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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Alternative splicing is an essential regulatory mechanism for development and pathogene-

sis. Through alternative splicing one gene can encode multiple isoforms and be translated

into proteins with different functions. Therefore, this diversity is an important dimension to

understand the molecular mechanism governing embryo development. Isoform expression

in preimplantation embryos has been extensively investigated, leading to the discovery of

new isoforms. However, the dynamics of isoform switching of different types of transcripts

throughout the development remains unexplored. Here, using single-cell direct isoform

sequencing in over 100 single blastomeres from the mouse oocyte to blastocyst stage, we

quantified isoform expression and found that 3-prime partial transcripts lacking stop codons

are highly accumulated in oocytes and zygotes. These transcripts are not transcription by-

products and might play a role in maternal to zygote transition (MZT) process. Long-read

sequencing also enabled us to determine the expression of transposable elements (TEs) at

specific loci. In this way, we identified 3,894 TE loci that exhibited dynamic changes along

the preimplantation development, likely regulating the expression of adjacent genes. Our

work provides novel insights into the transcriptional regulation of early embryo

development.

Introduction

A gene can be transcribed into various isoforms, which are then translated into different pro-

teins. Isoform compositions differ between cell types and states, making isoform switching a

crucial factor in determining cell identity [1,2]. Third-generation sequencing-based single-cell

RNA-sequencing methods like SCAN-seq, HIT-scISOseq, and MAS-ISO-seq have been devel-

oped to directly sequence gene isoforms [1,3–7]. SCAN-seq is known for its high gene
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detection sensitivity and ability to detect many novel transcripts in rare samples [4]. However,

it fails to quantify the absolute abundance of genes and isoforms due to the high error rate of

Nanopore sequencing [8,9]. On the other hand, HIT-scISOseq and MAS-ISO-seq use the Pac-

Bio HiFi sequencing platform to quantify isoform abundance in single cells with improved

data throughput [6,7].

Isoform switch plays an important role in cell fate determination. PBX1, for example, can

be transcribed into 3 different isoforms, each with distinct functions. PBX1a maintains the

pluripotency of mouse embryonic stem cells (mESCs), while PBX1b promotes differentiation

[10]. Other genes such as Tcf3 and Sall4 have similar regulatory patterns in mESCs [11,12].

The molecular regulation of preimplantation embryo development has been the focus of many

studies, particularly maternal to zygote transition (MZT), which is crucial for whole-body

development [13–16]. Although hundreds of genes have been identified in zygotic genome

activation (ZGA), the functional regulators remain largely unclear, including whether isoform

switching participates in the process [17–19].

Transposable elements (TEs) account for approximately 46% and approximately 37.5% of

the human and mouse genome, respectively [20,21], contributing to evolution and genetic reg-

ulation. They can be divided into 2 major classes based on the transposition mode: class I ret-

rotransposon and class II DNA transposon [22,23]. Class I, which makes up about 95% of total

TEs, includes long and short interspersed elements (LINEs and SINEs, respectively) and long

terminal repeats (LTRs). TEs are known to play a crucial role during embryo development

[24]. For instance, MERVL and MT2_mm (a truncated form of ERVL containing only the

LTR domain) can serve as promoters for totipotent gene expression, and their expression has

been considered an essential totipotent biomarker [18,25,26]. LINEs, particularly LINE1, have

been reported to suppress the expression of totipotent genes such as Dux [27,28]. A previous

study showed that the hominoid-specific transposon (SINE-VNTR-Alu) acts as an enhancer

to promote the ZGA process [29]. However, due to their highly repetitive nature, it is challeng-

ing to determine the activity of TEs at the locus level with limited read length. Analyzing TE

expression in specific loci is therefore important for gene transcriptional regulation.

In this study, we adapted the HIT-scISOseq method for low-throughput cell analysis and

sequenced isoforms in single blastomeres of mouse preimplantation embryos [6]. We analyzed

cell heterogeneity within the same embryos at the same stage, providing insights into the tim-

ing of cell fate diversification during preimplantation embryo development. Isoforms of each

gene in every single cell were quantified, and different isoform types showed varied propor-

tions across embryonic stages. Notably, a significant number of 3-prime partial transcripts

(lacking stop codons and generating proteins lacking C-termini) were observed in oocytes and

zygotes, but were quickly degraded at the early 2-cell (E2C) stage. Furthermore, locus-specific

TEs were analyzed, revealing dynamic expression changes during embryonic development.

These TEs showed high correlation with the expression of adjacent genes, indicating their

potential importance in developmental events.

Results

Modified HIT-scISOseq for the mouse preimplantation embryos

sequencing

To identify gene isoforms in each blastomere of mouse oocytes and preimplantation embryos,

we amplified RNAs in individual cells using a 10× gel bead and the Smart-seq2 protocol [6,30].

Subsequently, the amplified cDNAs from different cells were combined for ligation and PacBio

library construction following the HIT-scISOseq method [6]. Concurrently, the barcode

sequence of each cell was predetermined through Sanger sequencing of the cDNAs (Fig 1A).
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Fig 1. Quality evaluation of the single-cell isoform expression data. (A) Diagram of the experimental and analysis workflow for single-cell isoform

sequencing of mouse preimplantation embryos. (B) Saturation curve of representative cells from each stage. The raw data for this plot is supplied in S1

Data. (C) Correlation between detected UMI counts and absolute spiked abundances of each ERCC gene. The raw data for this plot is supplied in S1 Data.

(D) Isoform mapping results of the SIRV spike-ins. The raw data for this plot is supplied in S1 Data.

https://doi.org/10.1371/journal.pbio.3002505.g001
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Data on gene and isoform expression from 161 single blastomeres were collected from 3

batches, covering various developmental stages and mESC (Table 1). Each sequencing batch

produced approximately 5 million circular consensus sequencing (CCS) reads in 1 SMRT Cell

8M, with an average length of around 4 kb, indicating ligation of 2 to 3 cDNA molecules in

most cases. After data splitting and mapping, about 90% of the isoforms could be accurately

assigned to cells (Table 1). This approach allowed for relatively deep sequencing of samples

from each stage (Fig 1B). To assess the precision of measuring absolute numbers of isoforms

using our method, we also amplified ERCC and SIRV spike-ins [31,32]. At the gene level, we

observed high correlation values between the added molecules and the detected UMI counts

(Fig 1C). At the isoform level, different isoforms of the same SIRV gene were accurately identi-

fied without any false matches (Fig 1D). These findings demonstrate that our workflow pre-

cisely measures transcript abundance in each single cell.

Gene and isoform expression patterns in the mouse preimplantation

embryos

The mouse oocyte and zygote contain a higher number of RNA molecules compared to later

stage blastomeres due to maternally inherited RNA degradation [33]. The number of tran-

script molecules was strongly correlated (R = 0.96) with the number of expressed genes in the

cells (Fig 2A). Principal component analysis (PCA) using gene expression data and isoform

expression data showed that blastomeres of different stages were clearly separated (Fig 2B and

2C). The oocyte and zygote exhibited similar expression patterns; Late 2-cell (L2C) and 4-cell

blastomeres were grouped together; the 8-cell, 16-cell, and 32-cell stages were similar; and the

blastocyst cells were analogous to the mESCs. Stage-specific genes and transcripts were

extracted, resulting in 3,867 genes and 6,819 isoforms, respectively (S1 Table). These were

divided into 6 corresponding clusters based on their expression patterns across all embryonic

stages (Fig 2D and 2E and S1 Table). Cluster 1 (C1) transcripts were highly abundant in

oocytes and zygotes, subsequently degraded from E2C stage. Cluster 2 (C2) included tran-

scripts that were only up-regulated in the E2C stage. Cluster 3 (C3), cluster 4 (C4), and cluster

5 (C5) transcripts were highly expressed in the L2C to 4-cell stages, 8-cell to 32-cell stages, and

blastocyst stages, respectively. The mESC-specific transcripts were in cluster 6 (C6). More

genes were identified in each cluster at the isoform level, and most of the isoforms were consis-

tent with the genes (Fig 2F and S1 Table). The results indicate that single-cell isoform expres-

sion data can be used to illustrate cellular heterogeneity and distinguish different types of cells

as single-cell gene expression does.

Furthermore, isoforms were found to show different expression patterns compared to

the host genes. Isoform switch events largely occurred during the transition from zygote to

E2C and from E2C to L2C stages, during the time windows of minor and major ZGA,

respectively (Fig 2H and S1 Table). For example, Cfdp1 increased the gene expression from

E2C to L2C, with its isoform PB.73528.5 showing the same pattern, but the other isoform,

PB.73528.7, was largely down-regulation at the same stage (Fig 2G). The expression levels of

Cnot7 gene and its isoforms PB.71257.4 and PB.71257.165 decreased from E2C to L2C,

while PB.71257.450, another isoform of the gene was inversely changed (Fig 2G). Gene

Ontology (GO) analysis revealed that the genes happened with isoform switch events were

enriched in cytoplasmic translation, cell division, mRNA and DNA metabolic processes,

etc. (Fig 2I). Functional and structural changes were identified in only 7 genes using Fun-

Fam [34,35] (S1 Fig). These results indicate that isoform switch regulation largely exists

during embryonic development, especially during the ZGA process, in addition to gene

expression level.
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Isoform diversity decreases along preimplantation embryo development

To explore the connection between gene and isoform expression during mouse preimplanta-

tion development, we grouped genes into 6 categories based on the number of isoform types

they expressed (S2A Fig). While most genes expressed only 1 type of isoform across different

stages, more genes expressed multiple types of isoforms in the earlier stages. In mouse oocytes

and zygotes, around 60% of genes expressed more than 1 type of isoform, and nearly 20% of

genes were found with over 5 types of isoforms. In contrast, approximately 70% of genes in

mESCs expressed only 1 type of isoform, and less than 5% of genes expressed more than 5

types of isoforms (S2A Fig). The same isoform expression characteristics were observed in

SCAN-seq data (S2B Fig), indicating a diverse range of isoforms in early mouse embryos [4].

To rule out the possibility that this observation was caused by higher mRNA abundance in

early embryos, especially in oocytes and zygotes, we performed oocyte splits. The results

showed that the ratios of genes containing different numbers of isoform types were almost

consistent among intact oocytes, 1/2 oocytes, and 1/4 oocytes (S2C Fig), suggesting that the

Table 1. Quality evaluation of samples from 3 batches.

Library Batch 1 Batch 2 Batch 3

Polymerase Reads Polymerase Reads 5534582 6002833 7099439

Polymerase Yield (GB) 427.02 540.46 410.25

Polymerase Max Length 479619 493469 483234

Polymerase Mean Length 77155.42 90033.59 57786.35

Polymerase Read N50 154554 167339 130615

Subreads Subread Yield (GB) 420.1 535.33 404.78

Subreads Max Length 479619 493469 483234

Subreads Mean Length 3001.47 4482.57 3127.49

Subread N50 3557 5186 3508

CCS CCS Reads 4412788 5079207 5914414

CCS Yield (GB) 15.6 25.46 23.5

CCS Max Length 27871 27593 27810

CCS Mean Length 3534.33 5013.54 3973.65

CCS N50 Length 4216 5791 4760

CCS Mean Passes 27 19 17

CCS MeanQV 0.96 0.97 0.94

Full-length (FL) Isoform Detection All Paired 11184443 20967437 11008106

FL 10013148 19427495 9427600

Non-FL 206358 283797 283953

Unknow 964937 1256144 1296552

FL (%) 89.53 92.66 85.64

Non-FL (%) 1.85 1.35 2.58

Unknow (%) 8.63 5.99 11.78

FL MeanLen 934.75 888.57 1081.15

FL N50 1128 1044 1365

Cell Barcode (CB) Identification FLNC 10013148 19427495 9427600

CB in Whitelist 8858087 17083701 7834317

CB in Whitelist (%) 88.46 87.94 83.1

CB Correction 254281 553029 334615

CB Correction (%) 2.54 2.85 3.55

Total Corrected CB 9112368 17636730 8168932

Total Corrected CB (%) 91 90.78 86.65

https://doi.org/10.1371/journal.pbio.3002505.t001
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Fig 2. GeneAU : AbbreviationlistshavebeencompiledforthoseusedinFigs2; 3; and5:Pleaseverifythatallentriesarecorrect:and isoform expression in the mouse preimplantation embryos. (A) Number of genes and UMIs

detected in each cell at different stages. The raw data for this plot is supplied in S2 Data. (B, C) PCA plot of all the

blastomeres and mESCs based on gene expression (B) and isoform expression (C). The PCA loadings are supplied in

S1 Table. The raw data for these 2 plots are supplied in S2 Data. (D, E) Heatmap of stage-specific genes (D) and

isoforms (E). The raw data for these 2 plots are supplied in S2 Data. (F) Venn plot of pairwise groups of stage-specific

genes and isoform-corresponding genes. (G) Isoform switch during embryo development, the upper picture is the

reference transcript and our sequence isoform and the lower part is the gene and main isoform expression of Cfdp1
and Cnot7. The raw data for this plot is supplied in S2 Data. (H) Number of isoform switch events between each

adjacent embryonic stages. The raw data for this plot is supplied in S2 Data. (I) GO results of genes showed isoform

switch during preimplantation embryo development. The raw data for this plot is supplied in S2 Data. GO, Gene

Ontology; mESC, mouse embryonic stem cell; PCA, principal component analysis.

https://doi.org/10.1371/journal.pbio.3002505.g002
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detected isoform diversity was hardly affected by the amount of mRNAs. Additionally, the

genes expressing more types of isoforms were detected with higher expression levels in both

our data and SCAN-seq data (S2D and S2E Fig). To validate this hypothesis, we randomly

selected 3 highly expressed genes (CPM> 100) and 3 lowly expressed genes (CPM < 10) in

mESC to confirm their isoform diversity by reverse transcription and PCR (RT-PCR).

Although there were more types of isoforms revealed by RT-PCR than the sequencing results,

the highly expressed genes still showed higher isoform diversity (S2F Fig). We then assessed

the isoform dominant level in each gene expressing multiple types of isoforms by calculating

the ratio of the UMI number of the major isoform to the total UMI number of the correspond-

ing gene. The major isoform ratios increased from early to late embryonic stages, especially

after the ZGA process (S2G Fig). In comparison, the major isoforms accounted for 90% of

most genes in mESCs, indicating a dominant isoform expression pattern and less isoform

diversity in these cells.

Large abundance of 3-prime partial transcripts are observed in mouse

oocytes and zygotes

Based on the putative integrity of corresponding open reading frames (ORFs), the transcripts

were categorized into 5 types: complete isoforms encoding the full ORFs, 3-prime partial tran-

scripts and 5-prime partial transcripts lacking the stop codon and start codon sections respec-

tively, internal transcripts predicted with proteins lacking both ends, and others where the

detected ORF lengths in the isoforms were below the software-set threshold [36] (Fig 3A).

When compared to the annotated transcription start site (TSS), the 5-prime partial transcripts

exhibited the lowest overlap ratio with the CAGE peaks (S3A Fig), indicating that some of

these transcripts might be generated by incomplete reverse transcription.

As anticipated, the complete transcripts displayed the longest lengths, while the internal

transcripts were the shortest (S3B Fig). However, the predicted protein length was similar for

the 3 incomplete transcript types (S3C Fig). Intriguingly, we observed that the 3-prime partial

transcripts were highly expressed in oocyte and zygote, but their expression dramatically

decreased from the E2C stage (Fig 3B and 3C). This expression pattern was also observed in

the SCAN-seq data (S3D and S3E Fig). Subsequently, we conducted GO analysis on genes

detected with 3-prime partial transcripts (S2 Table). These genes were enriched in pathways

related to RNA processing, cell cycle checkpoint, ribonucleoprotein complex biogenesis, DNA

metabolic process, chromatin organization, etc. (Fig 3D), all of which are known to play essen-

tial roles in mouse and human preimplantation embryo development [13,16,37–40].

We then selected some candidates to validate the enrichment of 3-prime partial transcripts.

The host genes related to RNA processing (Sf3b2, Srpk1) and protein translation and trans-

porting (Dnajc3, Hsp90aa1) were revealed by gel analysis of mouse oocyte RT-PCR products

(Fig 3E). Furthermore, no stop codons were identified in these transcripts according to the

Sanger sequencing results (Fig 3F).

Expression of Ncl showed significantly isoform switch during embryonic

development

The Nucleolin gene encodes NCL, which is involved in various cellular processes such as ribo-

some biogenesis, chromatin organization and stability, and DNA and RNA metabolism [41].

It also regulates totipotent genes expression with KAP1 and LINE1 [27,28]. Isoform sequenc-

ing revealed that the Ncl gene encodes 6 isoform types, categorized based on the number of

RNA recognition motifs (RRMs) they contain (Fig 4A). RT-PCR showed that the short iso-

form (Ncl-S-350) was more abundant than the complete isoform (Ncl-FL-71) in mouse oocyte

PLOS BIOLOGY ScIsoform-seq reveals isoform switch and locus-specific TE regulation in early embryo development

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002505 February 16, 2024 7 / 22

https://doi.org/10.1371/journal.pbio.3002505


(Fig 4B). The 2 of most enriched short isoforms were confirmed as 3-prime partial isoform by

Sanger sequencing (Fig 4C). Ncl abundance was first down-regulated in the E2C stage and

then increased from the L2C stage at the gene level (Fig 4D). The 2 categories of short Ncl
isoforms were highly expressed in oocytes and zygotes and then almost disappeared. Con-

versely, the complete Ncl isoform showed lower expression in maternal RNA and was largely

up-regulated after ZGA (Fig 4D). Our findings highlight the isoform switch of the Ncl gene

during the ZGA process, which is masked in gene-level analysis.

Fig 3. Expression patterns of different types of transcripts during mouse preimplantation embryo development. (A) Schematic

diagram of different transcript types. (B) Ratios of each type of transcripts at different stages. The raw data for this plot is supplied in

S3 Data. (C) Number of 3-prime partial transcripts detected at each stage. The raw data for this plot is supplied in S3 Data. (D) The

GO analysis of 3-prime partial transcripts. The raw data for this plot is supplied in S3 Data. (E) Gel picture showing the isoforms by

RT-PCR of Dnajc3, Sf3b2, Hsp90aa1, and Sprk1 in mouse oocytes and mESCs. The raw image for this plot is supplied in S1 Raw

Images. (F) Sanger sequencing of the candidate 3-prime partial transcripts in Fig 3E. GO, Gene Ontology; mESC, mouse embryonic

stem cell.

https://doi.org/10.1371/journal.pbio.3002505.g003
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To demonstrate this result, we performed reverse transcription and real-time quantitative

PCR (RT–qPCR) using primers targeting all the Ncl isoform types or only the complete type,

respectively, and calculated the relative percentages of the full-length isoform in different

stages of mouse preimplantation embryos. As expected, less than 20% of the Ncl transcripts are

complete in oocytes when we set the full-length relative ratio as 100% at the morula stage (Fig

4E). This result confirmed the dynamic isoform switch during embryo development in vivo.
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Fig 4. Isoform expression pattern of Ncl during mouse preimplantation embryonic development. (A) Schematic diagram of Ncl
isoforms. (B) Gel picture (left) and Q-sep result (right) of Ncl RT-PCR products from mouse oocyte. The raw image for this plot is

supplied in S1 Raw Images. (C) The Sanger sequencing results of the top 2 enriched short Ncl isoforms. (D) Expression levels of each
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https://doi.org/10.1371/journal.pbio.3002505.g004
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TEs are dynamicallyAU : PleasenotethatdynamiclyhasbeenchangedtodynamicallyinTEsaredynamicallyactivatedduringembryonicdevelopment:Pleasecheck:activated during embryonic development

Due to the repetitive and interspersed features of TE sequences and their transcripts, TGS-

based sequencing is more suitable for TE research [42,43]. Our long-read and highly accurate

results can help us investigate TE expression at specific loci. TE expression was quantified in

each single cell. Generally, the amount of TE RNAs belonging to different super-families

decreased along embryonic stages (Fig 5A). Although maternal RNA contains the largest pool

of TE elements, zygotes were detected with more TE RNA copies, suggesting TE as an impor-

tant regulator to promote minor ZGA (Fig 5A). Additionally, TE expression elevated from

32-cell to blastocyst stage, indicating that TEs play a role in embryonic pluripotent stem cells.

Our single-cell direct isoform sequencing data enabled mapping the TE reads to specific loci

confidently, and we also calculated the number of expressed TE loci at each stage. Hundreds of

TE loci were transiently transcribed at the zygote stage, further supporting the deduction that

TEs regulate minor ZGA (Fig 5B). More active TE loci were detected in blastocysts than moru-

lae, also indicating the important role of TEs in embryonic pluripotent stem cells (Fig 5B).

We further calculated the TE expression level according to total reads or single locus

mapped reads belonging to each TE superfamily in each single cell (Fig 5C). In both calcula-

tion ways, the oocyte and zygote were detected with higher expression levels. However, more

different expression patterns were observed between total TE superfamily expression and indi-

vidual TE locus expression. For example, LINE was slightly down-regulated from E2C to

32-cell stage when looking at the superfamily, but the transcription level at each locus was up-

regulated. Differently, the total LTR expression transiently increased at L2C stage, but each

locus was detected with lower expression level (Fig 5C). These differences still exist when cal-

culating in each TE family (S4A and S4B Fig). The ERVL, which has been proven to be associ-

ated with totipotent genes’ activation [18,25,26], is indeed the highest expressed in L2C

samples. However, each active ERVL site in the L2C genome did not express the most copies

of corresponding RNAs. This indicates that more ERVL sites are transiently active to regulate

a large scale of major ZGA genes at L2C stage (S4A and S4B Fig). Gaining information on

locus-specific TE expression may help us to gain a deeper understanding of how TEs regulate

different developmental processes.

To study the role of specific TEs at distinct locations, not categorized in a family or subfam-

ily, in regulating preimplantation embryo development, we sought out TE loci with stage-spe-

cific expression patterns. We identified a total of 3,894 TE loci, which could be classified into 5

clusters based on their expression patterns across all embryonic stages (Fig 5D and S3 Table).

Specifically, Cluster 1 (C1) TEs exhibited higher expression in oocytes and zygotes. Cluster 2

(C2) TEs were predominantly expressed in the E2C stage. Cluster 3 (C3) and Cluster 4 (C4)

TEs showed high expression in the L2C to 4-cell stages and 8-cell to blastocyst stages, respec-

tively. The mESC-specific TEs were grouped in Cluster 5 (C5).

Subsequently, we explored the involvement of ERVL and LINE1 subfamilies in the MZT pro-

cess and later stage development [18,25–27] (Figs 5E, 5F, S4C and S4D). As anticipated, MERVL-

int and MT2_mm, which only contain the LTR promoter of MERVL element, were the primary

active MERVL subtypes in C3, a stage during which major totipotent genes are expressed [19,44]

(Fig 5E). Conversely, MT2B1 was the most active subtype in the maternal genome. The LINE1

superfamily has been reported to silence totipotent genes such as Dux [27]. In our data, Lx7

emerged as the most active LINE1 subfamily since the L2C stage (Figs 5F and S4D).

A TE subfamily consists of hundreds to thousands of TE copies from different loci, and

these copies are transcribed independently. We observed diverse activation of different TE

copies even within the same subfamily (S5A and S5B Fig). For example, although MERVL-int

and MT2_mm participate in ZGA, some copies from chromosome 1 and chromosome 5 were
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https://doi.org/10.1371/journal.pbio.3002505.g005
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exclusively active in the maternal genome (S5A Fig). Most of the LINE1 copies belonging to

different subfamilies were actively transcribed in oocytes, but more Lx7 copies became active

only after the E2C stage (S5B Fig). The expression level of TE loci showed a notably higher cor-

relation with that of adjacent genes (Fig 5G). We observed consistent expression of specific

LINE1 and ERVL loci with adjacent genes, indicating common active regulations for different

TE families (Fig 5H). As TEs can function as transcriptional regulatory elements such as

enhancers, detecting locus-specific TE expression provides more insights into understanding

the regulatory mechanism of preimplantation embryo development [45].

Discussion

Single-cell sequencing has significantly advanced our research in preimplantation embryo

development. We have identified genes, isoforms, and TE elements that are specific to differ-

ent developmental stages, revealing a rich diversity of isoforms in the maternal contents. By

modifying the HIT-scISO-seq to a low-throughput method, we were able to track cells from

the same embryo during the experiment. This single-cell approach not only illustrated differ-

ences across developmental stages but also highlighted cell heterogeneity within a specific

stage, allowing for the evaluation of fate differentiation of blastomeres within an embryo.

The 2 blastomeres in the 2-cell embryo showed high consistency in both gene and isoform

expression levels, but became increasingly different from each other from the 4-cell stage (S5C

and S5D Fig), that fate divergence could be revealed at the 4-cell stage on the transcriptional

level. When comparing the heterogeneity between cells from different embryos at the same

stage, the correlation values also decreased along with developmental stages. The decreased

cell–cell correlation at the zygote stage likely resulted from batch effects of different embryo

replicates. However, the low-throughput approach, affected by the low-throughput and high

cost of TGS, also makes it difficult to obtain a large sample size, especially since the cells col-

lected in the blastocyst stage are insufficient to illustrate intra-embryo heterogeneity. We

believe that future studies using high-throughput approaches are more powerful in fully speci-

fying the transcript regulations in cell fate specification at the blastocyst stage.

TGS-based isoform sequencing, at the bulk or single-cell level, has annotated an abundance

of novel transcripts and splicing events in preimplantation embryos [4,17,22]. However, it

remains unclear how different types of isoforms regulate the developmental process. In the

present study, by dividing the transcripts into subtypes according to their coding characteris-

tics, we found a large number of 3-prime partial transcripts, which lack stop codons, in mouse

MII oocyte and zygote (Fig 3B, 3C and 3E). This type of transcript has been extensively studied

in cancer and is considered an oncogenic factor [46]. In early embryos, these transcripts might

be important for the MZT process, as the host genes are highly enriched in biological processes

responsible for mouse and human preimplantation embryo development (Fig 3D). Further

studies are needed to resolve the generation and function of these transcripts.

TEs are the main components of the mammalian genome. However, their biological func-

tion is still largely unclear, and most of them were previously regarded as parasites or “junk

DNA” [27]. Although some TE classes have been investigated in preimplantation embryos,

previous studies almost exclusively used NGS-based analysis, only revealing the TEs at the sub-

family level [22,27,47,48]. Our long-read direct isoform sequencing directly quantifies the TE

transcription from different loci (Figs 5 and S3). Our data displays more detailed TE expres-

sion dynamics, which helps us to investigate these genome “dark matters” in more detail.

TEs had been reported to regulate gene expression by different ways. For example, LINE1

has the ability to increase the chromatin accessibility [21,27,49], while MERVL and MT2_mm

can derive totipotent gene expression in 2-cell and 4-cell embryo [18,25,26]. Therefore,
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exploring how dynamic expression of locus-specific TEs regulates gene expression requires

further investigation. On the other hand, abnormal expression of TEs in most differentiated

tissues is harmful to humans. For instance, LINE1 overexpression is highly related to cancers

such as gastric cancer and lung squamous cell carcinoma [50–52]. HERVK overexpression is

related to aging in mouse, monkey, and human [53]. Therefore, measuring TE expression at

the locus-specific level offers a new way to decode the mechanisms in various human diseases.

Beyond just TE expression, several studies have identified transcript isoforms where TEs are

used as alternative promoters for gene expression [18,54–57]. We also attempted to find TE chi-

meric transcripts in the mouse preimplantation embryos. A total of 6,143 TE chimeric tran-

scripts were identified, with over 80% only detected in 1 cell with 1 copy (S4 Table). One reason

could be the low expression levels of these transcripts. Considering the limited sequencing

depth from the TGS in this study, it is difficult to fully detect these transcripts. Another reason

might be the current bioinformatic methods, which are not suitable for analyzing the TE chime-

ric transcripts. As the recent study by Berrens and colleagues [22] also captured quite a limited

number of TE-derived isoforms in each cell (approximately 200 for the mouse 2-cell sample

and approximately 20 for human iPSCs). The increase of TGS throughput and the development

of bioinformatics would help us to further explore on such interesting regulations.

Materials and methods

Ethics statement

All animal experiments were performed according to the guidelines of the Institutional Animal

Care and the Ethics Committee of the Guangzhou Institutes of Biomedicine and Health

(Guangzhou, China). The research license number is IACUC2020113.

Animals and single blastomere collection

We used 6- to 8-week-old C57BL/6J female mice and DBA/2NCrl male mice in the experi-

ment. The female mice were first injected with 7.5 IU of pregnant mare’s serum gonadotropin

(PMSG) (Ningbo SanSheng Biological Technology, Cat. 110044564) and with 7.5 IU of human

chorionic gonadotropin (hCG) (Ningbo SanSheng Biological Technology, Cat. 50030248)

after 46 to 48 h injected. After mating, the embryos of each stage were collected at defined time

periods after hCG administration [58]: 20 h (MII oocyte, no mating), 22 to 24 h (zygote), 30 to

32 h (early 2cell), 46 to 48 h (late 2cell), 54 to 56 h (4cell), 68 to 70 h (8-cell), 78 to 80 h (16cell

to 32cell), and 88 to 90 h (early blastocyst). All animal experiments were performed according

to the guidelines of the Guangzhou Institutes of Biomedicine and Health (Guangzhou, China).

Collection of single blastomeres at each stage was carried out as previously described [4].

Single-cell cDNA amplification and TGS library construction for PacBio

sequencing

We used the same amplification procedure as SCAN-seq [4], except for changing the reverse

transcription primer with a 10× gel bead for each reaction for the embryonic samples. Then,

each pre-amplification product was purified by 0.6× Ampure XP beads (Beckman, Cat.

A63882). The concentration was measured using Qubit dsDNA HS and BR Assay Kits (Invi-

trogen, Cat. Q32854). The PCR product from about 60 blastomeres which were confirmed of

effective amplification were pooled together in proportion to the number of amplified cycles.

We took 100 ng of the pooled cDNA to build PacBio sequencing library following the protocol

of HIT-scISOseq [6] and sequenced for 1 cell with HiFi mode.
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Cell barcode sequence identification by Sanger sequencing

About 2 ng of the pre-amplified cDNA of each cell was further amplified using 2 × Taq Plus

Master Mix (Vazyme, Cat. P212), and then cloned into T vector (Transgen, Cat. CT111-01).

Next, the ligated plasmid transferred into Trans5α chemically competent cell (Transgen, Cat.

CD201-01) by heat shock. The M13 primer were used to identify positive clones inserted with

cDNA fragments. Single clones of bacteria were collected for Sanger sequencing to identify the

barcode sequence of each cell.

Mouse ES cell culture

Mouse E14 Tg2A (E14) ES cells (male) were used for all experiments. The mESCs were cul-

tured on 0.1% gelatin-coated plates in ES-FBS culture medium as previously described [27].

Validation of the 3-prime partial transcripts

The oocytes or the mESCs RNA were reverse transcription using oligo-dT primer

(AAGCAGTGGTATCAACGCAGAGTACTTTTTTTTTTTTTTTTTTTTTTTTT). Then, the

anchor sequence of oligo-dT primer and a primer located in the start codon of the interested

gene (Ncl: ATGGTGAAGCTCGCAAAGGC; Dnajc3: ATGGTGGCCCCCGGCTCGGTG; Sf3b2:

ATGGCGGCGGAGCATCCCGAACCT; Hsp90aa1: ATGCCTGAGGAAACCCAGACCCA; Srpk1:

ATGGAGCGGAAAGTGCTCGCGCT) were used to amplify all isoforms containing the 50 sites.

The PCR products were first checked on 1.5% agarose gel. The candidate gel bands were recov-

ered and the sequences were confirmed by Sanger sequencing.

Validation isoform diversity of highly and lower expressed genes

The mESCs RNA were reverse transcription using oligo-dT primer as previous mentioned.

Then, the forward primer that could distinguish most diverse isoforms was used to amplifica-

tion target genes (Srsf7: ATGTCACGCTACGGGCGGTA; Rps5: CTGTCTGTATCAGGGCGGCG;

Rps19: TTTCCCCTGGCTGGCAGCGC; Plp2: ATGGCGGATTCTGAGCGTCT; Mrps6:

ATGCCCCGCTACGAGTTGGC; Ss18l2: ATGTCTGTCATCTTCGCTCCTG). All the reverse

primer used was oligo-dT. The PCR products were checked on 1.5% agarose gel.

Single-cell isoform sequencing data processing

We used stand-alone versions of SMRT-Link (version 8.0.0.80529) software package to trans-

form raw Subreads to Calling Circular Consensus Sequencing (CCS) reads with the following

parameters: “—min-passes 0—min-length 50—max-length 21000—min-rq 0.75.” After CCS

calling, we used HIT-scISOseq analysis software kit scISA-Tools (https://github.com/

shizhuoxing/scISA-Tools) for Full-Length Non-Concatemer (FLNC) reads identification, cell

barcode and UMI extraction and correction.

Alignment and generation of single-cell gene expression matrix

After trimming the primers, cell barcodes, UMIs, and polyA tails, the remaining FLNC

sequences were aligned to mouse genome (10x Genomics pre-build mouse mm10 reference

dataset: refdata-gex-mm10-2020-A) using minimap2 (version 2.17-r974-dirty) in spliced

alignment mode with the following parameters: “-ax splice -uf—secondary = no -C5.” Then,

we used gffcompare (version 0.11.6) to assign the mapped FLNCs to mm10 annotation gene

models (10x Genomics pre-build mouse mm10 reference dataset: refdata-gex-mm10-2020-A)

base on FLNCs genome alignment SAM file. Next, based on the identified cell barcodes, we
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used scGene_matrix utility of scISA-Tools to generate the single-cell gene expression matrix.

The expression values were normalized as copy number per 100,000 mapped reads (CPM/10).

SIRV data evaluation

The FLNC reads were aligned to the SIRVome using minimap2 (version 2.17-r974-dirty) with

the following parameters: “-ax splice -uf—MD—sam-hit-only.” We only annotated the reads

with assigned barcodes and valid UMIs. Then, we used gffcompare (version 0.11.6) to assign

the mapped FLNCs to SIRVome annotation GTF (SIRV-Set4) base on FLNCs SIRVome align-

ment SAM file. A confusion matrix was generated with the counts of FLNCs assigned to the

primary SIRV isoforms or not using an in-house script.

Nonredundant isoforms classification and quality assessment

First, the “collapse_isoforms_by_sam.py” python script in cDNA_Cupcake software package

(https://github.com/Magdoll/cDNA_Cupcake) was used to collapse mapped FLNCs to nonre-

dundant isoforms with parameters: “—dun-merge-5-shorter.” After that, we used SQANTI3

(https://github.com/ConesaLab/SQANTI3). To assess whether transcripts are within known

TSSs, we aligned them using the CAGE peak data (mouse.refTSS_v3.1.mm10.bed) provided

with the “—CAGE_peak” parameter in SQANTI3. We further used SQANTI3 “RulesFilter”

script to filtered artifact isoforms. Isoforms which classified as FSM, ISM, NIC, and NNC were

kept for downstream analysis.

Isoform type classification by ORF prediction

After being processed with SQANTI3, the FASTA file of mapped genome sequences were

extracted according to the SQANTI3 output GTF file. Base on the FASTA file, we used Trans-

Decoder (v5.5.0) for ORF extraction and prediction. For those predicted with multiple ORFs,

the longest ones were selected as the representative ORF. TransDecoder assigns each detected

isoform as one of 4 types based on whether then contains the start and stop codon of the refer-

ence ORF: complete, 5-prime partial, 3-prime partial, and internal. Additionally, we assigned

the isoforms that did not mapped to an ORF region by TransDecoder as others.

Generation of single-cell isoform expression matrix

After the SQANTI3 procedure, the scIsoform_matrix utility of scISA-Tools was used to gener-

ate single-cell isoform expression matrix based on the identified cell barcodes. We further fil-

tered isoforms detected in less than 5 cells and finally 68,012 isoforms in the mouse embryonic

samples were preserved.

PCA analysis based on gene and isoform expression

Before PCA dimensionality reduction, we used “FindVariableGenes()” function in Seurat R

package to select the top 1,000 highly variable genes and isoforms, respectively. Then, the

“PCA()” function in FactoMineR was used for dimension reduction process and we used the

function “fviz_pca_ind()” in factoextra R package to plot the PCA map.

Stage-specific genes and isoforms

Based on the gene expression matrix and isoform expression matrix, respectively, we used

“edgeR” to find differentially expressed genes/transcripts between each pair of adjacent embry-

onic stages under the criterion of logFC>1 and p-value <0.01. A total of 3,867 and 6,819

stage-specific genes and transcripts were identified, respectively. These genes and transcripts
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were clustered into 6 groups according to their expression patterns across all stages. Visualiza-

tion of these genes’ and transcripts’ expression was done using R package “pheatmap.”

SCAN-seq data processing

We downloaded the SCAN-seq data available from the Sequence Read Archive (SRA) database

(accession number: PRJNA616184). Following the described data processing steps of SCAN-

seq. Briefly, nanoplexer (https://github.com/hanyue36/nanoplexer/) was used to demultiplex

barcode for each cell in the library, and nanofilt (v2.5.0) was used for filtering low-quality

reads (qscore <7) and short reads (length<100 bp), then Pychopper (v2.3) (https://github.

com/nanoporetech/pychopper) was used to extract full-length reads.

After obtaining the full-length reads, we generated the gene expression matrix and isoform

expression matrix using the same procedure as we did for HIT-scISOseq data.

Isoform switch analysis

Based on the isoform expression matrix, we used “IsoformSwitchAnalyzeR” to identify switch

isoforms between each pair of adjacent embryonic stages under the criterion of iso-

form_switch_q_value<0.05 and gene_switch_q_value<0.01.

TE expression analysis

To quantify TE at the locus level, we first aligned all FLNC (full-length non-chimeric) reads to

the mm10 genome. Based on the TE annotation file obtained from UCSC (http://hgdownload.

soe.ucsc.edu/goldenPath/mm10/database/rmsk.txt.gz), we calculated the overlap between each

uniquely aligned FLNC read and TE loci. Subsequently, we applied filtering criteria: the start-

ing or ending position of FLNC alignment to the genome must fall within an overlapping TE

locus, and only the TE locus with the longest overlap length was considered for quantitative

counting of the same FLNC.

Following the above steps, we performed aggregate counting based on the cell barcode

sequences corresponding to each FLNC, enabling us to obtain quantitative expression mea-

surements of TE loci at the single-cell level.

To quantify the expression of TE-associated chimeric transcripts, we developed an in-house

script. Firstly, this script extracts the chimeric alignments from FLNC. Secondly, it employs a

method to identify TE sites that overlap with FLNC, as described in the unique TE mapping

method above. Thirdly, we align the chimeric-mapped FLNC with the protein-coding gene

positions from the reference annotation, aggregate these alignment results, and thus determine

the expression quantification (UMI counts) of protein-coding genes linked to each TE locus.

Supporting information

S1 Fig. Isoform switch caused functional/structural changes of genes. Expression pattern of

gene isoforms which showed switch during preimplantation embryo development. The exact

functional/structural domains predicted in each isoform are annotated based on the CATH

database (http://cathdb.info/search/by_sequence).

(EPS)

S2 Fig. Relationship between gene and isoform expression. (A, B) The ratios of genes detected

with different numbers of isoform types for each stage of mouse embryos and mESCs in this

study (A) and SCAN-seq data (B). The raw data for these 2 plots are supplied in S6 Data. (C) The

ratios of genes detected with different numbers of isoform types for full oocyte, 1/2 oocyte, and 1/

4 oocyte. The raw data for this plot is supplied in S2 Data. (D, E) Expression levels of genes
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detected with different numbers of isoform types for each stage of mouse embryos and mESCs in

this study (D) and SCAN-seq data (E). The raw data for these 2 plots are supplied in S6 Data. (F)

Gel view of cDNA amplification products of each gene. Srsf7, Rps5, and Rps19 are examples of

highly expressed genes (CPM>100) and Plp2, Mrps6, and Ssl8l2 are lowly expressed genes (CPM

<10). The raw image for this plot is supplied in S1 Raw Images. (G) Density plot showing the pro-

portion of the major isoforms in genes expressing multiple isoform types. Only genes detected

with UMI counts over 5 were included. The raw data for this plot is supplied in S6 Data.

(TIF)

S3 Fig. The characteristics of different types of transcripts. (A) Ratios of the transcripts

overlapped with annotated TSS. Transcripts with the 5-terminal locating within 200 bp of the

CAGE peaks are regarded as overlapped transcripts. The raw data for this plot is supplied in S7

Data. (B) Length distribution of different types of transcripts. The raw data for this plot is sup-

plied in S7 Data. (C) Relative length of the predicted protein to the complete reference ORF of

each type of transcript. The raw data for this plot is supplied in S7 Data. (D) Ratios of each

type of transcript at different stages calculated using SCAN-seq data. The raw data for this plot

is supplied in S7 Data. (E) Expression level of the 3-prime partial transcripts detected at each

stage in SCAN-seq data. The raw data for this plot is supplied in S7 Data.

(EPS)

S4 Fig. Characteristics of TE expression during preimplantation embryo development. (A)

Expression level of all TE counts belonging to different families in each stage. Each dot repre-

sents a cell. The raw data for this plot is supplied in S5 Data. Expression level of each TE locus

(lower panel) belonging to different families in each stage. Only active loci in each cell were

calculated. Each dot represents a cell. The raw data for this plot is supplied in S5 Data. (B) The

top 5 subfamilies of ERVL expressed in clusters C4–C5 in Fig 5E. (C) The top 5 subfamilies of

LINE1 expressed in clusters C4–C5 in Fig 5F.

(EPS)

S5 Fig. The loci expression of TEs and cell heterogeneity along developmental stages. (A)

The loci expression of stage specific TEs (mean expression >1 log count across all cells)

belonging to ERVL family. The raw data for this plot is supplied in S8 Data. (B) The loci

expression of stage specific TEs (mean expression >1 log count across all cells) belonging to

LINE1 family. The raw data for this plot is supplied in S8 Data. (C) Correlation coefficients of

blastomeres within the same embryos or different embryos at the same stage base on gene

expression data. The raw data for this plot is supplied in S8 Data. (D) Correlation coefficients

of blastomeres within the same embryos or different embryos at the same stage base on iso-

form expression data. The raw data for this plot is supplied in S8 Data.

(EPS)

S1 Table. The list of stage-specific genes and stage-specific isoforms.

(XLSX)

S2 Table. The expression matrix of 3-prime partial transcripts.

(XLSX)

S3 Table. The expression matrix of TE loci.

(XLSX)

S4 Table. The list of TE chimeric genes.

(XLSX)
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S1 Raw Images. Raw images.
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S1 Data. Raw data for Fig 1.

(XLSX)

S2 Data. Raw data for Fig 2.

(XLSX)

S3 Data. Raw data for Fig 3.

(XLSX)

S4 Data. Raw data for Fig 4.
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S5 Data. Raw data for Figs 5 and S4.
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S6 Data. Raw data for S2 Fig.
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