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Single-cell technologies offer unprecedented opportunities to dissect gene regulatory mechanisms in context-specific ways.
Although there are computational methods for extracting gene regulatory relationships from scRNA-seq and scATAC-seq
data, the data integration problem, essential for accurate cell type identification, has been mostly treated as a standalone
challenge. Here we present scTIE, a unified method that integrates temporal multimodal data and infers regulatory relation-
ships predictive of cellular state changes. scTIE uses an autoencoder to embed cells from all time points into a common space
by using iterative optimal transport, followed by extracting interpretable information to predict cell trajectories. Using a
variety of synthetic and real temporal multimodal data sets, we show scTIE achieves effective data integration while preserv-
ing more biological signals than existing methods, particularly in the presence of batch effects and noise. Furthermore, on
the exemplar multiome data set we generated from differentiating mouse embryonic stem cells over time, we show scTIE
captures regulatory elements highly predictive of cell transition probabilities, providing new potentials to understand

the regulatory landscape driving developmental processes.

[Supplemental material is available for this article.]

In eukaryotic cells, gene expressions are intricately regulated
through complex interactions of transcription factors (TFs), vari-
ous regulatory elements, and target genes. Deciphering the func-
tions of gene regulatory networks (GRNs) in shaping cell identity
and cell fate is one of the central quests in understanding the map-
ping from genomic blueprints to phenotypes. Over the past de-
cades, much effort has been devoted to developing statistical and
computational methods for inferring GRNs from tissue-level
bulk data containing genome-wide profiling of gene expression,
TF binding, and 3D chromatin structure. More recently, the advent
of single-cell sequencing technologies has propelled the study of
GRNs into a new era, in which context-specific regulation mecha-
nisms can be investigated. Unlike global GRNs, which inherently
aggregate gene interactions over all the biological conditions pre-
sent in a given data set, context-specific GRNs are tailored to a par-
ticular biological setting. These specialized networks detail the
regulatory interactions that occur in unique circumstances, such
as within specific cell types, lineages, or tissues or under certain en-
vironmental conditions. Alongside new opportunities, the sparse
and noisy nature of these single-cell data also brings new challeng-
es to the statistical and computational analyses.

A growing number of methods have been developed to extract
GRNs from data generated by assays of single-cell RNA sequencing
(scRNA-seq) and single-cell transposase-accessible chromatin se-
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quencing (scATAC-seq). Most of these methods infer the relation-
ships between TFs and target genes by estimating their
interactions with cis-regulatory elements (CREs) as an intermedi-
ate, using information including TF motif enrichment, marginal
or conditional correlations between genes and CRE accessibility,
and physical proximity between different elements (Duren et al.
2022; Jiang et al. 2022; Kartha et al. 2022; Tran et al. 2022; Zhang
et al. 2022b). These methods typically work with multimodal data
that provide joint profiling of scRNA-seq and scATAC-seq from the
same cells, or unpaired data from a matched population of cells,
possibly measured over a time course. However, they do not directly
address the data integration problem accompanying such data,
in which noise, sparsity, and batch effects can obscure identifica-
tion of cell types and affect the downstream inference of context-
specific GRNs. Furthermore, to compare how GRNs dynamically
evolve in developmental data, features (e.g., genes, CREs) that are
different between time points (or pseudotime points) are identified
using differential expression (DE)/accessibility (DA) analyses.
Although this captures marginal correlations, the features found
are not necessarily predictive of the developmental changes.

On a separate front, an increasing number of computational
methods have been proposed to perform data integration for sin-
gle-cell multiomic data from unpaired measurements (Gong et al.
2021; Cao and Gao 2022; Lin et al. 2022; Zhang et al. 2022a). As
more technologies capable of multimodal profiling start to emerge
(Chen et al. 2019; Ma et al. 2020; Plongthongkum et al. 2021), in-
tegration methods designed for paired data (Argelaguet et al. 2020;
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Jin et al. 2020; Hao et al. 2021; Ashuach et al. 2023) have also at-
tracted significant research interests. However, most of these inte-
gration methods do not directly address the immediate
downstream problem of inferring GRNs; one exception is GLUE
(Cao and Gao 2022), although the GRNs inferred there remain
global and not context specific. One difficulty lies in the fact that
most of these methods rely on finding a low-dimensional represen-
tation of the data sets across modalities and data batches, and how
to extract interpretable biological signals from blackbox methods
such as neural networks is a challenging problem. Neural networks
offer a conceptual advantage over methods built on linear models,
including cross-correlation analysis and nonnegative matrix fac-
torization, as their superior representation power can capture com-
plex nonlinear interactions in the feature space. However, this
comes with the drawback that the relationships between the mea-
sured features (e.g., genes) and cellular phenotypes in trained mod-
els become more difficult to interpret. Although alternative
architectures have been proposed involving linearizing part of
the neural network (Svensson et al. 2020), a tradeoff remains be-
tween the network’s representation power and interpretability.

Here, we propose scTIE, an autoencoder-based method for in-
tegrating multimodal profiling of scRNA-seq and scATAC-seq data
over a time course and inferring context-specific GRNs. Unlike ex-
isting GRN inference methods that study cell type-specific or con-
dition-specific GRNS, scTIE focuses on cellular state transitions and
aims to infer GRNs that predict cellular changes along a develop-
mental process. To the best of our knowledge, scTIE provides the
first unified framework for the integration of temporal data and
the inference of context-specific GRNs that predict cell fates. We
achieve this through three main innovations in the architecture
design of the autoencoder and the interpretation of a blackbox
neural network method. First, scTIE uses iterative optimal trans-
port (OT) fitting to align cells in similar states between different
time points and estimate their transition probabilities. scTIE incor-
porates OT into the loss function of the autoencoder so that the
alignment of cells is updated iteratively throughout training to
achieve a desirable balance between time point alignment and
cell type separation. This is in contrast to many widely used appli-
cations of OT in the trajectory inference of scRNA-seq data
(Schiebinger et al. 2019; Forrow and Schiebinger 2021), in which
most of the methods solve OT only once on suitably constructed
cell distance matrices. Second, scTIE removes the need for selecting
highly variable genes (HVGs) as input through a pair of coupled
batchnorm layers to account for large variations in gene expression
levels, making it more robust and generalizable. Third, scTIE pro-
vides the means to extract interpretable features from the common
embedding space by linking the developmental trajectories of cell
representations to their measured features (genes and peaks). We
formulate a trajectory prediction problem using the estimated
transition probabilities from OT and use gradient-based saliency
mapping (Ciortan and Defrance 2021; Yang et al. 2021) to identify
genes and peaks that are potentially driving the cellular state
changes. Compared with most GRN inference methods, which fo-
cus on developing new ways to construct network relationships
among features selected through DE/DA analysis, the main inno-
vation of scTIE lies in selecting these informative features based
on their ability to predict cellular changes.

To show the performance of scTIE on developmental data, we
have chosen to focus on multimodal time course data, as this
emerging form of data provides better opportunities to understand
the key transcriptional regulatory activities driving a developmen-
tal process. To assess scTIE’s integration performance against other

existing methods, we constructed a variety of synthetic data sets
using a mouse early organogenesis multiome data set. Further-
more, we generated an exemplar data set comprising paired
scRNA-seq and scATAC-seq measurements from approximately
11,000 differentiating mouse embryonic stem cells (mESCs) over
a time course. Using these data sets, our primary aim was to assess
scTIE's ability to integrate multimodal developmental data for bet-
ter cell type identification and to uncover key regulatory elements
predictive of cell fate in a unified framework.

Results

Overview of scTIE

scTIE consists of two main steps. In the first step, scTIE uses modality-
specific encoders and decoders to project high-dimensional input
data from all time points into a lower-dimensional common embed-
ding space and reconstruct them in the original space (Fig. 1A). Each
encoder-decoder pair is designed to preserve the original informa-
tion in the input data with minimal information loss, with appropri-
ate loss functions to guide the integration process. For scATAC-seq,
accessibility peaks are used as input without conversion to gene ac-
tivity scores. The encoder and decoder for scRNA-seq use an addi-
tional pair of coupled batchnorm layers to handle heterogeneity in
gene expression levels and achieve high-fidelity reconstruction of
the signals without the need for selecting HVGs. Between consecu-
tive time points, scTIE models cell trajectories using the principle
of OT based on the current embeddings and computes an OT loss us-
ing the transport cost matrix. The OT loss is incorporated into the to-
tal loss function to update the embedded features, aligning cells by
their estimated transition probabilities in the trajectories; the cost
matrix itself is also updated iteratively throughout training. In addi-
tion to the OT loss, a modality alignment loss is used to ensure the
projected feature vectors from the two modalities (RNA and ATAC)
are close in distance for the same cell.

In the second step, scTIE finetunes the learned embeddings to
build a supervised model for predicting cellular transition proba-
bilities for user-selected subgroups of cells (Fig. 1B). Genes and
peak regions highly predictive of the cellular transitions are select-
ed by backpropagating the gradients, allowing us to construct
GRNs responsible for developmental changes.

We show the advantages of scTIE on a number of synthetic and
real data sets. On synthetic data sets constructed from a mouse early
organogenesis multiome data set, our results reveal that scTIE can
effectively align cells from different time points and mitigate batch
effects, achieving an optimal balance between time alignment, mo-
dality alignment, and cell type separation. Furthermore, our analysis
of an exemplar multiome data set from differentiating mESCs shows
its superior capacity to capture biological signals from each modality
and achieve better day alignment compared with other methods, re-
sulting in the identification of distinct cell subpopulations. Finally,
using developmental transitions from an anterior primitive streak as
a case study, we show scTIE’s ability to construct lineage-specific
GRNs consisting of regulatory elements with a high predictive power
of cell fate and identify key regulatory signals that would be missed
by DE- or DA-based analysis.

scTIE outperforms existing methods in integrating temporal
multimodal data

We first evaluated the data integration performance of scTIE
against recent methods designed to integrate paired multimodal
data, including Seurat (Hao et al. 2021), scAl (Jin et al. 2020),
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Figure 1.

Overview of scTIE, a unified framework for the integration of temporal data and the inference of context-specific GRNs that predict cell fates.

The input of scTIE consists of the gene expression matrix of scRNA-seq and peak matrix of sSCATAC-seq from single-cell multiome data over a time course.
scTIE consists of two main steps. (A) In the first step, each cell, represented by a pair of gene and peak vectors, is projected into acommon embedding space
by separate encoders and decoders. The two modalities and time points are aligned by appropriate loss functions, whereas the transition probability matrix
between cells from consecutive time points is iteratively estimated. (B) In the second step, users have the ability to select specific subgroups of cells whose
transitions are of interest, finetune the previously trained neural network, identify features that are predictive of transition probabilities, and construct the

corresponding GRNS.

multiVI (Ashuach et al. 2023), and MOFA (Argelaguet et al. 2020).
We generated four synthetic data sets by introducing batch effects
and noise into a mouse early organogenesis multiome data set (Fig.
2A; Supplemental Figs. S1-S5; Argelaguet et al. 2022). As shown in
the UMAP plots of the data with synthetic batch effects introduced
in RNA and noise introduced in ATAC (Fig. 2A), scTIE effectively
removed the batch effects while also better revealing the cell
type signals.

Next, we compared the performance of these methods from
three aspects quantitatively, namely, batch effect removal, time
point alignment, and their ability to capture cell type signals (Fig.
2B,C). We quantify the quality of batch removal and time point
alignment using purity scores, which calculate the proportion of
cells from the same batch/sampling time among neighbors of given
cells. A lower purity score indicates a better mixing of batch/time
points. We measured the cell type preservation using the adjusted
Rand index (ARI) with the cell type annotations provided in the
original paper as the ground truth. An ideal embedding should

mix well cells from different batches and different time points,
while maintaining well-separated cell types. These three metrics
are summarized in Figure 2C, in which scTIE encloses the largest
area, thus outperforming the other methods in the overall perfor-
mance (Supplemental Fig. S1). Furthermore, scTIE’s superior per-
formance is robust against the number of neighbors used in the
purity score calculation (Supplemental Fig. S2). We observe similar
trends across the other three synthetic scenarios, in which scTIE
consistently exhibits better performance than the other methods
(Supplemental Figs. S3-S5). Together, we show the superiority of
scTIE in data integration, enabling better capture of biological sig-
nals through batch effect removal and time point alignment.

scTIE enables identification of cellular subpopulations via
modality and time point alignment with robust performance

Encouraged by scTIE’s performance in data integration, we next
generated a temporal single-cell multimodal data set and leveraged
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effect in RNA and noise in ATAC, colored by cell type annotations (top), sampling days (middle), and synthetic batch information (bottom). Each dot rep-
resents a cell in the embedding space. (B) Bar plots showing the evaluation metrics of different data integration methods, including ARI values for clustering
with annotations (left), 1 — average purity scores of sampling days with the number of neighbors equal to 50 (middle), and 1 — average purity scores of the
synthetic batch with the number of neighbors equal to 50 (right). Higher values indicate better agreement with annotations and mixing of batches/days.
(C) Radar plot summarizing the three evaluation metrics shown in B, in which each line represents the performance of one method, and each axis represents
an evaluation metric, starting from the minimum value of all methods. It is noted that scAl was not included in this benchmarking owing to its long com-

putational time (>2 d).

scTIE for the integration of cells across time points and annotation
of cell types. We performed single-cell multiome sequencing from
mESCs treated with activin A/lithium chloride (LiCl) and mea-
sured on days 2, 4, and 6 using the 10x Genomics Chromium
Single Cell Multiome platform. After quality-control filtering
(Supplemental Fig. S6), we obtained high-quality measurements

of RNA and ATAC from a total of 11,440 cells, with a median detec-
tion of 4130 genes expressed per cell and a median of 11,267 peaks
detected per cell.

By clustering on the joint embeddings produced by scTIE, we
identified 17 clusters with either distinct transcription or chroma-
tin accessibility profiles that include cell types from all the three
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Figure 3.

Integration and cell type identification of the mESC data set by scTIE. (A) Joint visualization of the mESC data set using UMAP, colored by sam-

pling day and cell type annotations. Each dot represents a cell in the embedding space. (B) Cell type compositions per time point. (C) Dot plots of mean
expression of RNA data. Rows represent cell types, and columns indicate each gene. The color scale represents the expression level, and the size indicates
proportion of positively expressed cells. The five most significantly expressed genes for each cluster are included. (D) Heatmap of the TF motif enrichment
(Z-scores) of ATAC data. Rows represent cell types, and columns indicate TFs. The five most significantly enriched TFs for each cluster are included. (E)
Scatter plots of the mean RNA expression levels by clusters (x-axis) and the average TF motif enrichment scores of ATAC (y-axis) for the selected TFs.
The dots are colored by the cell type annotations, with the color legend consistent with that in A.

germ layers as well as from extraembryonic layers of embryonic de-
velopment (Fig. 3A-C). We annotated these clusters based on the
key markers identified in the two previous studies (Fig. 3C; Pijuan-
Sala et al. 2019; Mittnenzweig et al. 2021) and confirmed them by
label transfer using a public reference (Supplemental Fig. S7; Lin
et al. 2020; Mittnenzweig et al. 2021). Further explorations of
the motif enrichment of regions with DA in specific clusters high-
light the cluster-specific TFs of the annotated cell types (Fig. 3D,E).
Additionally, we quantitatively assessed the clustering results us-
ing evaluation metrics. Our findings show that compared with
the existing methods, scTIE better preserves biological signals in
each modality and achieves better alignment in days, further sup-
porting our annotation of the cells using the integrated data from
scTIE (Supplemental Figs. S8, S9). Furthermore, we performed the
same training and clustering procedure on two pseudoreplicates
constructed by randomly splitting the data into two halves, and
showed the consistency of the cell type annotation results. The

UMAP visualizations for these two subsets are mostly consistent,
with an overall accuracy rate of 81% across cell types
(Supplemental Figs. S10, S11).

Notably, scTIE identifies three distinct clusters of definitive
endoderm (clusters 3, 4, and 7) (Supplemental Fig. S12A). We
find that cluster 4 uniquely expresses several Wnt pathway direct
targets (Vcan, Nrcam, and Ccnd2) and Wnt TF (LEF1) and has lower
expressions in the Wnt inhibitor Dkk1 and some definitive endo-
derm markers (Hhex and Sox17) (Supplemental Fig. S12B). The ac-
tivation of Wnt signaling of this group of cells could be linked to
primordial lung specification progenitors (Ikonomou et al.
2020). Cluster 3 and cluster 7 have similar expression profiles to
each other. Compared with cluster 3, we find cluster 7 with a
majority of cells from day 6 has lower expressions in the Nodal sig-
naling genes Nodal and Tdgf1 but has higher expressions in genes
that negatively regulate the Nodal pathway (Cerl and Leftyl)
(Supplemental Fig. S12B).
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An inspection of the epiblast subsets further shows that scTIE
enables cellular subpopulation identification (Supplemental Fig.
S13A). We find that one of the epiblast clusters (cluster 12) has
up-regulation of genes related to hypoxia (Adm, Anxa2, Ddit4,
and Gbel), which could enhance the definitive endoderm differ-
entiation, as suggested previously (Supplemental Fig. S13B; Pim-
ton et al. 2015; Chu et al. 2016). In addition, we find that cluster
1 is enriched with anterior epiblast markers (Pou3f1, Enpp3, Pten,
and Slc7a3), whereas cluster 10 highly expresses posterior epiblast
markers (Lhx1, Ifitm1) (Supplemental Fig. S13B; Peng et al. 2016),
with down-regulation of the TFs POUSF1 and SOX2 but up-regula-
tion of the TFs FOXA1 and FOXA2 (Supplemental Fig. S13C).

Finally, we examine the stability of our results in both modal-
ity alignment and cluster identification, with respect to key tuning
parameters in scTIE, including the weight of OT in the loss func-
tion, the number of nodes in hidden layer, and the updating fre-
quency of OT. We find that the weight of the OT loss is an
important parameter to reach a balance between the alignment
of modalities and time points, with a larger weight resulting in a
better alignment in time points but poorer performance in modal-
ity integration (Supplemental Figs. S14AE, S15A). In this sense,
the choice of this parameter can be guided by the performance
in modality alignment, because the pairing information for all
cells is known and serves as the ground truth. The two other tun-
ing parameters have a small impact on our results (Supplemental
Figs. S14B-D,F-H, S15B-D).

Together, we show that scTIE is able to capture distinct cellu-
lar subpopulations by preserving information from both epige-
nomic and transcriptomic profiles, while also aligning the cells
from different time points.

scTIE embeddings capture interpretable biological features

To interpret the embedding space projected by scTIE, we deconvo-
luted the latent representation by backpropagating the gradient of
each dimension in the embedding layer with respect to gene and
peak input, followed by ranking the features. We then computed
the enrichment scores of the cell type marker list for the feature
rankings of each embedding dimension (see Methods). We find
that each dimension exhibits distinct patterns of enrichment of
cell type markers, and at the same time, the cell types from the
same lineage share similar enrichment patterns across the dimen-
sions, indicating that scTIE captures diverse and biologically
meaningful information from the data (Fig. 4A). We further ob-
serve that the enrichment results of RNA and ATAC share similar
patterns, illustrating that scTIE is able to link the transcriptomic
profiles with the chromatin accessibility through the common em-
beddings (Fig. 4A).

The embedding gradients can be further interpreted in terms
of known biological functions, based on their Gene Ontology
(GO) enrichment. As illustrated in Figure 4B, we find that the em-
bedding dimensions enriched with definitive endoderm cell type
markers can be associated with different pathways. We observe
that dimension 39 is uniquely enriched with activin receptor sig-
naling, as confirmed by the top-ranking genes, including Lefty1,
Fst, and Nodal from this pathway (Fig. 4C). Consistently, the near-
est genes of the top-ranking peaks also include genes associated
with the activin pathway, such as Nodal, Leftyl, and Fgf9.
Because treatment by activin is a key component of our differenti-
ation protocol (see Methods), it is comforting to see that the rele-
vance of this pathway is captured by the fitted model. Together, we
show that scTIE is able to project the two modalities into a joint

embedding space that captures interpretable biological signals of
the data.

Lastly, we find that the above results are robust to the choice
of dimension size (i.e., number of nodes in the embedding layer).
We trained scTIE and performed the same gradient calculations
with the number of dimensions set to 32 and 96 (vs. the current
choice of 64) and found qualitatively similar enrichment patterns
(Supplemental Fig. S16). Selected embeddings also show enrich-
ment of GO pathways related to the definitive endoderm develop-
ment, similar to that in Figure 4B (Supplemental Fig. S17).

scTIE uncovers cell fate-specific regulatory networks

scTIE constructs lineage-defining GRNs by combining informa-
tion across different dimensions of the embedding layer to predict
the cell transition probabilities between time points. As a case
study, we investigated the transitions of cells from an anterior
primitive streak on earlier days into endoderm and mesoderm, as
well as those remaining as an anterior primitive streak on later
days. The primitive streak is a transient embryonic structure that
marks bilateral symmetry, helps confer anterior—posterior spatial
information during gastrulation, and initiates germ layer forma-
tion (Mikawa et al. 2004). A distinct group of cells located at ante-
rior primitive streak, the node, forms the axial mesodermal
structures and definitive endoderm cells (Hoodless et al. 2001).

In each of the above three possible cell fates, we finetuned the
trained embeddings using a prediction layer with weight regulari-
zation and back-propagated the gradients from the prediction lay-
er to select the top 200 genes and 500 peak regions as the most
predictive features of the lineage. Compared with the convention-
al approach that uses DE/DA analysis to select the top features,
scTIE selects genes and peak regions with significantly better pre-
diction performance (Fig. 5A). The superior prediction perfor-
mance is consistent across a range of tuning parameters,
including the regularization weights and the number of top fea-
tures, evaluated via cross-validation (Supplemental Fig. S18). To
show the benefit of jointly modeling RNA and ATAC data, we con-
sidered the alternative approach of only integrating the RNA data
across the time points. Then, we used the same gradient approach
to select the top genes for each of the three lineages and selected
top peaks by physical proximity and correlation. The predictive
power of these features decreased compared with joint modeling
(Supplemental Fig. S19). Conceptually, we note that joint model-
ing allows us to train a separate autoencoder for the ATAC modal-
ity and back-propagate the gradients from the prediction layer to
select the most informative peaks for predicting the transition
probabilities. Thus, the framework of scTIE is capable of jointly
finding the most predictive features in both modalities.

In addition, we assessed the stability of the gradient analysis
through subsampling. For both the definitive endoderm and me-
soderm lineages, we randomly subsampled 60% of the cells consid-
ered for each lineage analysis, finetuned the trained neural
network, and calculated the feature gradients for RNA and ATAC
the same way as we did for the full data. The correlations of gradi-
ents between the subsampling approach (averaged over 50 repeti-
tions) and the full set show a high level of agreement across all
genes and peaks used as input to scTIE (Supplemental Fig. S20).

To annotate the top peaks, we overlapped the selected peaks
with the published enhancer database from 12 tissues of seven
developmental stages from 11.5 d after conception until birth
(Gorkin et al. 2020), quantified by the Jaccard index. We find
that the top peaks associated with mesoderm transition potential
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Figure 4. Biological signals in the mESC data set captured by each embedding dimension of scTIE. (A) Enrichment scores of the gradient ranking in each
embedding dimension using the RNA (top) and ATAC (bottom) marker list for each cell type. (B) Gene Ontology enrichment of selected pathways on the
gradient ranking of a subset of embedding dimensions. (C) Gradient rankings for RNA (top) and ATAC (bottom) of embedding dimension 39, in which
genes/peaks are ranked based on the gradient values. The labeled points are genes in the selected gene set (activin receptor signaling pathway).

are enriched with facial prominence and limb enhancers at E11.5, Methods). In the GRN of the anterior primitive streak (Fig. 5C,
whereas endoderm transition-related peaks identified by scTIE left panel), we identified a few TFs that play key roles in jointly gov-
show higher enrichment and distinct overlap with stomach en- erning anterior mesendoderm and the node development (LHX1,
hancers at E14.5, E15.5, and PO (Fig. 5B). In contrast, the peaks se- OTX2, and SMAD4) (Chu et al. 2004; Costello et al. 2015), as well
lected by DA analysis show enrichments in tissues that are much as a TF related to axial mesendoderm morphogenesis and pattern-
less specific to the predicted lineages of mesoderm or endoderm ing (MIXL1) (Hart et al. 2002). When focusing on the endoderm
(Supplemental Fig. S21). Together, these results illustrate that GRN (Fig. 5C, middle panel), we find that besides identifying TFs
scTIE is able to identify peaks that are specific to lineage transition. that are central regulators for the formation of definitive endo-

The identification of genes and peaks that are predictive of derm development (SOX17, GATA4, GATA6, and GSC) (Bossard
cell transition further allows us to infer GRN for each of the lineag- and Zaret 1998; Kanai-Azuma et al. 2002; Li et al. 2011; Fisher
es: anterior primitive streak, endoderm, and mesoderm (see et al. 2017; Heslop et al. 2021), scTIE also captures TFs that are
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Figure 5. Lineage-specific regulatory elements selected by scTIE and the corresponding GRNs. (A) Performance of top genes and peaks selected by each

method in predicting cell fate probabilities. (B) Similarity of top gradient peaks with enhancers of 12 tissues at seven developmental stages from known

enhancer databases. (C) GRN of three cell fates.

associated with early mesendoderm differentiation (RUNX1)
(VanOudenhove et al. 2016) and morphogenetic movement
(LHX1) (Tam and Loebel 2007).

Lastly, we examined the mesoderm GRN (Fig. 5C, right pan-
el), which identifies a few key TFs (HHEX, SOX17, SMAD3, ZIC3,
TWIST1, and NFATS) that are associated with mesoderm lineages.
Notably, most of these TFs have insignificant P-values under DE
analysis (Supplemental Table S1), illustrating that scTIE captures
key regulatory signals in this lineage that would be missed other-
wise. More specifically, the mesoderm GRN highlights TFs that
are associated with cardiac development, such as ZIC3 in early me-
sodermal patterning (Jiang et al. 2013; Sutherland et al. 2013);
HHEX, which is involved in mediating the SOX17 for cardiac me-
soderm formation in mESCs (Liu et al. 2014); and NFATS for cardi-
omyogenic during mesodermal induction through regulating the
canonical Wnt pathway (Adachi et al. 2012). We also identify
TFs that are essential for mesoderm formation and patterning
(SMAD3) (Dunn et al. 2004) and cranial mesoderm development
(TWIST1) (Bildsoe et al. 2016).

Discussion

Although the rapidly increasing collection of single-cell multiomic
data provides a wealth of information for examining context-spe-
cific regulatory mechanisms, accurate characterization of cell iden-
tities remains the first hurdle to be overcome in such tasks. scTIE
provides a unified framework for the integration and joint model-
ing of temporal multimodal data and the subsequent visualization,
cell type identification, and inference of key regulatory modules
predictive of the developmental transitions of cells. Incorporating

OT into the training of an autoencoder, scTIE alternates between
updating the alignment of cells at different time points and using
the current alignment for training the projections into the
common embedding space, thus achieving a better balance be-
tween integrating time points and maintaining cell type—specific
signals. As we have shown on the real and synthetic data sets, scTIE
outperforms existing paired methods in terms of integration
performance.

Different from existing integration methods that also use the
notion of a common embedding space, scTIE directly exploits the
information in this space produced by the nonlinear projections of
a neural network, linking it to interpretable features such as genes
and peak regions. scTIE extracts context-specific gene regulatory
relationships through the identification of features that are predic-
tive of cell transition probabilities, which quantify how likely a col-
lection of cells on earlier days will transit to a certain cell state on
later days, relative to other cells. These sets of cells can be flexibly
defined, allowing users to investigate any cell transition process of
interest. In addition to cell transition probabilities derived from
OT, the current framework can also be adapted to select features
that are predictive of other types of response variables, such as
pseudotime and perturbation, which potentially enables the con-
struction of differential GRN under continuous cell differentiation
and in perturbed conditions.

scTIE is designed for temporal multimodal data, which is ideal
for studying single-cell genomics in developmental trajectories.
Paired measurements from the same cells remove the need for
computational pairing, which can introduce errors into the down-
stream GRN analysis if cells of different cell types are paired, and
the issue of cell type imbalance between different modalities.
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The integration of unpaired developmental data across multiple
time points remains an open problem itself. For data sets taken
from a matched population, a loss function performing global
alignment between modalities, such as the one used by Zhang
et al. (2022a), can be potentially incorporated into the training
of scTIE. However, the problem is more challenging if cells are sam-
pled at different time points or develop at a different rate across the
modalities, and we will pursue this in future work.

Although a large number of methods exist for inferring pseu-
dotime ordering of cells from a static snapshot of a developmental
process, pseudotime inference assumes that a continuum of cellu-
lar states is observed at the sampled time and thus may not capture
the entire transition process (Tritschler et al. 2019). An interesting
extension would be combining pseudotime inference and experi-
mental time points to create a finer temporal resolution. However,
we note that this would also increase the computation time of
scTIE, because iterative OT estimation is performed between con-
secutive time points; efficient and accurate OT algorithms remain
an active area of research.

We have focused on scRNA-seq and scATAC-seq as common
modalities from multimodal profiling technologies. Other mo-
dalities such as methylation and protein levels (Mimitou et al.
2021; Swanson et al. 2021; Wang et al. 2021) can be easily incor-
porated into scTIE through appropriate encoder-decoder pairs.
Because transcriptional regulation involves interactions of pro-
tein complexes, histone modifications, and other microenviron-
mental factors, we expect the addition of such information will
allow us to build a more accurate prediction model for cellular
state changes. Furthermore, emerging single-cell perturbation as-
says (Rubin et al. 2019) can either be used to validate the top can-
didates found in our predictive model or be built into the neural
network architecture as a prior knowledge graph (Cao and Gao
2022).

In summary, scTIE provides an integrative framework for an-
alyzing temporal multimodal data, which is an emerging form of
data we expect will become more readily available as interests in
characterizing GRNs at single-cell resolution continue to rise. On
real and synthetic developmental data sets, scTIE is shown to pro-
vide effective integration of cells from all time points and select key
regulatory elements with superior performance in predicting cellu-
lar state changes. We envision that advances in single-cell technol-
ogies generating new forms of temporal data will enable us to
further expand the functionalities of scTIE, paving the way toward
a holistic understanding of cellular transitions and responses in de-
velopment and disease.

Methods

Synthetic data construction

The 10x Genomics multiome data of mouse early organogenesis,
along with its cell type annotation, were obtained from the
NCBI Gene Expression Omnibus database (GEO; https:/www
.ncbi.nlm.nih.gov/geo/) under accession number GSE205117
(Argelaguet et al. 2022). The data set comprises 59,132 cells from
a time course of mouse embryonic development, spanning five
time points from E7.5 to E8.75.

To construct synthetic data that could be processed by most
of the methods within their computational capacity, we subset
the data to 24,188 cells by selecting only one sample at each
time point. We filtered out genes expressed in <1% of cells and
peaks expressed in <5% of cells, resulting in 15,754 genes and
81,108 peaks. To introduce noise and batch effects to the data,

we used the downsampleReads () function in the DropletUtils
R package (R Core Team 2022) to downsample the reads. We gen-
erated five synthetic scenarios: (1) subsample 10% for all cells in
ATAC; (2) subsample 10% for all cells in ATAC and 50% for all cells
in RNA; (3) subsample 50% for half of cells in RNA to create the
synthetic batch effect in the data; (4) subsample 50% for half of
cells in both RNA and ATAC to create the synthetic batch effect
in the data; and (S) subsample 10% for all cells in ATAC, subsample
50% for half of the cells in RNA, and 25% for the other half of the
cells.

mESC data generation

Cell culture

The mESC line R1 was obtained from ATCC. The cells were first ex-
panded on an MEF feeder layer previously irradiated. Then, subcul-
turing was performed on 0.1% bovine gelatin-coated tissue culture
plates. The cells were propagated in mESC medium consisting of
KnockOut DMEM supplemented with 15% KnockOut serum
replacement, 100 pM nonessential amino acids, 0.5 mM beta-
mercaptoethanol, 2 mM GlutaMax, and 100 U/mL penicillin-
streptomycin with the addition of 1000 U/mL of LIF (ESGRO,
Millipore).

Cell differentiation

mESCs were differentiated using the hanging drop method (Wang
and Yang 2008). Trypsinized cells were suspended in chemically
defined medium CDM (Li et al. 2011) to a concentration of
37,500 cells/mL. CDM consists of 75% Iscove’s Modified
Dulbecco’s Medium (IMDM,; Invitrogen), 25% Ham'’s F12 medium
(Invitrogen), 1x N2 supplements (Invitrogen), 0.05% bovine se-
rum albumin (BSA; Invitrogen), 2 mM GlutaMAX-I (Invitrogen),
0.5 mM ascorbic acid (Sigma-Aldrich), and 4.5x10* M MTG
(Sigma-Aldrich). Twenty-microliter drops (about 750 cells per
drop) were then placed on the lid of a bacterial plate, and the lid
was upside down. After 48-h incubation in a 37°C incubator
with 5% CO,, embryoid bodies (EBs) formed at the bottom of
the drops were collected and placed in the well of a six-well ultra-
low attachment plate (Corning) with fresh CDM medium contain-
ing 50 ng/mL activin A (R&D Systems 338-AC-050/CF) and 2 mM
LiCl (Sigma-Aldrich) for up to 6 d, with the medium being changed
daily.

Single-cell multiome library

We followed 10x Genomics single-cell multiome library prepara-
tion protocol. The EBs were collected at days 2, 4, and 6 after acti-
vin A/LiCl treatment. For each time point, the cells were first
treated with StemPro Accutase cell dissociation reagent (Thermo
Fisher Scientific) for 10-15 min at 37°C with pipetting. Single-
cell suspension was obtained by passing through a 37-uM cell
strainer (Stemcell Technologies) twice. After measuring cell con-
centration, about 1 million cells were centrifuged at 300 rcf for
5 min. Nuclei were isolated by following the protocol provided
by 10x Genomics (nuclei isolation for single-cell multiome
ATAC +gene expression sequencing, CG00365, Rev A). The final
nuclei concentration was adjusted to 3000 cell/uL in 1x nuclei
buffer (10x Genomics). The sample was immediately submitted
to Stanford Genomics Service Center (SGSC) for single-cell sorting
using a 10x chromium controller (target cells: 5000 per replicate,
total of two to three replicates per time point). The single-cell mul-
tiome library was generated using a chromium next GEM single-
cell multiome ATAC+gene expression reagent bundle kit (10x
Genomics, PN-1000283).
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Data preprocessing

10x Genomics Cell Ranger arc v2.0.0 was used to process the raw
FASTAQ files for each multiome single-cell data set separately. The
reference genome and transcriptome for alignment and annota-
tion was version arc-mm10-2020-A-2.0.0. To integrate all filtered
count matrices for sScRNA-seq and scATAC-seq from different rep-
licates and time points, the cellranger-arc aggr command was ap-
plied with the default depth normalization method.

Next, we performed quality control on the cell level. We re-
moved cells based on the following criteria in sScRNA-seq: (1) with
the total number of UMI (nUMI) less than 6000 on day 2 and
3000 on day 4 and day 6; (2) with nUMI greater than 100,000;
(3) with the number of genes less than 2000 on day 2, 1800 on
day 4, and 1500 on day 6; and (4) mitochondrial reads >25%.
We further removed cells based on the following criteria in
sCATAC-seq: (1) with fewer than 500 total ATAC fragments and
(2) with less than 500 peaks detected. After quality control, we re-
tained 11440 cells (day 2: 2896 cells; day 4: 2796 cells; and day 6:
5748 cells). We then performed the quality control on the feature
level, removing the genes that are not expressed in any cells and
the peaks that are expressed at least 5% of cells, resulting in
26,717 genes and 61,744 peaks as input in scTIE.

Architecture and training of scTIE

scTIE uses an autoencoder structure to project high-dimensional
feature vectors (i.e., gene expression levels and accessibility
peaks) from all time points into a lower-dimensional common
embedding space and reconstruct the features in the original
high-dimensional space. Each modality has its own encoder
and decoder (Table 1). For RNA, the architecture has an addition-
al pair of coupled batchnorm layers, in which the final recon-
structed output uses the moving average p and standard
deviation o stored in the first batchnorm layer of the encoder
to perform rescaling. This accounts for the high variability in
gene expression levels without the need for selecting HVGs and

Table 1. Autoencoder architecture for RNA (left) and ATAC (right)

Encoder Encoder

Batchnorm (267,17)
Linear (26,717, 1000)
Batchnorm (1000)
LeakyReLU (0.2)
Linear (1000, 1000)
Batchnorm (1000)
LeakyReLU (0.2)
Linear (1000, 64)
Decoder

Batchnorm (61,744)
Linear (61,744, 1000)
Batchnorm (1000)
LeakyReLU (0.2)
Linear (1000, 1000)
Batchnorm (1000)
LeakyReLU (0.2)
Linear (1000, 64)
Decoder

Linear (64, 500)
Batchnorm (500)
LeakyReLU (0.2)

Linear (500, 1000)
Batchnorm (1000)
LeakyReLU (0.2)

Linear (1000, 26,717)
Batchnorm (26,717)
Multiply by  and add p

Linear (64, 500)
Batchnorm (500)
LeakyReLU (0.2)
Linear (500, 1000)
Batchnorm (1000)
LeakyReLU (0.2)
Linear (1000, 61,744)

allows us to significantly improve the performance in reconstruc-
tion correlation, modality and day alignment, and clustering
quality (Supplemental Fig. S22). The pairing between feature vec-
tors from the same cell is enforced through a modality loss func-
tion minimizing their distance in the embedding space. An OT
matrix is used to construct cell trajectories between each pair of
consecutive time points. In contrast to existing methods using
OT for trajectory inference, we integrate an OT loss into the
autoencoder training process and estimate the OT matrix itera-
tively throughout. A larger weight on the OT loss leads to better
alignment between days (Supplemental Fig. S15A).

Let X denote the data matrix from time point t and modal-
ity s, where t=1, ..., Tand s=1, 2 for RNA and ATAC, respectively.
Each time point t provides measurements for N; cells; thus in this
case, XD € RPNt with D; = number of genes and X*? g RP>*M:
with D, =number of peak regions. In each iteration, a mini-batch
of data is sampled by taking equal-sized subsets of cells from each
time point; that is, B = {BY}_,, where each subset B has B cells.
Three loss functions are applied to the mini-batch.

1. Reconstruction loss. (f;, &) represents the encoder—decoder pair for
modality s. Compared with the architecture for ATAC, the RNA
part has a pair of coupled batchnorm layers, starting with a
batchnorm layer in the encoder to remove scale variations in
genes and prevent the gradients from being dominated by a

small number of highly expressed genes (Table 1). Let xﬁt’”

denote the gene expression vector from cell i at time ¢t and 5(5“)
denote the normalized output from the first batchnorm layer,
then i;t'” = (xgt'” — w)/o, where p and o are the moving average
and standard deviation of the genes saved in the batchnorm lay-
er throughout training. The reconstruction loss is applied to the
normalized data and the output from the decoder, defined as

1< N
Lilon =5 2 2 I3 =s1(A ) 15

t=1 jep®

For ATAC, the first layer in the encoder is a fully connected layer,

and the reconstruction loss is computed on the input x** and

i
output gz(fz(xgt'z))) as usual. The overall Lo, is the sum of

Licton and Ligdon.

2. OT loss. We leverage OT to effectively align cells from all time
points in the embedding space. For notational convenience,
we will suppress the dependence on modality s for now, with
understanding that the following steps are performed for each
modality. For any two adjacent time points f and t+1, a trans-
port cost matrix C&+1) € RN>*Neit can be computed using the
current embeddings, where the (k, I)th entry is given by
CEHD(K, I = |IF D) — F D)l for the kth cell from t and
the Ith cell from t+1. With the cost matrix, Waddington-OT
(Schiebinger et al. 2019) is then used as the algorithm to esti-
mate a transport matrix y&!+1) € RNoNet | Each row in y®*D
sums to one, representing the transition probabilities of a cell
in time step t to all the other cells in time step t+1. Given T
time steps, we need to maintain a total of T— 1 transport matri-
ces throughout the autoencoder training process. For a given
mini-batch B in each iteration, a submatrix version of C®*V

is computed using the rows and columns specified in B and is

denoted by o Similarly, a mini-batch version %V of

y®*1 is calculated by taking the appropriate submatrix and re-
scaling the rows to unit sum. The batch-wise feature alignment
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loss (for each modality s) is defined as

B B

1 T SO )
Lot:m;(ZZ(C o ¥k 1) ),

k=1 I=1

where © is the Hadamard product. The final L, is the sum over
modalities s.

3. Modality alignment loss. For each mini-batch, the modality
alignment loss is simply defined as the L2 distance between fea-
ture vectors from the same cell in the embedding space, which
is to be minimized:

T
Laogaty = > Y0 I A — ) 13
t=1 jep0

The total loss in each iteration is L =AreconLrecon +Aotlot+
Lmodaiity, Where the s are tuning parameters controlling the rela-
tive weighting of the losses. For every K epochs, the transport ma-
trices (for each modality s) yﬁt’t“), 1<i<T-1 are updated by
computing OT on the current embedding features.

The functionalities of each loss function in L are as follows:

1. The reconstruction loss preserves the original data signals
(i.e., distinct cell type signals) at each time point by encourag-
ing the autoencoders to learn a low-dimensional embedding
that can reproduce the data input.

2. The OT loss aligns embeddings between consecutive time
points by calculating an alignment cost function derived
from the estimated transition probabilities. To reduce the align-
ment cost, cell pairs with high transition probabilities should be
near each other in the embedding space and vice versa. The
transition probabilities and embeddings are iteratively refined.
Additionally, the loss aids in mitigating batch effects, as OT can
cross-align cells from different batches when mapping cells be-
tween consecutive time points. As we showed on the synthetic
data with batch effects in both RNA and ATAC data
(Supplementary Fig. S4), the pretraining stage (see Training
Details section below), which only trains the RNA autoencoder
using the OT loss and the reconstruction loss, already removes
most of the batch effects in RNA data (Supplementary Fig. $23).

3. The modality alignment loss makes use of the pairing infor-
mation between RNA and ATAC so that the final embeddings
take into account signals in both modalities.

Training details

scTIE took a collection of peak matrices from scATAC-seq data
and raw count matrices from scRNA-seq data from multiple
time points as input. For ATAC, the peak matrices were trans-
formed to binary matrices, where one represents any nonzero
original values. For RNA, the raw count matrices were sized-fac-
tor-normalized and then log-transformed. For the overall multi-
modal training, we first pretrained the RNA autoencoder f;, &1
for 500 epochs (excluding Lyodality)- Then, we fixed the weights
of the pretrained RNA model to train the ATAC model for 300 ep-
ochs with the overall loss L. Finally, the two models were jointly
trained for 200 epochs using the full algorithm as detailed in
Algorithm 1. The final joint embeddings were calculated by tak-
ing the averages of f; (xﬁr’“) and fz(xgt'z)) for each cell i from time ¢,
followed by computing the final y**" from the joint embed-
dings. Throughout training, we used Adam as the optimizer
with the learning rate set to 0.1, a batch size B=256, and the tun-
ing parameters Arecon=1, Aot =0.1, and OT was updated every 10
epochs.

We note here that owing to the pretraining of the RNA
autoencoder, the biological signals use by scTIE to produce the
common embeddings were mostly driven by the RNA modality.

However, complementary signals from scATAC-seq still play a
role in generating the embeddings because the modality align-
ment loss is affected by both RNA and ATAC positions in the em-
bedding space. Pretraining with RNA signals is essential for stable
training of the neural network because (1) the RNA modality gen-
erally contains stronger signals for cell type identification and (2)
the dimension of ATAC input (number of peaks) is much larger
than that of the RNA modality (number of genes).

Algorithm 1. Multimodal OT autoencoder (two-modality case).

Data matrices X%9, training iterations M, batch size B, autoencoder
f1, $1, f2, §2 with weights 6, learning rate o, loss weight tuning pa-
rameters Arecon, hoty OT update frequency K.
Initialize all yﬁ"t“) 1 <t<T-1 matrices with zero matrices.
for iteration=1, 2, ..., M do
Sample cells B ={BY} [, where each subset B“ has B
cells.
ComPUte Lrecon; Lot: Lmodality-
ComPUte L= xreconLremn + xotLot + Lmodality-
Perform gradient descent step on autoencoder weights 6 < 6
—(XVe L.
if M%K==0 then
Update 4+,
embeddings.
end if
end for

1<t<T-1, s=1, 2 using current

Estimation of long-range transition probabilities

Long-range transition probabilities can be estimated by multiply-
ing the transport matrices. For example, y**? can be calculated
as Y&+ Uy® L2 - An alternative approach is to compute y**?
directly from OT. However, because OT interpolates between two
observed data sets by finding the shortest path in the space of dis-
tributions, one has to implicitly assume that the cells do not chan-
ge their expression or accessibility by large amounts over the two
time points. It is generally recommended that long-range time-
couplings are estimated by multiplying the gamma matrices
(Schiebinger et al. 2019). On the mESC data set, these two ways
of estimation give positively correlated results, with the mode of
correlations lying around 0.6 (Supplemental Fig. S24).

Cell type annotation of mESC data

Cell clustering of scTIE

To identify the clusters on the common embedding of scTIE, we
first constructed a shared nearest-neighbor graph using
buildSNNGraph in R package scran (v 1.23.0) (Lun et al.
2016), with the number of nearest neighbors set as 15 with the
weighted scheme set as Jaccard. Next we performed Leiden com-
munity detection (Traag et al. 2019) on the shared nearest graph
with resolution at 1.8 and the number of iterations at 50, imple-
mented in R package leidenAlg (v 1.0.3), resulting in 17 clusters
in total.

Motif enrichment

We used Signac (Stuart et al. 2021) to calculate the overrepresented
motif of each cluster based on the differential accessible peaks. The
motif position frequency matrices are obtained from Cis-BP
(Weirauch et al. 2014). We used limma-trend (Ritchie et al.
2015) to perform DA analysis between the cells in one cluster
and the remaining cells, where the top 500 peaks of each cluster
with a log-fold change greater than 0.1 and adjusted P-value less
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than 0.001 are selected. We then performed the motif enrichment
analysis using FindMotifs to find motifs overrepresented in the
selected set of peaks.

Benchmarking and evaluation metrics

Settings used in other methods

We benchmarked the performance of scTIE against four other
methods designed for single-cell paired multimodal data integra-
tion: Seurat, scAl, MultiVI, and MOFA. We compared scTIE’s per-
formance in terms of visualization of the latent space, alignment
of the days, and clustering in the latent space against these
methods.

e Seurat. R package Seurat v4.1.0 (Hao et al. 2021) was used. We
ran Seurat (WNN) using FindMultiModalNeighbors, with
the reduction list input as the first 50 components of LSI reduced
dimension of scATAC-seq (with the first dimension excluded)
and 50 top PCs of scRNA-seq, with the other parameters set as
default.

e scAl. R package scAl v1.0.0 (Jin et al. 2020) was used. We ran

scAl using run_scAI by setting the rank of the inferred factor

set as 64 and nrun = 5, with the other parameters set as default.

MultiVI. Python package scvi v0.15.0 (Ashuach et al. 2023) was

used. We ran MultiVI using MULTIVI by setting the fully_

paried=True, n_hidden=256, and n_latent =64, with
the other parameters set as default. The model was then trained
with max_epochs =200.

e MOFA. R package MOFA2 v1.7.0 (Argelaguet et al. 2020) was
used. We ran MOFA using run_mofa by setting the number of
factors as 64, with the other parameters set as default.

Benchmarking of mESC data

Modality alignment

We used two metrics to measure scTIE’s performance in the align-
ment of the two modalities, namely, FOSCTTM and paired data
proportion.

e FOSCTTM. FOSCTTM refers to fraction of samples closer than
true match, which was first introduced in MMD-MA (Liu et al.
2019) to quantify the alignment of multiomic data. To evaluate
the modal alignment of scTIE using FOSCTTM, we first calculat-
ed the Euclidean distance between the ATAC embedding and
RNA embedding. Then, for each modality we calculated one
FOSCTTM score that summarizes the proportion of cells that
are closer to the ground truth-matched cells based on the dis-
tance matrix. Finally, we summarized the FOSCTTM scores
from the two modalities into one score by taking the average.

Paired data proportion. Paired data proportion (used in Cobolt)
(Gong et al. 2021) calculated the proportion of cells whose
ground truth-matched cells are included within a certain num-
ber of neighbors, based on the Euclidean distance between the
ATAC embedding and RNA embedding. We varied the number
of neighbors from one to the total number of cells in the data.

Day alignment

We quantified the alignment of data sampled on different days us-
ing neighborhood purity using neighborPurity in R package blus-
ter (v1.5.1), which calculated the proportion of cells from the same
day among a certain number of neighbors, based on the UMAP co-
ordinates generated from the common latent embeddings.

Comparison with single-modality clustering

We benchmarked clustering results from scTIE against other paired
data integration methods by evaluating how similar the results are

compared to clustering dimension-reduced scRNA-seq (PCA space)
or scATAC-seq (LSI space) alone. On the latent space of each
method or the dimension-reduced space from scRNA-seq or
scATAC-seq, we performed Leiden clustering on the shared near-
est-neighbor graphs constructed, with the same parameter settings
as mentioned in the section Cell Clustering. Note that for Seurat,
we performed Leiden clustering directly on the weighted nearest-
neighbor graph it outputs. We used two metrics to quantify the re-
sults, adjusted Rand index (ARI) and silhouette coefficient:

* ARI. We computed the ARI scores of clustering results from each
data integration method and clustering results from scRNA-seq
or scATAC-seq alone.

e Silhouette coefficient. For each clustering result, we computed the
silhouette coefficient based on the Euclidean distance calculated
from the UMAP coordinates generated from the dimension-re-
duced scRNA-seq or scATAC-seq.

For both metrics, higher values indicate a method better captures
the clustering information in a single modality.

Benchmarking of synthetic data

We benchmarked the data integration performance of scTIE
with the other paired data integration methods in terms of
three evaluation metrics: (1) ARI scores of the cell type annotation
provided by the original study and the Leiden clustering
results from each method, (2) neighborhood purity of days, and
(3) neighborhood purity of batch for scenarios with synthetic
batch effects.

Enrichment analysis for embedding dimensions

Upon completion of training, scTIE has projected the high-dimen-
sional feature vectors (genes and peaks) into a 64-dimensional em-
bedding space. Treating each dimension as a representation unit,
for each cell type, we back-propagate the gradient of each unit
with respect to gene and peak input to select features with the larg-
est impact. More specifically, for each cell in cell type G, we pass its
gene expression vector through the autoencoder to obtain its em-
bedding vector y and compute % for each dimension j and gene
1

input node i. The gradients are averaged over all cells in G to obtain
the mean gradient for each gene. We then take the variability of
gene expression into account by multiplying each mean gradient
by its corresponding gene standard deviation, so that the final gra-
dients are equivalent to gradients after the first batchnorm layer.
Finally, we rank the genes by their gradient values and calculate
the enrichment scores of the top 200 genes from the DE analysis
of cell type G, where the DE analysis is performed using limma-
trend (Ritchie et al. 2015) between the cells in one cluster and the
remaining cells. Similar steps are performed for the peaks, and the
top 500 peaks are selected for enrichment score calculation.

We used fgsea function in the R package FGSEA
(Korotkevich et al. 2021) to perform the gene set enrichment anal-
ysis (GSEA) on the pathways related to mESCs (as listed in Fig. 4B).
Significant pathways are defined with an adjusted P-value of less
than 0.05.

GRN inference

Selecting features with high predictive power

By building a prediction framework on the obtained transi-
tion probabilities, scTIE selects genes and peaks jointly with
high predictive power for developmental outcomes. For the
mESC data, we consider how a group of cells from earlier days,
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denoted as G, develops into two other groups, G; and G, on later
days.

The transition probabilities are obtained from y*™V (t=1, 2 in
our data) so that each cell i in Gy is associated with a probability
vector (p;1, piz) indicating its probabilities of becoming G; and
G, (see section Cell Transition Probability Calculation). We fine-
tune a one-layer classifier on the pretrained features in the embed-
ding space of cells in Gy to predict their transition probabilities. A
simple linear classifier is sufficient to partition the cell feature
space into G; and G, when the pretrained features are representa-
tive enough. Concretely, letting g be the linear classifier and B be a
mini-batch of cells from G, of size B, we use a batch-wise KL diver-
gence loss defined as

Ly =5 Y D@l )P,

j€B

where fis the trained encoder, P;=(pj1, pj»). This loss enforces the
classifier g to output transition probability distributions close to
those in P/s. We also include the modality alignment loss
Linodaiity, with weight default set as 0.1. The classifier is trained
with Adam setting learning rate to 0.001, training epochs to 200,
batch size to 256, and L1 regularization.

After training, gradients from the two classification nodes are
back-propagated to each gene (or peak) input the same way as in
computing embedding gradients. The gene gradients are then
scaled by multiplying with the gene-wise standard deviations. A
positive gradient for gene (or peak) j with respect to the node for
G, means increasing the input feature value tends to increase the
cells’ probabilities of becoming G;, whereas a negative value indi-
cates more contribution to G». The final feature ranking is based on
the average gradients by repeating this procedure 20 times with
different seeds.

Selection of Gy, G, G,

As a case study in this paper, we focus on the transition of cells
from the anterior primitive streak on day 2 and day 4 into endo-
derm and mesoderm, as well as that remaining as an anterior prim-
itive streak on day 4 and day 6.

First, we considered the cells that are annotated as anterior
primitive streak (cluster 6) on day 2 and day 4 as Go. G, and G,
are then selected from the cells on day 4 and day 6 that are more
likely to be the descendants of Gy, as quantified by the descendant
scores. The descendant scores are defined similarly as in WOT
(Schiebinger et al. 2019). Recall y***V is the N; by Ny, transition
probability matrix between time points ¢ and t+ 1; let s; € R be
the vector of descendant scores for all cells at time point ¢, and
then we can calculate

1
, —— if celliisin Gy.
sey1 = 5y, where s,.() = { |Gol

0, otherwise.

This formula can then be pushed forward again to calculate the de-
scendant scores for the next time point f+ 2, and so on. For all cells
in Go at time point t (here =1 or 2), we calculated the descendant
scores g« of all cells at the later time point t+k, for k=1, ..., T—t.
We then considered the cells with descendant scores greater than
the median of all cells at a certain time point as the potential de-
scendants, namely, cells with s.(i) >median(s.). Among these
descendant cells, we selected three pairs of G; and G, correspond-
ing to the three cell fates we have analyzed: G, which is annotated
as (1) anterior primitive streak or (2) definitive endoderm or (3) me-
soderm; for each selection of G, G, always represents the remain-
ing descendant cells.

Cell transition probability calculation

For each cell i € Goon day t, and G, G, on day k € K, where K = {k:t<
k < T}, the transition probability vector (p\), p\¥)) is calculated as the
following:

P = X NG, ),

yEG
X :
pEY = ¥ YNNG, p),
YEGy
®
wh_ Py
by = o /=12

1

&) _ (t,k)

by = Kl Ek by

(pi1, piz) is then the concatenated vector of (pﬁ?, pﬁ?).

Evaluation of cell transition probability prediction

To evaluate the predictive power of the selected features to the
transition probability, we performed support vector machine
(SVM) with radial kernel to predict the transition probability using
days 2 and 4 anterior primitive streak gene expression of the top
selected genes and peak matrix of the top selected peaks. The per-
formance is quantified by root mean squared error (RMSE) from a
20 repeated fivefold cross-validations. We benchmarked the pre-
dictive power of the features selected by gradients with different
regularization weights (0, 1, 10, 100), against the features selected
by DE/DA analysis using limma-trend (Ritchie et al. 2015).

GRN construction

To construct the GRN for each cell fate (anterior primitive streak,
definitive endoderm and mesoderm), we focus on the top 500
genes based on the gradient ranking. For each gene, we consider
the open chromatin regions that are within 250 kb upstream of
and downstream from its transcription start site (TSS), as well as
ranked top 2000 according to the gradients as the distal candidate
functional regions, which results in 396, 404, and 339 gene-peak
pairs for the three cell fates, respectively. We next filtered the pairs
based on the gene-peak correlation, calculated from the metacells.
The metacells were constructed using the following strategies: We
first randomly selected 100 cells from the anterior primitive streak
cells on day 2. For each cell, we looked for its five nearest neighbors
based on the Euclidean distances of the common embeddings and
aggregated them as a metacell. Then, we calculated the Pearson’s
correlation of the gene-peak pairs for these 100 metacells. This
procedure is repeated 20 times, and the gene-peak pairs with an
absolute average correlation greater than 0.2 are retained (APS:
35; DE: 38; and MES: 17 pairs remained).

To link the peak region with the TF, we identified the en-
riched TF using matchMotifs function in R package motifmatchr
of the peaks from the selected gene-peak pairs based on Cis-BP da-
tabase (Weirauch et al. 2014). We only consider if the TFs are the
top 500 genes. Finally, by linking the TF-region and peak-gene re-
lationships, we construct the TF-GRNSs that are associated cell fate
probabilities.

In the alternative approach of only integrating RNA across
time, we selected the peaks that are within 250 kb upstream of
and downstream from the TSS of the top-ranking genes, with a
Pearson’s correlation greater than 0.2.

Data access

All raw and processed sequencing data generated in this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
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https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE223041. scTIE is available at GitHub (https://github.com/
SydneyBioX/scTIE) and as Supplemental Code.
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