prospective studies of living populations.
We then extend our method to trisomies, testing the extent to
which the landscape of recombination differs between normal
and aneuploid chromosomes. Together, our study sheds light on
the dual function of meiotic recombination in generating genetic
diversity while ensuring fidelity of human meiosis.

Results

A method for inferring crossovers based on low-coverage

sequencing data from multiple siblings

One general approach for discovering the genomic locations of
meiotic recombination events is to compare genotype data from
related individuals. Such data can be scanned to identify regions
where haplotypes match (i.e., are identical by descent [IBD]).
The boundaries of the matched haplotypes reflect the locations
ofmeiotic crossovers in the history of the sample. The information
gained by comparing haplotypes among relatives serves as the
foundation for several different approaches for PGT-M (Handyside
et al. 2010; Zamani Esteki et al. 2015;Masset et al. 2019). However,
directly calling diploid genotypes from sequencing data requires a
minimum coverage of 2× (to sample both alleles) and in practice
requires coverage several fold higher to overcome technical chal-
lenges such as coverage variability, ambiguous alignments owing
to repetitive sequences, and other sequencing and analytic arti-
facts. Because data from PGT-A typically fall well below these cov-
erage requirements, they are generally assumed unsuitable for
applications that demand genotypes, including the study of re-
combination landscapes in embryos. However, as exemplified by
common methods such as genotype imputation (Marchini and
Howie 2010), knowledge of patterns of LD from external popula-
tion genetic reference panelsmay facilitate the extraction ofmean-
ingful signal from sparse, low-coverage data sets, including in the
context of prenatal genetics (Liu et al. 2018; Ariad et al. 2021).

Building on this logic, we introduce a haplotypematching ap-
proach, named linkage disequilibrium-informed comparison of

haplotypes among sibling embryos (LD-CHASE), tailored to DNA
sequencing data from PGT-A. Most current implementations of
PGT-A involve low-coverage high-throughput sequencing of tro-
phectoderm biopsies from IVF embryos at day 5 or 6 postfertiliza-
tion, with the goal of prioritizing chromosomally normal (i.e.,
euploid) embryos for transfer to improve IVF outcomes (Ver-
meesch et al. 2016). PGT-A offers a unique source of genomic
data from large numbers of sibling samples, as each IVF cycle typ-
ically produces multiple embryos, and often multiple IVF cycles
are necessary in infertility treatment.

Disomic chromosomes of any two sibling embryos will pos-
sess discrete genomic intervals with different counts of matching
haplotypes, and transition points between these intervals reflect
the locations of meiotic crossovers. The occurrence of monosomy
(or uniparental isodisomy [isoUPD], isolated to individual chro-
mosomes or genome-wide [GW-isoUPD]) among a set of sibling
embryos greatly simplifies this comparison, as the remaining chro-
mosome is phased by default, facilitating discovery of sex-specific
crossovers (i.e., originating during gamete formation in one of the
two parents). Here, we leverage the common occurrence of chro-
mosome loss to reveal the sex-specific landscapes of meiotic cross-
overs among a large sample of IVF embryos.

Briefly, LD-CHASE uses sparse genotypes obtained from low-
coverage sequencing data to identify the locations ofmeiotic cross-
overs (Fig. 1; Supplemental Fig. S1). At such coverages, direct com-
parison of haplotypes is not possible, as a small minority of the
genome is covered by any sequencing reads, and positions of
aligned reads from samples under comparison rarely overlap. We
circumvent this challenge based on patterns of LD, whereby obser-
vations of a set of alleles fromone sequencing readmay provide in-
direct information about the probabilities of alleles at nearby,
unobserved variant sites. This, in turn, informs the relative
probability that a given pair of reads originated from identical ho-
mologous chromosomes versus from distinct homologous chro-
mosomes, which we formalize using a likelihood framework (see
Methods). Transitions between these matched and unmatched
states indicate the locations of meiotic crossovers.

Evaluating method performance via simulation

To assess the performance of LD-CHASE, we simulated chromo-
somes from pairs of embryos consisting of a monosomy (i.e., refer-
ence sample) and disomy (i.e., test sample) that either shared a
matching haplotype or were unrelated. A meiotic monosomy
can occur owing to errors at several distinct stages of oogenesis
(Supplemental Fig. S2).We generated these pairs bymixing phased
chromosomes from the 1000 Genomes Project (The 1000 Ge-
nomes Project Consortium 2015), as described in the Methods.
We focused our simulations on Chromosome 16, which is the
chromosome most frequently affected by aneuploidy in preim-
plantation embryos, using a bin size of 2Mbp and varying the sam-
ple ancestries across all superpopulations from the 1000 Genomes
Project.

We allowed our classifier to assign bins as “matched,” “un-
matched,” or “ambiguous” to denote uncertainty, and we used a
balanced receiver operating characteristic (ROC) curve to evaluate
performance (see Methods) (Fig. 2; Supplemental Fig. S3). Our re-
sults showed high sensitivity and specificity across all ancestries
at a coverage of 0.05× per homolog (average area under the curve
[AUC] of 0.989). As coverage was reduced to 0.025× and 0.013×,
the AUC decreased by 0.014 and 0.053 on average, respectively, al-
though performance wasmore or less affected in certain regions of
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the genome (Fig. 2). Notably, performance of the classifier is affect-
ed by the local density of SNPs and sequencing reads, as well as an-
cestry matching between the reference panel and the target
samples (Supplemental Figs. S3, S4).

Application to a large PGT-A data set

Encouraged by the performance of LD-CHASE on simulated data,
we proceeded to apply it to a large data set from the CReATe

Fertility Centre (Toronto, Canada). The data set consists of low-
coverage sequencing data from 18,967 embryos from 2558 IVF
patients, collected between April 2020 and August 2022. To select
appropriate ancestry-matched reference panels, we first inferred
the genetic similarity of each embryo to reference samples from
the 1000 Genomes Project (The 1000 Genomes Project
Consortium 2015) using LASER (see Methods) (Wang et al.
2014). The results reflect the diverse ancestry composition of the
patient population, with 68.71% (13,104) of embryos showing
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Figure 1. A statistical approach for meiotic crossover discovery based on low-coverage sequencing data from preimplantation genetic testing. (A)
Crossover detection is based on haplotype matching between a monosomic chromosome (which is phased by default) and the disomic chromosomes
of sibling embryos from the same IVF case. (B) Analysis is conducted within nonoverlapping genomic windows on the scale of 10–100 kbp, defined by
the length of typical human haplotypes. (C) Within each window, two to 18 reads are resampled, prioritizing potentially informative reads that overlap
common polymorphisms in the population. (D) Frequencies and joint frequencies (i.e., haplotype frequencies) of these SNPs are quantified within an ex-
ternal phased genetic reference panel. (E) Based on these frequencies, the likelihoods of the observed reads are computed under both the matched- and
unmatched-haplotype hypotheses. (F) The hypotheses are compared by computing a likelihood ratio, with variance estimated by bootstrapping. (G) Local
extrema in the aggregated log-likelihood ratio indicate the locations of meiotic crossovers. (H) Putative crossovers observed in the majority of sibling em-
bryos can be attributed to the monosomic reference chromosome, whereas the remaining crossovers are attributed to the test samples.
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the greatest genetic similarity to European reference samples,
6.76% (1290) of embryos showing the greatest genetic similarity
to South Asian reference samples, 5.74% (1094) of embryos show-
ing the greatest genetic similarity to East Asian reference samples,
and the remaining embryos showing lower genetic similarity to
reference samples, for example, owing to recent admixture
(Supplemental Fig. S5).

Previous studies have shown that the vast majority of mono-
somies observed in blastocyst-stage embryoswith PGT-A are ofma-
ternal meiotic origin, such that only the paternal chromosome
remains (McCoy et al. 2015; Tšuiko et al. 2021). LD-CHASE uses
such monosomies to map paternal crossovers in sibling disomic
embryos. Meanwhile, haploidy or genome-wide uniparental iso-
disomy (GW-isoUPD) observed at the blastocyst stage nearly exclu-
sively involves the sole presence of the maternal genome (McCoy
et al. 2015; Sagi and Benvenisty 2017; Tšuiko et al. 2021), allowing
us tomap genome-widematernal crossovers in sibling disomic em-
bryos. LD-CHASE thus requires preliminary analysis to identify
chromosome abnormalities based on signatures of altered depth
of coverage and/or genotype observations.

To this end, the copy number of each autosome of each sam-
ple was inferred using WisecondorX (Raman et al. 2019) based on
within-sample normalized depth of coverage. Across the entire
data set, we identified 388,366 disomies, 3307 trisomies, 4294
monosomies, 332 segmental gains, and 685 segmental losses
(Supplemental Fig. S6; Supplemental Table S1). The monosomic
chromosomes traced to embryos obtained from 1506 (58.85%)
unique patients, facilitating mapping of paternal crossovers
among 30,645 disomic chromosomes of 12,348 total embryos.
Because maternal meiotic monosomies observed in blastocyst-
stage embryos are highly enriched for Chromosomes 15, 16, 21,
and 22, the mapping of paternal crossovers was largely relegated
to these chromosomes, with much lower resolution for the rest
of the genome.

Importantly, methods such as WisecondorX compare cover-
age across chromosomes within a sample and may therefore fail

to detect aneuploidies that simultaneously affect many chromo-
somes. In extreme cases such as triploidy and haploidy/GW-
isoUPD, in which coverage is uniform across the genome despite
the ploidy aberration, embryosmaybe erroneously classified as eu-
ploid. To overcome this limitation, we applied our published hap-
lotype-aware method, LD-PGTA (Ariad et al. 2021), to reclassify
all chromosomes that were initially identified as disomic by
WisecondorX. LD-PGTA identified 155 (1.65%) samples as triploid
and 395 (4.20%) samples as haploid/GW-isoUPD. Importantly,
such haploid/GW-isoUPD embryos were distributed across 184
(7.19%) patients, facilitating mapping of genome-wide maternal
crossovers among 40,015 disomic chromosomes of 1898 total
embryos.

Sex-specific maps of crossovers on disomic chromosomes

Considering only chromosomes with informative genomic win-
dows that covered at least 50% of their total length (see
Methods), we identified 54,284 maternal crossovers across
27,026 chromosomes and 22,578 paternal crossovers across
21,050 chromosomes. An example of crossovers mapped in a sin-
gle set of sibling embryos is provided in Figure 3, in which transi-
tions from intervals that do not match (blue) and that do match
(red) the referencemonosomic chromosome indicate the locations
ofmeiotic crossovers (purple lines; seeMethods). The exception to
this interpretation involves transitions that are shared across all (or
nearly all) sibling embryos, which instead reflect crossovers attrib-
utable to the reference monosomic chromosome itself (orange
dashed lines). The genome-wide distributions of crossovers on
disomic chromosomes are provided in Supplemental Figures S7
and S8. We note that no crossovers are reported on the short
arms of Chromosomes 13, 14, 15, 21, and 22 as their heterochro-
matic, highly repetitive nature makes them largely inaccessible
to short-read-based analyses. Moreover, for the same reason, these
chromosome arms are largely devoid of variation in the reference
panel data upon which our method relies.

Figure 2. Evaluating the sensitivity and specificity of meiotic crossover detection based on simulation. Using data from the 1000 Genomes Project, we
simulated pairs of monosomy 16 and disomy 16, in which half of the pairs possessed matched haplotypes and the other half possessed unmatched hap-
lotypes. Thenwe divided Chromosome 16 into 45 bins (of∼2Mbp) and calculated a balanced ROC curve (seeMethods) for each bin, averaging over all the
balanced ROC curves to obtain amean balanced ROC curve.We repeated this procedure over a range of depths of coverage and across sets of samples from
all superpopulations of the 1000 Genomes Project, abbreviated as follows: (AMR) admixed American, (AFR) African, (EAS) East Asian, (EUR) European, (SAS)
South Asian.

Meiotic recombination influences aneuploidy risk

Genome Research 73
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278168.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278168.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278168.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278168.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278168.123/-/DC1


The crossover distributions were strongly correlated with sex-
specific genetic maps published by deCODE, which were based on
whole-genome sequencing of living parent–offspring trios (Hall-
dorsson et al. 2019), in broad support of the accuracy of our meth-
od (Fig. 4). The observed correlation was particularly strong for
putative maternal crossovers (r=0.86) compared with putative pa-
ternal crossovers (r=0.79). The smallest autosomal chromosomes
are enriched for maternal meiotic aneuploidies and thus offer
the greatest resolution for mapping paternal crossovers (for chro-
mosome-specific correlations, see Supplemental Figs. S8–S10). It
was evident from our analysis that LD-CHASE performed differ-
ently for maternal and paternal crossovers because monosomies
have only half the coverage compared with haploidy and unipa-
rental isodisomy (isoUPD). This difference in depth of coverage
stems from a lower copy number relative to the baseline. Addition-
ally, the frequency of monosomies varies among autosomes, with
some being rare. The low frequencies reduce our resolution and re-
sult in recombinationmaps that are relatively less precise. Notably,
we observed that the correlations significantly declined when
comparing our inferred female map to the deCODE male map
(r =0.33) and vice versa (r=0.75), supporting our assumptions
about the parental origins of various chromosome abnormalities
(Supplemental Figs. S11, S12).

Chromosome-specific propensities for various mechanisms

of trisomy formation

Previous studies have suggested that chromosomes may vary in
their susceptibility to segregation errors occurring during meiosis
I (MI), meiosis II (MII), and mitosis (Hassold et al. 1995; Lamb
et al. 1996; Bugge et al. 1998, 2007; Robinson et al. 1998; Hall
et al. 2007). MI and MII errors can be roughly identified based
on tracts of distinct (i.e., “both parental homologs” [BPH]) or iden-
tical (i.e., “single parental homolog” [SPH]) haplotypes, respective-
ly, inherited from a single parent in regions spanning the
centromere. Meanwhile, patterns of SPH chromosome-wide indi-
cate a potential mitotic origin of trisomy (or MII error without re-
combination). Although previous studies have noted that the
attribution of centromere-spanning BPH and SPH patterns to MI
and MII errors is imperfect owing to alternative mechanisms by
which the signatures may originate (Chernus et al. 2021), our re-
sults support the hypothesis that chromosomes possess unique
propensities for various forms of segregation error (χ2 [21, N=
1911] = 393.3, P=2.3 ×10−70) (Fig. 5; Supplemental Table S2).
The vast majority (>81%) of trisomies of Chromosomes 15, 16,
19, 21, and 22 showed haplotypic patterns consistent with errors
inMI, whereas Chromosomes 11, 13, and 14 showedmoremodest
excesses (∼70%) of MI errors (binomial test, Bonferroni-adjusted P
<0.05 for all noted chromosomes). Meanwhile, the remainder of
chromosomes were characterized by a roughly equal number of
MI and MII errors (36%–61%; binomial test, Bonferroni-adjusted
P>0.05 for all noted chromosomes).

An altered landscape of crossovers among aneuploid versus

disomic chromosomes

Abnormal number or location of meiotic crossovers between ho-
mologous chromosomes may predispose oocytes to aneuploidy,
as shown by several previous studies (for review, see Hassold and
Hunt 2021). Our published method, LD-PGTA (Ariad et al.
2021), facilitates the mapping of crossovers on trisomic chromo-
somes, which can then be compared to the crossovermap for diso-
mic chromosomes obtained via LD-CHASE. One caveat of this

Figure 3. A representative example of crossover discovery based on
haplotype matching among sibling IVF embryos. In this example,
Chromosome 10 of each test embryo is compared with a single sibling
reference embryo with monosomy of Chromosome 10. Evidence of hap-
lotype nonmatching is indicated by positive log-likelihood ratios, whereas
evidence of haplotype matching is indicated by negative log-likelihood
ratios. Crossovers are identified as transitions from positive (blue) to nega-
tive (red) log-likelihood ratios or vice versa. Each point corresponds to a bin
size of 3Mbp and consists of a varying number of genomic windows. Error
bars denote 95% confidence intervals. Crossovers attributed to the mono-
somic chromosome are indicated with dashed orange lines (defined as
those observed in more than half of test samples), whereas crossovers
attributed to the test samples themselves are indicated with purple lines.
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comparison is that LD-PGTA and LD-CHASE possess different sen-
sitivities and specificities, which also vary along the genome, as
evident from our simulation-based benchmarking analyses (Sup-
plemental Figs. S3, S4, S13, S14). To ensure that the observed dif-
ferences between the crossover distributions were not driven by
these technical differences, we merged together monosomies
and disomies to create artificial trisomies (see Methods) such
that the disomies and trisomies could both be analyzed with LD-
PGTA in a standardized manner. The number (r=0.99) and ge-
nome-wide distribution (r=0.90) of disomic crossovers inferred
by LD-CHASE and LD-PGTA showed strong agreement, suggesting
that themethods are robust to their tech-
nical differences and supporting the use
of LD-CHASE in downstream compari-
sons between trisomies and disomies
(see Supplemental Fig. S15).

Across all chromosomes, these com-
parisons revealed a 35% depletion of
crossovers for trisomies relative to diso-
mies (Fig. 6). On a per-chromosome
basis, the depletion was observed across
all chromosomes but was largest for
Chromosome 16 (54%) and smallest for
Chromosome 4 (17%). Although these
observations are consistent with the hy-
pothesis that a reduced rate (or absence;
i.e., “exchangeless homologs”) of recom-
bination contributes to aneuploidy risk
(Hassold and Hunt 2021; Hassold et al.
2021), we note that theymay be partially
driven by a failure of our method to
detect crossovers on reciprocal recombi-
nant chromosomes—a limitation that
uniquely applies to trisomies but not

disomies and affects nearly all previous genotype-based studies
(see Discussion).

In addition to these global differences in numbers of cross-
overs, several chromosome-specific alterations in the landscapes
of crossovers were evident from our results (Fig. 6; Supplemental
Figs. S16–S19). We used the Kolmogorov–Smirnov (KS) test to
quantify differences in crossover landscapes, generating the null
distribution by permutation (see Methods). Chromosomes 7, 14,
and 16 showed significant differences in crossover landscapes be-
tween disomic and trisomic chromosomes (p-value <0.05; al-
though note the small sample sizes for Chromosomes 7 and 14),

A B

Figure 4. Number of maternal (A) and paternal (B) crossovers per sampled homolog in genomic bins compared between our study and published ge-
netic maps from deCODE. Data from deCODE were obtained from Halldorsson et al. (2019). Crossovers were identified as transitions between regions of
“matched” and “unmatched” haplotypes, in which each region included at least 15 genomic windows and a z-score of at least 1.96. Pearson correlation
coefficients (r) between the deCODE map and our map across genomic bins are reported for each panel (for chromosome-specific comparison, see
Supplemental Figs. S9, S10).

Figure 5. Stratification of trisomies by autosome and inferred source of error. Chromosome-wide pat-
terns of SPH were designated as potentially mitotic in origin (yellow). Samples with tracts of BPH in re-
gions surrounding the centromere were classified as putative MI errors (red), whereas tracts of BPH
elsewhere on the chromosome were classified as putative MII errors (blue).
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whereas Chromosome 22 fell just above this threshold (p-value =
0.051) (Supplemental Table S3). Our observations reveal that on
Chromosome 16, trisomies lacked a pair of hotspots in the vicinity
of the centromere—one on each arm—broadly consistent with the
previous observation that distal crossovers were enriched among a
smaller sample of 62 cases of trisomy 16 (Hassold et al. 1995; Has-
sold and Hunt 2021). Meanwhile, trisomies of Chromosome 22
appeared relatively enriched for crossovers near the center of the
q-arm. Results for less frequent trisomies are depicted in Supple-
mental Figures S16 through S19.

Discussion

Meiotic crossovers are necessary for ensuring accurate pairing and
subsequent segregation of chromosomes following decades-long
dictyate arrest in human females (Gray and Cohen 2016).

Previous studies have shown chromo-
some-specific associations between pat-
terns of recombination and various
forms of meiotic aneuploidy (Hassold
et al. 1995; Lamb et al. 1996; Bugge et
al. 1998, 2007; Robinson et al. 1998;
Hall et al. 2007). For example, early stud-
ies of trisomy 16 (the most common au-
tosomal trisomy detected in human
preimplantation embryos) suggested a
depletion of recombination in pericen-
tromeric regions relative to euploid con-
trol samples (Southern 1975; Saiki et al.
1985). However, the accuracy, genomic
resolution, and statistical power of
many such studies have been limited by
the genetic assays they used (e.g.,
Southern blot, PCR, etc.), as well as the
challenge of achieving large samples
from living trisomic individuals or prod-
ucts of conception. Because of its inher-
ent relatedness structure, PGT-A offers a
natural source of retrospective data for
crossover mapping, including both via-
ble and nonviable embryos, but current
implementations based on low-coverage
whole-genome sequencing pose a tech-
nical challenge for recovering relevant
genotype information.

To address this challenge, our hap-
lotype-aware method (LD-CHASE) uses
known LD structure from an external ref-
erence panel, as well as the frequent oc-
currence of monosomies (which are
phased by default), to map crossovers
based on comparisons of haplotypes
among samples of sibling embryos. The
resulting sex-specific maps of crossovers
generated by our method were broadly
consistent with those generated in previ-
ous prospective studies. The sex-specific
nature of these patterns also supports
our assumption that most monosomies
observed in blastocyst-stage IVF embryos
(of adequate morphology to be candi-
dates for transfer and thus tested with

PGT-A) originate during maternal meiosis, whereas most cases of
haploidy/GW-isoUPD solely possess a maternally inherited set of
chromosomes. The latter phenomenon may arise when sperm
cells trigger egg activation but fail to fuse with the ovum, after
which the maternal genomemay duplicate to produce two identi-
cal complements (Xu et al. 2015). Our observations about the sex-
specific origins of various forms of aneuploidy thus independently
replicate previous studies that directly assayed parental genomes
(McCoy et al. 2015; Tšuiko et al. 2021). Although we are eager to
understand the differences in recombination maps of trisomies
stemming frombothMI andMII errors, the size of our data set lim-
its such exploration. The most frequently observed trisomies are
15, 16, 19, 21, and 22, yet <25% are of MII origin. In the future,
we intend to delve deeper using larger PGT-A data sets that include
parental genomic data. Furthermore, the ability to produce sex-
specific crossover maps from PGT-A data could pave the way for

A

B

Figure 6. Differences in number and location of inferred crossovers between disomic and trisomic sam-
ples. (A) Spatial distributions of inferredmeiotic crossovers in disomies (left; mappedwith LD-CHASE) and
trisomies (right; mapped with LD-PGTA) across Chromosomes 13, 15, 16, 18, 21, and 22. Regions with
qualitative differences are highlighted in light gray, whereas centromeres are indicated with diagonal
shading. (B) Comparisons of female genetic map length for disomies (blue) versus trisomies (red) for
each autosome. The observed rates of meiotic crossover were consistently lower for trisomies compared
with disomies. Error bars denote 95% confidence intervals as estimated by bootstrapping.
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studies seeking to understand the genetic basis of recombination
phenotypes and the implications of extreme deviations in these
phenotypes for meiotic errors and potential infertility.

As a first step toward this goal, we investigated the association
between crossover phenotypes and chromosome abnormalities
observed in preimplantation embryos. Although broadly consis-
tent with previous studies that used smaller samples or were re-
stricted to living individuals with viable trisomies, our data
provide unified views of these phenomena across all autosomes
and support the hypothesis that the number and chromosome-
specific locations of meiotic crossovers influence risk of aneuploi-
dy. However, the observation that the length of the genetic map is
shorter for trisomies versus disomies could be partially driven by
the inability to detect crossovers on reciprocal chromosomes
that derive from a single crossover event and were both transmit-
ted to the oocyte to produce a trisomy. Future studies may use
linked-read or long-read sequencing to achieve direct read-based
phasing and overcome this limitation (Bansal 2019; Sun et al.
2019).

Despite the methodological advances we report here, cross-
overmapping from sequencing-based PGT-A data possesses several
other technical limitations, including the modest resolution per
sample (∼150 kbp). This limitation is driven by the combination
of the low coverage (and thus sparsity) of the aligned reads (less
than 0.05×), the low rates of heterozygosity of human genomes
(less than 0.001), and the extent of LD in the reference panel (<1
Mb). Our benchmarking analyses additionally show that perfor-
mance degrades with genetic distance between the test sample
and reference panel owing to differences in allele frequencies
and LD structure, similar to challenges encounteredwhen transfer-
ring polygenic scores across populations (Wang et al. 2022). To
overcome these sources of error, we aggregated signal across con-
secutive genomic windows, thereby increasing the classification
accuracy at the cost of resolution. Even with such an approach,
it is important to note that performance is not uniform across
the genome, as regions near centromeres, telomeres, or other re-
petitive regions are enriched for false positives and negatives rela-
tive to the genomic background.

An additional potential caveat regards the possibility that
ovarian stimulation or other aspects of IVF may alter the cross-
over landscape of IVF embryos compared with non-IVF embryos
or live-born individuals. Although we cannot formally rule out
this possibility, we consider it implausible because maternal
crossovers are established during prophase I of meiosis, which be-
gins during female fetal development. As such, the locations of
crossovers are determined long before any IVF-related procedures
are introduced. The observed differences in the crossover land-
scapes between IVF embryos and living individuals are therefore
likely to be indirect, for example, driven by differences in viabil-
ity of embryos with high versus low recombination rates owing
to the relationship between recombination and aneuploidy.
Although we expect this viability selection to apply to both IVF
and naturally conceived embryos, this is an intriguing question
for future investigation.

One promising future direction is the extension of our haplo-
type-aware approach to PGT-M, combining knowledge of popula-
tion genetic patterns of LD in a reference panel with information
from sibling embryos (or alternative data sources such as gametes)
to infer transmission or nontransmission of pathogenic haplo-
types from parents to offspring. Although potentially lowering
costs and increasing efficiency, such an approach will require ex-
tensive validation and benchmarking to determine its feasibility

and accuracy given the probabilistic nature of LD and the high
stakes of PGT-M. In the meantime, LD-CHASE offers a flexible
tool for mapping crossovers in low-coverage sequencing data
from multiple sibling embryos, toward a better understanding of
the factors that modulate the meiotic crossover landscape and
the role of recombination in the origins of aneuploidies.

Methods

Prioritizing informative reads

Our method seeks to overcome the sparse nature of low-coverage
sequencing data by leveraging LD structure of an ancestry-
matched reference panel, consisting of phased haplotypes from
high-coverage sequencing data. Measurements of LD require pair-
wise and higher-order comparisons andmay thus grow intractable
when applied to large genomic regions. To ensure computational
efficiency, we developed a scoring algorithm to prioritize reads
based on their potential information content, as determined by
measuring haplotype diversity within a reference panel at sites
that they overlap. We emphasize that the priority score of a read
only depends on variation within the reference panel and not
on the alleles that the read possesses. The score of a read is calculat-
ed as follows:

1. Given the ancestry composition of the target sample (e.g., 30%
ancestry with genetic similarity to European reference samples
and 70%ancestry with genetic similarity to East Asian reference
samples), a suitable reference panel is chosen (see subsequent
section “Assembling an ancestry-matched reference panel”).

2. Based on this reference panel, we list all biallelic SNPs that over-
lap with the read and their reference and alternative alleles.

3. Using the former list, we enumerate all the possible haplotypes.
In a region that contains n biallelic SNPs, there are 2n possible
haplotypes.

4. The effective frequency of each haplotype is estimated from the
reference panel as

feff (A, B, C) =
∑
i

aifi(A, B, C), (1)

where αi is the ancestry proportion from the ith population, and∑
i ai = 1 (e.g., α1 = 0.3 and α2 = 0.7). Moreover, fi(A, B, C) is the

joint frequency of the SNP alleles A, B, and C in the ith popula-
tion.Herewe assumed n=3, but the formula is applicable to any
n.

5. We increment the priority score of a read by one for every hap-
lotype with a frequency between f0 and 1− f0.

An example of scoring a read that overlaps with three SNPs
appears in the Supplemental Methods. Our scoringmetric is based
on the principle that reads that overlap SNPs with intermediate al-
lele frequencies should receive high priority, as the inclusion of
such sites will increase our ability to discern between two haplo-
types. In the simplest case, in which a read overlaps with only a
single SNP, the score of the read would be two when the minor al-
lele frequency (MAF) is at least f0 and otherwise would be zero. We
note that all observed alleles from the same read are considered as
originating from the same underlying molecule. Hence, our score
metric reflects the number of common haplotypes existing in the
population in the chromosomal region that overlapswith the read.
For a reference panel on the scale of the 1000 Genomes Project
(about 2500 unrelated individuals), 25%–45% of common SNPs
have a nearest neighbor within 35 bp. Hence, even for short reads,
it is beneficial to use a scoring metric that accounts for reads that
span multiple SNPs.
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Comparing haplotype matching hypotheses

By virtue of LD, observations of a set of alleles from one read may
provide information about the probabilities of allelic states in an-
other read that originated from the sameDNAmolecule (i.e., chro-
mosome). In contrast, when comparing reads originating from
distinct homologous chromosomes, allelic states observed in one
read will be uninformative of allelic states observed in the other
read. As two siblings are characterized by chromosomal regions
with different counts of matched haplotypes, a change in the
count along the chromosome indicates the position of a meiotic
crossover, that is, an exchange of DNA segments between non-
sister chromatids during prophase I of meiosis. Similarly, a pair
of half-siblings allows us to contrast the crossovers in either the pa-
ternal or the maternal homologs. Extending this logic, we note
that sequences from either a monosomic sibling-embryo, a sibling
embryo with GW-isoUPD, or individual parental gametes would
similarly allow us to isolate crossovers in embryo genomes that
arose during oogenesis or spermatogenesis.

We consider two sibling embryos, one has a monosomy and
the second is a healthy diploid, consisting of two copies of the ge-
nome: amaternal and a paternal copy. For a set of reads aligned to a
defined genomic region, we compare the likelihoods of the ob-
served alleles under two competing hypotheses:

1. Themonosomic embryo and the healthy diploid havematched
haplotypes, denoted as the matched-haplotype hypothesis.

2. The monosomic embryo and the healthy diploid have un-
matched haplotypes, denoted as the unmatched-haplotype
hypothesis.

A transition between regionswithmatched andunmatched haplo-
types indicates the location of a meiotic crossover.

Our statistical models consider a situation in which one read
is drawn from the monosomic chromosome and the second from
the disomic chromosome of a sibling. The odds of two reads being
drawn from identical versus distinct haplotypes differ under the
matched- and unmatched-haplotype hypotheses. Specifically, for
the matched-haplotype hypothesis, the odds are 1:1, and for the
unmatched-haplotype hypothesis, the odds are 0:1. If a pair of
reads is drawn from identical haplotypes, the probability of observ-
ing the two alleles is given by the joint frequency of these two al-
leles (i.e., the frequency of the haplotype that they define) in the
reference panel. In contrast, if a pair of reads is drawn fromdistinct
haplotypes, then the probability of observing the two alleles is
simply the product of the frequencies of the two alleles in the ref-
erence panel:

Pmatched(A ^ B) = 1
2
f (A, B)+ 1

2
f (A)f (B), (2)

Punmatched(A ^ B) = f (A)f (B), (3)

where f (A) is the frequency of allele A, and f (A, B) is the joint fre-
quency of alleles A and B in the population.

These statisticalmodels can then be generalized to arbitrary ad-
mixture scenarios by a simple substitution.We assume that eachdis-
tinct parental haplotype is drawn fromanancestral populationwith
a probability equal to the ancestry proportion of the tested individ-
ual that is associated with that population. In accordance with the
assumption, we replace each allele frequency distribution, f, by
the combination

∑
i aif i. Here αi is the probability that the alleles

originated from the ith population, fi is the allele frequency distribu-
tion for the ith population, and

∑
i ai = 1. For example, under this

substitution, Punmatched(A ^ B) = a1f1(A, B)+ (1− a1)f2(A, B) for
admixture between two populations.

Likelihoods of the two hypotheses are compared by comput-
ing a log-likelihood ratio (LLR):

g(A, B) = log
Punmatched(A ^ B)
Pmatched(A ^ B)

. (4)

When a read overlaps with multiple SNPs, f(A) should be interpret-
ed as the joint frequency of all SNP alleles that occur in read A (i.e.,
the frequency of haplotype A). Similarly, f(A, B) would denote the
joint frequency of all SNP alleles occurring in reads A and B. The
equations above were extended to consider up to six reads per win-
dow and homolog, as described in the later section “Generalization
to an arbitrary number of reads.” Estimates of allele and haplotype
frequencies from a reference panel do not depend on theoretical as-
sumptions but rely on the idea that the sample is randomly drawn
from a population with similar ancestry. One limitation, which we
consider, is that reliable estimates of probabilities near zero or one
require large reference panels, such as the 1000 Genomes Project
(The 1000 Genomes Project Consortium 2015).

Determining optimal size of a genomic window

Because pairwise LD in human genomes decays on average to a
quarter of its maximal value over physical distances of 100 kbp
(The 1000 Genomes Project Consortium 2015), the length of the
chromosomes is divided into genomic windows on a scale consis-
tent with the length of typical human haplotypes (104–105 bp).
Although one library consists of two homologs and the second
consists of a single homolog, we would like to sample an even
number of reads from each homolog. Thus, for each DNA se-
quence, we only consider the depth of coverage per homolog
(i.e., we divide the coverage by the ploidy for the chromosome
of each sample under consideration).

We require a minimal number of reads per genomic window
and homolog, as determined by the sample with the lowest aver-
age depth of coverage. We then scan the chromosome in a sliding
window, using a window size that adjusts according to the local
depth of coverage of the two different sequenced samples. This
adaptive sliding window approach possesses advantages over a
fixed length window in that it (1) accounts for GC-poor and GC-
rich regions of a genome, which tend to be sequenced at lower
depths of coverage using Illumina platforms (Chen et al. 2013),
and (2) accounts for varying densities of SNPs across the genome
(The International SNP Map Working Group 2001).

The algorithm simultaneously scans aligned reads from the
two samples in the forward direction of the reference genome
and identifies informative reads (i.e., reads that reach the priority
score threshold) from both samples within genomic windows.
For each genomic window, the minimal number of required reads
from the DNA sequence of the disomy is twice the minimal num-
ber from the monosomy. If (1) the distance between consecutive
reads in one of the samples is >100 kbp or (2) a genomic window
extends to 350 kbp and does not meet the minimal number of
reads per homolog, the window is dismissed.

Quantifying uncertainty by bootstrapping

To quantify uncertainty in our likelihood estimates, we performed
m out of n bootstrapping by iteratively resampling reads within
each window (Chernick 2007). Resampling was performed without
replacement to comply with the assumptions of the statistical mod-
els about the odds of drawing two reads from the same haplotype.
Thus, in each iteration, only subsets of the available reads can be re-
sampled. Specifically, within each genomic window, up to six reads
per homolog with a priority score exceeding a defined threshold are
randomly sampled with equal probabilities. The likelihood of the
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observed combination of SNPalleles under each competing hypoth-
esis is then calculated, and thehypotheses are compared by comput-
ing a LLR. The sample mean and the unbiased sample variance (i.e.,
with Bessel’s correction) of the LLR in eachwindoware calculated by
repeating this process using a bootstrapping approach,

�g(w) = 1
m

∑
s[w

gs, (5)

Var(g(w)) = 1
m− 1

∑
s[w

(gs − �g(w))2, (6)

where γs is the LLR for sth subsample of reads from thewth genomic
window, andm is the numberof subsamples. Because the number of
terms in the statisticalmodels grows exponentially, we subsample at
most six reads per window and homolog. Moreover, accurate esti-
mates of joint frequencies of many alleles require a very large refer-
ence panel. Given the rate of heterozygosity in human populations
and the size of the 1000 Genomes Project data set, six reads per ho-
molog is generally sufficient to capture one or more heterozygous
SNPs that would inform our comparison of hypotheses.

Aggregating signal across consecutive windows

Even when sequences are generated according to one of the hy-
potheses, a fraction of genomic windows will emit alleles that do
not support that hypothesis andmayeven providemodest support
for an alternative hypothesis. This phenomenon is largely driven
by the sparsity of the data, as well as the low rates of heterozygosity
in human genomes, which together contribute to random noise.
Another possible source of error is a local mismatch between the
ancestry of the reference panel and the tested sequence.
Moreover, technical errors such as spurious alignment and geno-
typing could contribute to poor results within certain genomic re-
gions (e.g., near the centromeres). To overcome this noise, we
binned LLRs across consecutive genomic windows, thereby reduc-
ing biases and increasing the classification accuracy at the cost of
resolution. Specifically, we aggregated the mean LLRs of genomic
windows within a larger bin,

Gbin =
∑

w[bin

�g(w), (7)

where �g(w) is themeanof the LLRs associatedwith thewth genomic
window. In addition, using the Bienaymé formula, we calculated
the variance of the aggregated LLRs,

Var(Gbin) =
∑

w[bin

Var(g(w)), (8)

where Var(γ(w)) is the variance of the LLRs associated with the wth
window. For a sufficiently large bin, the confidence interval for
the aggregated LLR is Gbin + z

�����������
Var(Gbin)

√
, where z=Φ−1(1−α) is

the z-score, Φ is the cumulative distribution function of the stan-
dard normal distribution, and C=100(1−2α)% is the confidence
level. The confidence level is chosen based on the desired sensitivity
versus specificity. We normalized the aggregated LLRs by the num-
ber of genomic windows that compose each bin, �gbin = Gbin/g.
Thus, the variance of the mean LLR per window is
Var(�gbin) = Var(Gbin)/g2. These normalized quantities can be com-
pared across different regions of the genome, as long as the size of
the genomic window is the same on average.

Simulating parental haplotypes and diploid offspring

Using a generativemodel, we simulated trios of a (1) parental chro-
mosome, (2) diploid offspring with haplotypes matching the pa-
rental chromosome, and (3) an unrelated chromosome. This

allows us to evaluate the classifier performance in each genomic
window along the human genome. To this end, we constructed
synthetic samples comprising combinations of phased haplotypes
from the 1000 Genomes Project (The 1000 Genomes Project
Consortium 2015). These phased haplotypes are extracted from
variant call sets to effectively form a pool of haploid sequences.

We first consider nonadmixed offspring by drawing three ef-
fective haploid sequences from the same superpopulation. The
first two haploid sequences are used to simulate the diploid off-
spring, whereas the first and third sequences are used to simulate
the parental chromosome and the unrelated chromosome, respec-
tively. We then simulate reads by selecting a random position
along the chromosome from a uniform distribution to represent
the midpoint of an aligned read with a given length. Based on
the selected position, one out of the three haplotypes is drawn
from a discrete distribution,

f (h, x) =
p1(x), h = 1
p2(x), h = 2
p3(x), h = 3

⎧⎨
⎩ (9)

where, in general, the probability of haplotype h depends on the
position of the read, x. When simulating a nonadmixed diploid
offspring, the first haplotype is just as likely as the second haplo-
type (p2 = p1), and the third haplotype is absent (p3 = 0).
Similarly, for the parental chromosome, p1 = 1 and p2 = p3 = 0,
whereas for the unrelated chromosome, p3 = 1 and p1 = p2 = 0.
Then, from the selected haplotype, h, a segment of length l that
is centered at the selected chromosomal position, x, is added to
simulated data, mimicking the process of short-read sequencing.
This process of simulating sequencing data is repeated until the de-
sired depth of coverage is attained.

To simulate an offspring descended from parents from dis-
tinct superpopulations (hereafter termed “recent admixed ances-
try”), we draw two effective haploid sequences from different
superpopulations of the 1000Genomes Project. A third haploid se-
quence is then drawn fromone of the two former pools to simulate
the unrelated chromosome. Finally, we use the generative model
with these three effective haploid sequences to simulate reads. A
procedure for simulating diploid offspring under a scenario involv-
ing more distant admixture is discussed in the Supplemental
Methods.

Evaluating model performance on simulated data

We developed a classification scheme to determine whether a bin
supports one of two competing hypotheses. To this end, we per-
formed m out of n bootstrapping by iteratively resampling reads
within each window pairs and computed LLRs of competing sta-
tisticalmodels, as described in the section “Quantifying uncertain-
ty by bootstrapping.”

The confidence interval for the mean LLR is
�gbin + z

�����������
Var(gbin)

√
, and z is referred to as the z-score. Thus, we clas-

sify a bin as showing support for the matched-haplotype hypoth-
esis when

�gbin − z
�����������
Var(gbin)

√
. 0, (10)

and for the unmatched-haplotype hypothesis when

�gbin + z
�����������
Var(gbin)

√
, 0, (11)

where the first (second) criterion is equivalent to requiring that the
bounds of the confidence interval lie on the positive (negative)
side of the number line.When a confidence interval crosses the or-
igin of the number line, we classify the bin as ambiguous (for a di-
agram of these classes, see Supplemental Fig. S20).
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For a given depth of coverage and read length, we simulate an
equal number of sequences generated according to both hypothe-
ses, as explained in the previous section. We define true positives
(negatives) as simulations inwhich sequences generated under the
“unmatched” (“matched”) haplotypes hypothesis are correctly
classified. Based on these simulations, we generate balanced ROC
curves for each bin (Ariad et al. 2021). The balanced true- and
false-positive rates for a bin are defined as

BTPR = 1
2
(TPR+ TNR), (12)

BFPR = 1
2
(FPR+ FNR), (13)

where TPR, TNR, FPR, and FNR are the true-positive rate, true-neg-
ative rate, false-positive rate, and false-negative rate, respectively.

The “balanced ROC curve” is tailored for trinomial classifica-
tion tasks. Here the three possible classes are “unmatched,”
“matched,” and “ambiguous.” The ambiguous class contains all
instances that do not fulfill the criteria in Equations 10 and 11
(i.e., instances in which the boundaries of the confidence interval
span zero). This classification scheme allows us to optimize the
classification of both “unmatched” and “matched” instances at
the expense of leaving ambiguous instances. The advantage of
this optimization is a reduction in the rate of spurious classifica-
tion. To generate a balanced ROC curve for each genomic bin,
we varied the z-score.

Generalization to an arbitrary number of reads

The model of the unmatched-haplotype hypothesis for nonad-
mixed samples and an arbitrary number of reads is based on the
disomy model for nonadmixed samples that was derived for LD-
PGTA (Ariad et al. 2021). More specifically, the “unmatched”
statistical model for m+n reads is merely the joint frequency
f(A1, A2, …, Am) multiplied by the disomy model
Pdisomy(B1 ^ B2 ^ . . . , Bn) of n-reads for nonadmixed samples.
Here Ai are reads drawn from the monosomic reference sample,
whereas Bi are reads drawn from the disomic test sample.

The model of the matched-haplotype hypothesis for nonad-
mixed samples and an arbitrary number of reads is based on the
disomy model for recent admixture, which was previously intro-
duced by Ariad et al. (2021). More specifically, modeling the
matched-haplotype hypothesis for m+n reads can be accom-
plished by substituting effective joint frequency distributions in
the disomy model of n-reads for recent admixture. The adjusted
model involves two distributions, f (X) and g(X). The distribution
f is derived from a reference panel of a population as before, where-
as g is an effective distribution that is defined as g(X)≡ f(A1, A2…,
Am, X). The reads Ai with i= 1, 2, …, m are drawn only from the
monosomic reference sample, whereas the rest of the reads are
drawn from the disomic test sample. Also, each term in the linear
model should take into account the presence of the reads A1, A2,
…, Am, and thus, terms in the disomy model for recent admixture
that involve only the distribution f should be multiplied by
g(∅) ; f (A1, . . . , Am). Derivations and explicit statistical models
for nonadmixed ancestry, recent admixture, and more distant ad-
mixture scenarios form+2,m+3, andm+4 reads can be found in
the Supplemental Methods.

Identifying meiotic crossovers

To identify the locations of meiotic crossovers, we analyze the cu-
mulative sums of LLRs from individual genomic windows as we
move along the chromosome. Because we performed m out of n
bootstrapping by iteratively resampling reads within eachwindow

and calculating LLRs, we define two quantities:

yn =
∑n
w=0

�g(w), vn =
∑n
w=0

Var(g(w)), (14)

where we assume negligible LD between alleles in different geno-
mic windows and, hence, according to the Bienaymé formula,
vn = Var

∑n
w=0 g

(w)
( )

. Local maxima of yn indicate potential transi-
tions from “unmatched” to “matched” regions, whereas local mi-
nima of yn indicate potential transitions from “matched” to
“unmatched” regions. Thus, a crossover occurred within the jth
genomic window if there exists a region in which either
argmax

i,n,k
(yn) = j or argmin

i,n,k
(yn) = j, and in addition,

|yj − yi| ≥ z
��������
vj − vi

√
, j− i ≥ d, (15)

|yk − yj| ≥ z
��������
vk − vj

√
, k− j ≥ d, (16)

where z is the threshold for calling a crossover, and δ is theminimal
number of genomic windows in the region. In addition, we define
a metric that describes the confidence in calling the jth crossover:

kj = min
|yk − yj|��������vk − vj
√ ,

|yj − yi|��������vj − vi
√

( )
, (17)

which fulfills κj≥ zscore. When, based on the criteria above, two
consecutive crossovers are identified as local maxima or minima
of the accumulated LLR, yn, this implies that a crossover was
skipped. Failure to detect a crossover occurs when the values of z
and/or δ are too restrictive. Given two consecutive maxima in
the ith and kth genomic windows, we identify the genomic win-
dow with a skipped minimum as

j = argmax
i,n,k

yk − yn���������
vk − vn

√ − yn − yi��������
vn − vi

√
( )

, (18)

where this condition means that zscore of the “matched” and “un-
matched” intervals are maximized simultaneously. In case of two
consecutive minima, we replace the function argmax with
argmin.

Assigning crossovers to reference versus test samples

Because we scan for crossovers by comparing sequences from two
sibling embryos, assigning each crossover to a single embryo re-
quires additional information. When sequencing data from three
or more sibling embryos are available, we contrast the crossovers
of sibling embryos with one common monosomic sibling (see
Fig. 1). This, in turn, produces a repeated pattern in each sequence
of crossovers that can be attributed to the common sibling (see Fig.
3). Once the repeated pattern is identified, we subtract it to recover
the crossovers in the rest of the embryos.

More specifically, we consider a set of n +1 sibling embryos, in
which one embryo is used to contrast the crossovers in the rest of
the sibling embryos. All crossovers are then combined to form a
sorted list, and we scan the list for n sequential crossovers within
a region of size l. For each cluster, we calculate the average position
of the crossovers. The average position from each cluster is associ-
ated with the common sibling. Finally, the union of all the clusters
is subtracted from each of the n sequences of crossovers, and re-
maining crossovers are traced back to the sibling embryos.

The sequencing quality may vary from one embryo to anoth-
er, and some crossovers might not be identified. Hence, we adjust
the algorithm to allow clusters with various sizes. After seeking all
clusters of size n, we continue seeking clusters of the size n−1. This
process of seeking smaller clusters is repeated iteratively for cluster
sizes greater than n/2. Another issue thatmayarise is thatwhen the
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region size, l, is too large, two or more crossovers from the same
embryomay overlap. In such cases, we only consider the crossover
that is closest to the cluster mean.

Each crossover that is attributed to the common reference em-
bryo is assigned two scores. The first score is the proportion of sib-
ling embryos supporting the crossover: λi= ki/n, where ki and n are
the size of cluster i and the number of contrasted embryos, respec-
tively. The second score is the minimal confidence score in the ith

cluster: k̃i = min k
sibling 1
i , ksibling 2

i , . . . , ksibling k
i

( )
, where κ was de-

fined in the section titled “Identifying meiotic crossovers.”

Isolating sex-specific meiotic crossovers

Here we discuss the possibility of identifying sex-specific cross-
overs bymatching haplotypes between natural occurringmonoso-
mies and genome-wide isodisomies (GW-isoUPD) in IVF embryos
and disomic sibling embryos from the same IVF cycles. This in turn
allows us to leverage the high volume of aneuploidies observed in
IVF to obtain sex-specific distributions of crossovers. We also re-
view how maternal crossovers in trisomies can be identified by
scanning for transitions between tracts of two versus three unique
homologs.

Paternal crossovers (i.e., crossovers originating from sperma-
togenesis) can be identified by focusing on IVF cycles that yielded
at least one embryo with a monosomy of a given chromosome, as
well as at least one embryo that is disomic for that chromosome.
The vast majority of monosomies are of maternal meiotic origin,
such that the remaining chromosome is of paternal origin. The op-
posite scenario, whereby a haploid ovum is fertilized by an nulliso-
mic sperm cell, accounts for <10% of autosomal monosomies
(Hassold and Hunt 2001; Rabinowitz et al. 2012; Kubicek et al.
2019). Moreover, when intracytoplasmic sperm injection (ICSI)
is performed, sperm in vitro selection and capacitation may
further reduce the rates of paternal-origin monosomies (Cayli
et al. 2003; Jakab et al. 2005; Huszar et al. 2007; Sakkas et al.
2015). Conversely,maternal crossovers (i.e., crossovers originating
from oogenesis) can be identified by focusing on IVF cycles that
yielded at least one case of haploidy/genome-wide isodisomy
(which are indistinguishable with sequencing-based PGT-A), as
well as at least one sibling that is disomic for one or more chromo-
somes. Such cases of GW-isoUPDmay originate from oocytes that
commence cleavage and early embryonic development without
fertilization (Sagi and Benvenisty 2017).

Aneuploidy (gain or loss of entire chromosomes) is the lead-
ing cause of IVF failure. We found that 351 (13.7%), 529
(20.7%), 332 (13.0%), and 470 (18.4%) of IVF cycles in the
CReATe data set had at least one embryo with monosomy of
Chromosome 15, 16, 21, or 22, respectively, as well as 7.3 disomic
siblings on average (for the rest of the autosomes, see
Supplemental Table S4). Thus, LD-CHASE can use these natural oc-
curring monosomies to identify paternal crossovers along the
chromosomes of sibling embryos. Similarly, we found that 201
(9.1%) of the IVF cycles in the CReATe data set had at least one
haploid/GW-isoUPD embryo and an additional 7.8 euploid sib-
lings on average (see Supplemental Table S5), offering good resolu-
tion for mapping maternal crossovers genome-wide.

Coverage-based discovery of chromosome abnormalities

We usedWisecondorX to deduce the chromosomal copy numbers
of each of the 20,160 embryos in the CReATe data set (Straver et al.
2014; Raman et al. 2019). To this end, we first created four sets of
reference samples for read counts: (1) 9202 sequences were ob-
tained from biopsies of four to six cells and consist of single reads
of 75 bp, (2) 9818 sequences were obtained frombiopsies of four to

six cells and consist of paired-end reads of 75 bp, (3) 578 sequences
were obtained from biopsies of four to five cells and consist of sin-
gle reads of 75 bp, and (4) 562 sequences were obtained from biop-
sies of four to five cells and consist of paired-end reads of 75 bp.We
used all the sequences in a category (e.g., sequences associated
with four to five cells and single reads) as reference samples. This
approach is effective as long as aneuploid chromosomes are rare
and as long as the rate of chromosome loss and chromosome
gain are sufficiently similar to balance out one another in large
samples. The first assumption is justified based on previous PGT-
A studies, which showed that the rate of aneuploidy per chromo-
some is <10% (including monosomy, trisomy, and mosaics)
(Ariad et al. 2021). The second assumption is justified by noting
that for each chromosome, the rate of trisomy should be similar
to the rate of monosomy, as both are mainly caused by nondis-
junction (Hassold and Hunt 2001). To assess the robustness of
this approach, we compared the results obtained from
WisecondorX with those generated by NxClinical, a diagnostic
tool used by the CReATe Fertility Centre, for select chromosomes
that showed copy number variations, as shown in Supplemental
Figure S21. In addition,we appliedWisecondorX to a separate pub-
lished PGT-A data set from the Zouves Fertility Center consisting
8881 samples. The data set was previously analyzed using
BlueFuse Multi, and we found that the inferred copy numbers
were in strong agreement with the WisecondorX. The number of
sequences that were analyzed successfully via WisecondorX was
20,114. The number of relevant sequences was further reduced
to 18,967 after filtering sequences without a corresponding record
in the metadata table or when the genetic ancestry could not be
inferred.

Haplotype-aware discovery of ploidy abnormalities

Coverage-based approaches for inferring chromosome copy num-
bers, such asWisecondorX, are based on relative differences in the
depth of coverage across chromosomes within samples. As such
approaches assume that the baseline coverage corresponds to di-
somy, scenarios when many chromosomes are simultaneously af-
fected, such as haploidy and triploidy, violate this assumption and
may elude detection. To overcome this limitation, we applied our
haplotype-aware method, LD-PGTA, to scan for the number of
unique haplotypes along the genome (Ariad et al. 2021) and calcu-
late chromosome-wide LLR comparing hypotheses of monosomy,
disomy, and various forms of trisomy.When the LLR for at least 15
chromosomes supported a common aneuploidy hypothesis
(monosomy or trisomy), the sample was classified as haploid/
GW-isoUPD or triploid, respectively.

Assembling an ancestry-matched reference panel

Given the aforementioned importance of the ancestry of the refer-
ence panel, we used LASER v2.04 (Wang et al. 2014, 2015) to per-
form automated ancestry inference for each embryo sample from
the low-coverage sequencing data. LASER applies principal com-
ponent analysis (PCA) to genotypes of reference individuals with
known ancestry. It then projects target samples onto the reference
PCA space, using a Procrustes analysis to overcome the sparse na-
ture of the data. We excluded markers with less than 0.01× depth
of coverage and restricted analysis to the top 32 principal compo-
nents, performing five replicate runs per sample.

Ancestry of each target sample was deduced using a k-nearest
neighbors approach. Specifically, we identified the nearest 150
nearest neighbor reference samples to each target sample based
on rectilinear distance. We then calculated the superpopulation
ancestry composition of the 150 reference samples. When >95%
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of such samples derived from the same 1000 Genomes Project
superpopulation, we used downstream statistical models designed
for nonadmixed samples. In cases in which two superpopulations
were represented in roughly equal proportions (maximal differ-
ence of 10%), we used downstream statistical models designed
for recent admixture. For all other samples, we used downstream
statistical models designed for more distant admixture scenarios.
For this latter group, superpopulations represented at levels of
≥5% among the nearest neighbors to each target sample were
used in the construction of reference panels.

Testing robustness versus LD-PGTA

One aspect of our study involved comparing the landscapes of
meiotic crossovers between disomic and trisomic chromosomes,
as inferred by LD-CHASE and LD-PGTA, respectively. This compar-
ison poses a statistical challenge, as the two methods possess dis-
tinct sensitivities and specificities, which also vary across the
genome and as a function of coverage of the respective samples.
To validate our findings, we therefore sought to compare these
landscapes under a single statistical framework by combining diso-
mic samples with separate monosomic samples to produce artifi-
cial trisomies. Such artificial trisomies can be analyzed uniformly
with LD-PGTA and compared with true trisomies analyzed with
the same method, as well as with the more direct analysis of diso-
mies with LD-CHASE.

In principle, such artificial trisomies can be produced by com-
biningmonosomies and disomies from the same IVFpatients in ra-
tios of 2:1, such that they can be analyzed with LD-PGTA. In
practice, naive merging based on the genome-wide average depth
of coverage yields poor results owing to the low complexity ofDNA
libraries from PGT-A, which results in sample-specific nonunifor-
mity in coverage across the genome. To overcome this challenge,
we merely replaced the statistical models of LD-CHASE with those
of LD-PGTA, thereby controlling the ratio of reads from each sam-
ple on a local scale (i.e., genomicwindow) as opposed to a genome-
wide scale. Thus, the construction of the genomic windows and
the approach to sample reads froma genomicwindoware identical
to LD-CHASE.However, the statisticalmodels of LD-PGTAhave no
prior knowledge about the DNA sample fromwhich a given read is
drawn. Supplemental Figures S16 through S19 display the concor-
dance in crossover distributions between disomic chromosomes as
analyzed by both LD-CHASE and LD-PGTA.

The coverage of genomic windows

To further address the low complexity of DNA libraries prepared
from few input cells, we introduced an additional metric that
simultaneously captures both the depth of coverage and the com-
plexity of the library. After we tile a chromosome with genomic
windows, as described in the section “Determining optimal size
of a genomic window,”we calculate the coverage of genomic win-
dows for a given sample as

C = 1
L

∑
w

lw, (19)

where lw is the length of the wth genomic window, L is the length
of the chromosome, and thus 0<C<1. We then restricted our
analysis to samples with C≥0.5 (i.e., genomic windows covering
at least half of the chromosome). For the subset of patients with
multiplemonosomic embryo samples (affecting the same chromo-
some) from which to choose, we selected the monosomy that
yielded the highest value of C in order to maximize resolution
for identifying meiotic crossovers.

Distinguishing trisomies originating from errors in MI and MII

Samples with tracts of BPH in regions surrounding the centromere
were classified as putative MI errors, whereas tracts of BPH else-
where on the chromosome were classified as putative MII errors.
Ambiguous samples were also noted. Specifically, regions bounded
by crossovers and emitting a z-score above 1.96 and below −1.96
were regarded as BPH and SPH regions, respectively, and otherwise
were regarded as ambiguous. We defined a pericentromeric region
as a region 20% of the chromosome length and centered on the
centromere. However, for the acrocentric chromosomes, the peri-
centromeric region only includes the q-arm and is thus effectively
reduced to 10% of the chromosome length. When at least 10% of
the chromosome showed tracts of BPH, the trisomy was classified
as a meiotic error. If it was not classified as a meiotic error and at
least 50% of the chromosome showed tracts of SPH, the trisomy
was classified as a mitotic error. Otherwise, it was classified as am-
biguous. Cases that were classified as meiotic errors were further
classified as follows: When at least 50% of the pericentromeric re-
gion reflected BPH, the trisomy was classified as a MI error.
Moreover, if it was not classified as MI and at least 50% of the peri-
centromeric region reflected SPH, then the trisomy was classified
as an MII error; otherwise, the case was classified as ambiguous.
In this analysis, only trisomy cases with genomic windows that
covered at least 50% of the chromosome length were taken into
account.

To compare the frequency of MI versus MII error across chro-
mosomes,we fit a binomial generalized linearmodel implemented
with the “lme4” package (Bates et al. 2014), in which the response
variable was defined as the counts ofMI andMII errors per patient,
the patient identifier was included as a random effect predictor
variable (to account for nonindependence among sibling embry-
os), and the chromosome was included as a categorical predictor
variable.We compared this full model to a reducedmodel without
the chromosome predictor variable using analysis of deviance.

Comparing distributions of chromosomal crossover via empirical

cumulative distribution functions and KS tests

Each chromosome in a given sample typically shows between one
and three crossover events. Although the overall pool of crossovers
shows a continuous spatial distribution along the genome, the un-
derlying crossovers are largely independent events and thus can be
treated as such in downstream statistical tests. To formulate our
comparison of landscapes, we summarized each landscape as an
empirical cumulative distribution function (eCDF), which traces
the cumulative genetic map length as one moves from the begin-
ning to the end of a given chromosome (i.e., a line plot comparing
the physical map to the genetic map). One advantage of this ap-
proach is that it circumvents the need to bin the data and thus is
bin size independent. We note that such summaries are common
in the recombination literature, for example, Figure 4B of the work
by Peñalba and Wolf (2020). We then applied the two-sample KS
test to test whether two underlying one-dimensional probability
distributions differ, computing the p-value by permutation.
Although the KS test is nonparametric and makes no assumptions
about the form of the distribution from which the data were
drawn, permutations further ensure that the p-value calculation
is based solely on the observed data without any reliance on as-
ymptotic approximations. To calculate the p-value, we constructed
a null hypothesis that posits the two empirical samples come from
the same continuous distribution. This was achieved by evaluating
all possible combinations of assignments of the combined data
into two groups, each of the sizes of the two original samples,
and computing the KS statistic for each combination. The p-value
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is then computed as the proportion of permutations that result in a
KS statistic as extreme as, or more extreme than, the observed
statistic.

Ethics approval and consent to participate

The Homewood Institutional Review Board of Johns Hopkins
University determined that this work does not qualify as federally
regulated human subjects research (HIRB00011705).

Data access

Software for implementing our method is available at GitHub
(https://github.com/mccoy-lab/LD-CHASE). Tables with chromo-
some abnormalities and crossovers detected for each sample in
the study are available in the same repository. Source code and
data tables are also uploaded as Supplemental Materials.

Competing interest statement

D.A. and R.C.M. are coinventors of the LD-PGTA method. Johns
Hopkins University has filed a patent application related to the
work describedhere. The title of the patent is “Methods and related
aspects for analyzing chromosome number status”. The U.S.
Patent Application was filed onNovember 5, 2021, US18/035,811.

Acknowledgments

We thank the staff of Advanced Research Computing at Johns
Hopkins University. The research reported in this publication
was supported by the National Institute of General Medical
Sciences of the National Institutes of Health under award number
R35GM133747. The content is solely the responsibility of the au-
thors and does not necessarily represent the official views of the
National Institutes of Health.

Author contributions: S.M., M.M., S.C., R.A., and C.L. per-
formed data collection and data curation; D.A. and R.C.M. contrib-
uted to experimental design and data interpretation; D.A.
performed data analysis; and D.A. and R.C.M. wrote the paper,
with input from S.M. All authors reviewed and approved the
manuscript.

References

The 1000Genomes Project Consortium. 2015. A global reference for human
genetic variation. Nature 526: 68–74. doi:10.1038/nature15393

Adrion JR, Galloway JG, Kern AD. 2020. Predicting the landscape of recom-
bination using deep learning.Mol Biol Evol37: 1790–1808. doi:10.1093/
molbev/msaa038

Ariad D, Yan SM, Victor AR, Barnes FL, Zouves CG, Viotti M, McCoy RC.
2021. Haplotype-aware inference of human chromosome abnormali-
ties. Proc Nat Acad Sci USA 118: e2109307118. doi:10.1073/pnas
.2109307118

Auton A, McVean G. 2007. Recombination rate estimation in the presence
of hotspots. Genome Res 17: 1219–1227. doi:10.1101/gr.6386707

Bansal V. 2019. Integrating read-based and population-based phasing for
dense and accurate haplotyping of individual genomes. Bioinformatics
35: i242–i248. doi:10.1093/bioinformatics/btz329

Bates D, Mächler M, Bolker B, Walker S. 2014. Fitting linear mixed-effects
models using lme4. J Stat Softw 67: 1–48. doi:10.18637/jss.v067.i01

Bugge M, Collins A, Petersen MB, Fisher J, Brandt C, Michael Hertz J,
Tranebjærg L, de Lozier-Blanchet C, Nicolaides P, Brøndum-Nielsen K,
et al. 1998. Non-disjunction of chromosome 18. Hum Mol Genet 7:
661–669. doi:10.1093/hmg/7.4.661

Bugge M, Collins A, Hertz JM, Eiberg H, Lundsteen C, Brandt CA, Bak M,
Hansen C, Delozier CD, Lespinasse J, et al. 2007. Non-disjunction of
chromosome 13. Hum Mol Genet 16: 2004–2010. doi:10.1093/hmg/
ddm148

Capalbo A, Bono S, Spizzichino L, Biricik A, Baldi M, Colamaria S, Ubaldi
FM, Rienzi L, Fiorentino F. 2013. Sequential comprehensive chromo-
some analysis on polar bodies, blastomeres and trophoblast: insights
into female meiotic errors and chromosomal segregation in the preim-
plantation window of embryo development. Hum Reprod 28: 509–518.
doi:10.1093/humrep/des394

Cayli S, Jakab A, Ovari L, Delpiano E, Celik-Ozenci C, Sakkas D, Ward D,
Huszar G. 2003. Biochemical markers of sperm function: male fertility
and sperm selection for ICSI. Reprod Biomed Online 7: 462–468. doi:10
.1016/S1472-6483(10)61891-3

Chen YC, Liu T, Yu CH, Chiang T, Hwang C. 2013. Effects of GC bias in
next-generation-sequencing data on de novo genome assembly. PLoS
One 8: e62856. doi:10.1371/journal.pone.0062856

ChernickMR. 2007.Bootstrapmethods: a guide for practitioners and researchers,
2nd ed. John Wiley & Sons, Hoboken, NJ.

Chernus JM, Sherman SL, Feingold E. 2021. Analyses stratified by maternal
age and recombination further characterize genes associated with ma-
ternal nondisjunction of chromosome 21. Prenat Diagn 41: 591–609.
doi:10.1002/pd.5919

De Witte L, Raman L, Baetens M, De Koker A, Callewaert N, Symoens S,
Tilleman K, Vanden Meerschaut F, Dheedene A, Menten B. 2022.
GENType: all-in-one preimplantation genetic testing by pedigree haplo-
typing and copy number profiling suitable for third-party reproduction.
Hum Reprod 37: 1678–1691. doi:10.1093/humrep/deac088

Gray S, Cohen PE. 2016. Control of meiotic crossovers: from double-strand
break formation to designation. Annu Rev Genet 50: 175–210. doi:10
.1146/annurev-genet-120215-035111

Hall HE, Surti U, Hoffner L, Shirley S, Feingold E, Hassold T. 2007. The origin
of trisomy 22: evidence for acrocentric chromosome-specific patterns of
nondisjunction. Am JMed Genet A 143A: 2249–2255. doi:10.1002/ajmg
.a.31918

Halldorsson BV, Palsson G, Stefansson OA, Jonsson H, Hardarson MT,
Eggertsson HP, Gunnarsson B, Oddsson A, Halldorsson GH, Zink F,
et al. 2019. Characterizing mutagenic effects of recombination through
a sequence-level genetic map. Science 363: eaau1043. doi:10.1126/sci
ence.aau1043

Handyside AH, Harton GL, Mariani B, Thornhill AR, Affara N, Shaw MA,
Griffin DK. 2010. Karyomapping: a universal method for genome
wide analysis of genetic disease based on mapping crossovers between
parental haplotypes. J Med Genet 47: 651–658. doi:10.1136/jmg.2009
.069971

Hassold T, Hunt P. 2001. To err (meiotically) is human: the genesis of hu-
man aneuploidy. Nat Rev Genet 2: 280–291. doi:10.1038/35066065

Hassold TJ, Hunt PA. 2021.Missed connections: recombination and human
aneuploidy. Prenat Diagn 41: 584–590. doi:10.1002/pd.5910

Hassold T, Merrill M, Adkins K, Freeman S, Sherman S. 1995.
Recombination and maternal age-dependent nondisjunction: molecu-
lar studies of trisomy 16. Am J Hum Genet 57: 867.

Hassold T, Maylor-Hagen H, Wood A, Gruhn J, Hoffmann E, Broman KW,
Hunt P. 2021. Failure to recombine is a common feature of human oo-
genesis. Am J Hum Genet 108: 16–24. doi:10.1016/j.ajhg.2020.11.010

HerbertM, Kalleas D, Cooney D, LambM, Lister L. 2015.Meiosis andmater-
nal aging: insights from aneuploid oocytes and trisomy births. Cold
Spring Harb Perspect 7: a017970. doi:10.1101/cshperspect.a017970

Huszar G, Jakab A, Sakkas D, Ozenci CC, Cayli S, Delpiano E, Ozkavukcu S.
2007. Fertility testing and ICSI sperm selection by hyaluronic acid bind-
ing: clinical and genetic aspects. Reprod Biomed Online 14: 650–663.
doi:10.1016/S1472-6483(10)61060-7

The International SNP Map Working Group. 2001. A map of human ge-
nome sequence variation containing 1.42 million single nucleotide
polymorphisms. Nature 409: 928–933. doi:10.1038/35057149

Jakab A, Sakkas D, Delpiano E, Cayli S, Kovanci E, Ward D, Ravelli A, Huszar
G. 2005. Intracytoplasmic sperm injection: a novel selectionmethod for
sperm with normal frequency of chromosomal aneuploidies. Fertil Steril
84: 1665–1673. doi:10.1016/j.fertnstert.2005.05.068

Kong A, Barnard J, Gudbjartsson DF, Thorleifsson G, Jonsdottir G,
Sigurdardottir S, Richardsson B, Jonsdottir J, Thorgeirsson T, Frigge
ML, et al. 2004. Recombination rate and reproductive success in hu-
mans. Nat Genet 36: 1203–1206. doi:10.1038/ng1445

Kubicek D, HornakM, Horak J, Navratil R, TauwinklovaG, Rubes J, Vesela K.
2019. Incidence and origin of meiotic whole and segmental chromo-
somal aneuploidies detected by karyomapping. Reprod Biomed Online
38: 330–339. doi:10.1016/j.rbmo.2018.11.023

Lamb NE, Freeman SB, Savage-Austin A, Pettay D, Taft L, Hersey J, Gu Y,
Shen J, Saker D, May KM, et al. 1996. Susceptible chiasmate configura-
tions of chromosome 21 predispose to non–disjunction in both mater-
nal meiosis I and meiosis II. Nat Genet 14: 400–405. doi:10.1038/
ng1296-400

Lamb N, Sherman S, Hassold T. 2005. Effect of meiotic recombination on
the production of aneuploid gametes in humans. Cytogenet Genome
Res 111: 250–255. doi:10.1159/000086896

Meiotic recombination influences aneuploidy risk

Genome Research 83
www.genome.org

https://github.com/mccoy-lab/LD-CHASE
https://github.com/mccoy-lab/LD-CHASE
https://github.com/mccoy-lab/LD-CHASE
https://github.com/mccoy-lab/LD-CHASE
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278168.123/-/DC1


Lister LM, Kouznetsova A, Hyslop LA, Kalleas D, Pace SL, Barel JC, Nathan A,
Floros V, Adelfalk C, Watanabe Y, et al. 2010. Age-related meiotic segre-
gation errors in mammalian oocytes are preceded by depletion of cohe-
sin and Sgo2. Curr Biol 20: 1511–1521. doi:10.1016/j.cub.2010.08.023

Liu S, Huang S, Chen F, Zhao L, Yuan Y, Francis SS, Fang L, Li Z, Lin L, Liu R,
et al. 2018. Genomic analyses from non-invasive prenatal testing reveal
genetic associations, patterns of viral infections, and Chinese popula-
tion history. Cell 175: 347–359.e14. doi:10.1016/j.cell.2018.08.016

Lynn A, Ashley T, Hassold T. 2004. Variation in humanmeiotic recombina-
tion. Annu Rev Genomics Hum Genet 5: 317–349. doi:10.1146/annurev
.genom.4.070802.110217

Ma Y, Wang J, Li R, Ding C, Xu Y, Zhou C, Xu Y. 2023. Mapping of meiotic
recombination in human preimplantation blastocysts. G3 Genes Genom
Genet 13: jkad031. doi:10.1093/g3journal/jkad031

Marchini J, Howie B. 2010. Genotype imputation for genome-wide associa-
tion studies. Nat Rev Genet 11: 499–511. doi:10.1038/nrg2796

Masset H, Zamani Esteki M, Dimitriadou E, Dreesen J, Debrock S, Derhaag J,
Derks K, Destouni A, Drüsedau M, Meekels J, et al. 2019. Multi-centre
evaluation of a comprehensive preimplantation genetic test through
haplotyping-by-sequencing. Hum Reprod 34: 1608–1619. doi:10.1093/
humrep/dez106

McCoy RC, Demko ZP, Ryan A, Banjevic M, Hill M, Sigurjonsson S,
Rabinowitz M, Petrov DA. 2015. Evidence of selection against complex
mitotic-origin aneuploidy during preimplantation development. PLoS
Genet 11: e1005601. doi:10.1371/journal.pgen.1005601

Middlebrooks CD,MukhopadhyayN, Tinker SW, Allen EG, Bean LJ, Begum
F, Chowdhury R, Cheung V, Doheny K, Adams M, et al. 2014. Evidence
for dysregulation of genome-wide recombination in oocytes with non-
disjoined chromosomes 21. Hum Mol Genet 23: 408–417. doi:10.1093/
hmg/ddt433

Oliver TR, Feingold E, Yu K, Cheung V, Tinker S, Yadav-Shah M, Masse N,
Sherman SL. 2008. New insights into human nondisjunction of chro-
mosome 21 in oocytes. PLoS Genet 4: e1000033. doi:10.1371/journal
.pgen.1000033

Ottolini CS, Newnham LJ, Capalbo A, Natesan SA, Joshi HA, Cimadomo D,
Griffin DK, Sage K, Summers MC, Thornhill AR, et al. 2015. Genome-
wide maps of recombination and chromosome segregation in human
oocytes and embryos show selection for maternal recombination rates.
Nat Genet 47: 727–735. doi:10.1038/ng.3306

Peñalba JV,Wolf JB. 2020. Frommolecules to populations: appreciating and
estimating recombination rate variation. Nat Rev Genet 21: 476–492.
doi:10.1038/s41576-020-0240-1

Rabinowitz M, Ryan A, Gemelos G, Hill M, Baner J, Cinnioglu C, Banjevic
M, Potter D, Petrov DA, Demko Z. 2012. Origins and rates of aneuploidy
in human blastomeres. Fertil Steril 97: 395–401. doi:10.1016/j.fertnstert
.2011.11.034

Raman L, Dheedene A, De Smet M, Van Dorpe J, Menten B. 2019.
WisecondorX: improved copy number detection for routine shallow
whole-genome sequencing. Nucleic Acids Res 47: 1605–1614. doi:10
.1093/nar/gky1263

Robinson W, Kuchinka B, Bernasconi F, Petersen M, Schulze A, Brøndum-
Nielsen K, Christian S, Ledbetter D, Schinzel A, Horsthemke B, et al.
1998. Maternal meiosis I non-disjunction of chromosome 15: depen-
dence of the maternal age effect on level of recombination. Hum Mol
Genet 7: 1011–1019. doi:10.1093/hmg/7.6.1011

Sagi I, Benvenisty N. 2017. Haploidy in humans: an evolutionary and devel-
opmental perspective. Dev Cell 41: 581–589. doi:10.1016/j.devcel.2017
.04.019

Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N.
1985. Enzymatic amplification of β-globin genomic sequences and re-
striction site analysis for diagnosis of sickle cell anemia. Science 230:
1350–1354. doi:10.1126/science.2999980

Sakkas D, Ramalingam M, Garrido N, Barratt CL. 2015. Sperm selection in
natural conception: what can we learn from mother nature to improve
assisted reproduction outcomes? Hum Reprod Update 21: 711–726.
doi:10.1093/humupd/dmv042

Southern EM. 1975. Detection of specific sequences among DNA fragments
separated by gel electrophoresis. J Mol Biol 98: 503–517. doi:10.1016/
S0022-2836(75)80083-0

Spence JP, Song YS. 2019. Inference and analysis of population-specific fine-
scale recombinationmaps across 26 diverse human populations. Sci Adv
5: eaaw9206. doi:10.1126/sciadv.aaw9206

Straver R, Sistermans EA, Holstege H, Visser A, Oudejans CB, Reinders MJ.
2014. WISECONDOR: detection of fetal aberrations from shallow se-
quencing maternal plasma based on a within-sample comparison
scheme. Nucleic Acids Res 42: e31. doi:10.1093/nar/gkt992

Sun H, Rowan BA, Flood PJ, Brandt R, Fuss J, Hancock AM,Michelmore RW,
Huettel B, Schneeberger K. 2019. Linked-read sequencing of gametes al-
lows efficient genome-wide analysis of meiotic recombination. Nat
Commun 10: 4310. doi:10.1038/s41467-019-12209-2

Tšuiko O, Vanneste M, Melotte C, Ding J, Debrock S, Masset H, Peters M,
Salumets A, De Leener A, Pirard C, et al. 2021. Haplotyping-based preim-
plantation genetic testing reveals parent-of-origin specific mechanisms
of aneuploidy formation. NPJ Genom Med 6: 81. doi:10.1038/s41525-
020-00165-6

Vermeesch JR, Voet T, Devriendt K. 2016. Prenatal and pre-implantation ge-
netic diagnosis. Nat Rev Genet 17: 643–656. doi:10.1038/nrg.2016.97

Wang C, Zhan X, Bragg-Gresham J, Kang HM, Stambolian D, Chew EY,
Branham KE, Heckenlively J, Fulton R, Wilson RK, et al. 2014.
Ancestry estimation and control of population stratification for se-
quence-based association studies. Nat Genet 46: 409–415. doi:10
.1038/ng.2924

Wang C, Zhan X, Liang L, Abecasis GR, Lin X. 2015. Improved ancestry es-
timation for both genotyping and sequencing data using projection
procrustes analysis and genotype imputation. Am J Hum Genet 96:
926–937. doi:10.1016/j.ajhg.2015.04.018

Wang Y, Tsuo K, Kanai M, Neale BM, Martin AR. 2022. Challenges and op-
portunities for developingmore generalizable polygenic risk scores.Ann
Rev Biomed Data Sci 5: 293–320. doi:10.1146/annurev-biodatasci-
111721-074830

Webster A, Schuh M. 2017. Mechanisms of aneuploidy in human eggs.
Trends Cell Biol 27: 55–68. doi:10.1016/j.tcb.2016.09.002

Xu J, Zhang M, Niu W, Yao G, Sun B, Bao X, Wang L, Du L, Sun Y. 2015.
Genome-wide uniparental disomy screen in human discarded morpho-
logically abnormal embryos. Sci Rep 5: 12302. doi:10.1038/srep12302

Zamani Esteki M, Dimitriadou E, Mateiu L, Melotte C, Van der Aa N, Kumar
P, Das R, Theunis K, Cheng J, Legius E, et al. 2015. Concurrent whole-ge-
nome haplotyping and copy-number profiling of single cells. Am J Hum
Genet 96: 894–912. doi:10.1016/j.ajhg.2015.04.011

Zaragoza MV, Jacobs PA, James RS, Rogan P, Sherman S, Hassold T. 1994.
Nondisjunction of human acrocentric chromosomes: studies of 432 tri-
somic fetuses and liveborns. Hum Genet 94: 411–417. doi:10.1007/
BF00201603

Received June 12, 2023; accepted in revised form November 21, 2023.

Ariad et al.

84 Genome Research
www.genome.org


