
Identification and validation of supervariants
reveal novel loci associated with human white
matter microstructure

Shiying Wang,1 Ting Li,2 Bingxin Zhao,3 Wei Dai,1 Yisha Yao,1 Cai Li,4 Tengfei Li,5,6

Hongtu Zhu,7 and Heping Zhang1

1Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut 06510, USA; 2Department of Applied
Mathematics, The Hong Kong Polytechnic University, Hong Kong, China; 3Department of Statistics and Data Science, University of
Pennsylvania, Philadelphia, Pennsylvania 19104-1686, USA; 4Department of Biostatistics, St. Jude Children’s Research Hospital,
Memphis, Tennessee 38105, USA; 5Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
27599, USA; 6Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill,
North Carolina 27514, USA; 7Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
27599, USA

As an essential part of the central nervous system, white matter coordinates communications between different brain regions

and is related to a wide range of neurodegenerative and neuropsychiatric disorders. Previous genome-wide association studies

(GWASs) have uncovered loci associatedwithwhitemattermicrostructure. However,GWASs suffer from limited reproducibil-

ity and difficulties in detecting multi-single-nucleotide polymorphism (multi-SNP) and epistatic effects. In this study, we adopt

the concept of supervariants, a combination of alleles in multiple loci, to account for potential multi-SNP effects. We perform

supervariant identification and validation to identify loci associated with 22 white matter fractional anisotropy phenotypes de-

rived from diffusion tensor imaging. To increase reproducibility, we use United Kingdom (UK) Biobank White British (n=

30,842) data for discovery and internal validation, and UK Biobank White but non-British (n= 1927) data, Europeans from

the Adolescent Brain Cognitive Development study (n=4399) data, and Europeans from the Human Connectome Project

(n=319) data for external validation.We identify 23 novel loci on the discovery set that have not been reported in the previous

GWASs on white matter microstructure. Among them, three supervariants on genomic regions 5q35.1, 8p21.2, and 19q13.32

have P-values lower than 0.05 in the meta-analysis of the three independent validation data sets. These supervariants contain

genetic variants located in genes that have been related to brain structures, cognitive functions, and neuropsychiatric diseases.

Our findings provide a better understanding of the genetic architecture underlying white matter microstructure.

[Supplemental material is available for this article.]

White matter, as an essential part of the central nervous system,
composes roughly half of the human brain (Filley and Fields
2016). White matter mainly consists of bundles of myelinated ax-
ons, or tracts, which connect various gray matter areas and coordi-
nate communications among brain regions (Hagmann et al. 2008;
Schmahmann et al. 2008). Functioning as a modulator of the dis-
tributed neural network, white matter is dynamically involved in
learning and information processing (Fields 2008). The abnormal
structure and dysfunction of white matter are related to a wide
range of neurodegenerative and neuropsychiatric disorders, such
as Alzheimer’s disease (Gold et al. 2012; Lee et al. 2016), schizo-
phrenia (Flynn et al. 2003; Cetin-Karayumak et al. 2020), and ma-
jor depression disorder (Zou et al. 2008). The genetic analyses of
white matter help elucidate biological mechanisms underlying
learning and information processing and further deepen our un-
derstanding of the etiology of those brain-related diseases.

Diffusion tensor imaging (DTI) is a magnetic resonance imag-
ingmodality that enables themeasurement of whitemattermicro-

structure in vivo (Le Bihan et al. 2001). Fractional anisotropy (FA)
derived from DTI at each voxel is a simple and robust metric to
quantify white matter integrity (Pfefferbaum et al. 2000).
Moreover, white matter tracts extracted from DTI form a complex
network of structural connections and shape communication and
connectivity patterns. In general, white matter tracts with higher
FA values have higher white matter integrity (Pfefferbaum et al.
2000). Evidence indicates that changes in FA values are associated
with various neuropsychiatric disorders (Podwalski et al. 2021) and
cognitive functions (Grieve et al. 2007). FA values are also highly
heritable. The heritability of tract-averaged FA is estimated to range
from 53% to 90% in a twin study (Kochunov et al. 2015) and from
31% to 66% based on SNPs (Zhao et al. 2021a). Therefore, FA val-
ues are useful for studying the genetic influence on white matter
microstructure.

GWASs have been performed to study the genetic basis of
white matter microstructure (Elliott et al. 2018; Rutten-Jacobs
et al. 2018; Zhao et al. 2021a,b; Smith et al. 2021). For instance,
Zhao et al. (2021a) performed the largest GWASs for DTI-derived
phenotypes, including FA, mean diffusivity (MD), axial diffusivity
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(AD), radial diffusivity (RD), and mode of anisotropy (MA) along
21 white matter tracts. Genetic loci associated with tract-averaged
FA have been identified. However, GWASs focus on the marginal
effects of individual SNPs on phenotypes and suffer from limited
reproducibility and difficulties in detecting multi-SNP and epistat-
ic effects (Wu et al. 2010). Such multi-SNP and epistatic effects
might account for additional heritability that cannot be explained
by genetic variants identified in the GWASs.

As an alternative strategy, SNP-set analysis groups SNPs based
on genomic regions or functional features and then tests their joint
effects. Within the framework of SNP-set analysis, we consider the
concept of supervariants. Similar to the concept of the gene, a
supervariant is a combination of alleles in multiple loci. However,
unlike a gene that is a physically connected region on a chromo-
some, the loci contributing to a supervariant can be anywhere in
the genome (Song and Zhang 2014; Hu et al. 2020, 2021; Li et al.
2021). Supervariants adaptively aggregate signals ofmultiple alleles
and are expected to account for complex multi-SNP effects even
when they are located remotely. Previous genome-wide studies
have shown the validity of supervariants and successfully identified
supervariants and corresponding genetic variants for breast cancer
(Hu et al. 2020), brain connectivity (Li et al. 2021), and COVID-19
related mortality (Hu et al. 2021; Liu et al. 2023).

In this study, we perform supervariant identification and val-
idation to identify loci associated with 22 white matter FA pheno-
types using a ranking and aggregation method (Song and Zhang
2014; Hu et al. 2020). To increase the reproducibility of results,
we consider both internal and external validation. We use partici-
pants withWhite British ancestry from theUK Biobank (UKB) data
set (n=30,842) for supervariant identification and internal valida-
tion. The identified supervariants are further replicated in three ex-
ternal validation data sets with European ancestry: UKBWhite but
non-British (UKBW; n =1927), Europeans from the Adolescent
Brain Cognitive Development study (ABCD; n=4399), and
Europeans from the Human Connectome Project (HCP; n=319).
For identified supervariants and selected SNPs, we perform biolog-
ical annotation, gene-level analysis, and association lookups on

the NHGRI-EBI GWAS catalog (Buniello et al. 2019). By perform-
ing supervariant identification and validation, we aim to detect
novel and replicable loci associated with white matter FA pheno-
types, which potentially improve our understanding of the genetic
architecture of white matter microstructure.

Results

Discovery and internal validation of supervariants associated

with white matter microstructure

Weperform supervariant identification and internal validation for
22 whitematter FA phenotypes (mean FA of 21 whitematter tracts
and average FA across all the tracts) derived from the data set of the
UKB White British (n =30,842). The supervariant construction
procedure follows a local ranking and aggregation method (Fig.
1A). It adaptively ranks and selects SNPs to form supervariants
for a specific phenotype. First, we divide the whole genome into
2723 nonoverlapping local SNP sets and construct two supervar-
iants, one with the positive effect and the other with the negative
effect, for each predefined SNP set (Song and Zhang 2014; Hu et al.
2020). A supervariant denoted as “pheno_set_+/−” is the aggrega-
tion of selected SNPs within the SNP set with a positive or negative
effect on the phenotype. A total of 2723× 2=5446 supervariants
are considered for each phenotype.

Our analysis considers the following discovery and internal
validation procedure (Hu et al. 2021) shown in Figure 1B. The com-
plete set is randomly divided into two sets with equal sizes (n=
15,421 for each set), one for the construction of supervariants
and the other for validation. We apply the aforementioned rank-
ing and aggregation method for supervariant construction on
the first part of the data set. Then, after the construction of the
supervariants, we validate the associations between constructed
supervariants and white matter phenotype through linear regres-
sions on the second part. We control for age (at imaging), sex, im-
age site, age-squared, age and sex interaction, age-squared and sex
interaction, and the top 10 principal components (PCs) in the

A B

Figure 1. Supervariant identification and validation procedure. (A) Workflow of supervariant construction following a local ranking and aggregation pro-
cedure. (B) Workflow of discovery, internal validation, and external validation of supervariants. UKB White British data set is randomly split into two parts.
On the first part, supervariants are constructed following the four steps in A. On the second part, the association between constructed supervariants and
phenotype is validated. This discovery and internal validation procedure is repeated 10 times. Supervariants that can be discovered and validated multiple
times on the UKB White British data set are regarded as reproducible supervariants. They are further validated on three external data sets with European
ancestry. Then, meta-analysis is performed to combine the results. (UKB) UK Biobank, (UKBW) UKB White but non-British, (ABCD) Adolescent Brain
Cognitive Development study, and (HCP) Human Connectome Project.
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regression to remove potential bias. We use 4.17×10−7 (i.e., 0.05/
(2723×2×22)) as the threshold for the supervariant candidacy on
the first part of the data set because 5446 supervariants and 22 phe-
notypes are considered. A supervariant is regarded as validated if its
linear regression coefficient achieves the level of 0.05/22 signifi-
cance on the second part of the data set. On the second part of
the data set, we only adjust for the number of phenotypes instead
of using themost stringent threshold that also adjusts for the num-
ber of selected supervariants, aiming to include more potential as-
sociations for further analysis. As compensation, we repeat the
above procedure 10 times and retain the validated supervariants
and their contributing SNPs to ascertain the reproducibility of
the associations. Typically, genetic association analyses do not in-
clude internal validation, but we replicate our procedure 10 times
as a safeguard strategy for detecting potential and stable signals.
We provide empirical support for our strategy by performing sim-
ulation analyses to show that this procedure can control false pos-
itives (Supplemental Note S1).

At the significance level mentioned above, supervariants are
discovered and validated multiple times across 10 times replica-
tion. We identify 90 supervariants in 10 times replication, 194
supervariants in at least eight times, and 314 supervariants in at
least six times. The number of supervariants for each phenotype
is shown in Figure 2. We focus on 314 supervariants that can be
discovered and validated at least six times (Supplemental Table
S1). According to the binomial distribution, the probability of a
supervariant being validated in at least six out of 10 times replica-
tion by chance is 2.87×10−14 if the P-value on the second part of
the data set is assumed to be uniformly distributed.

The physical locations of the identified supervariants on the
chromosomes cover 123 SNP sets (Fig. 3A). Each SNP set corre-
sponds to a genomic region on chromosomes. In Figure 3A, we ob-
served that several genomic regions are linked to multiple white
matter tracts. For instance, within the SNP set Chr5_83, 33 super-
variants are identified, which are associated with mean FA of 18
white matter tracts and average FA, and within the SNP set
Chr22_39, 18 supervariants are involved in the association with
mean FA of 10 tracts and average FA. Among 123 SNP sets, 56
are associated with more than one white matter tract. The associa-

tion between a locus andmultiple phenotypes suggests that the lo-
cus has a broad genetic effect across multiple white matter tracts
and may play an important role in the genetic underpinning of
white matter microstructure.

Supervariants are identified for all 21 white matter tracts. The
number of identified supervariants for each tract ranges from one
to 28 (Fig. 2). The physical location of tracts in brain is displayed in
Figure 3B. Several white matter tracts are associated with multiple
supervariants. For example, for the anterior corona radiata, sple-
nium of corpus callosum, genu of corpus callosum (GCC), and av-
erage FA, more than 20 supervariants are identified, respectively,
which spread across a wide range of genomic regions, indicating
the microstructure of white matter tract can be regulated bymulti-
ple genetic compartments across the whole genome.

In terms of the SNPs contributing to 314 supervariants,
19,798 unique SNPs are selected to construct these supervariants
more than three times out of 10 replications. All contributing
SNPs are detailed in Supplemental Table S2. SNPs selected to
form one supervariant can be in one linkage disequilibrium (LD)
block or multiple LD blocks. We show two example supervariants
in Figure 4. Supervariant AverageFA_Chr3_14+ is constructed by
several SNPs within one LD block (Fig. 4A), and supervariant
SCR_Chr19_48+ is constructed by multiple SNPs within three LD
blocks (Fig. 4B). On average, one supervariant contains 101.1
SNPs. Among all contributing SNPs, multiple SNPs are selected
by more than one supervariant. For example, 31 SNPs are selected
by 19 supervariants, and all of them locate in the SNP set Chr5_83,
implying the genetic effect of this locus on the white matter
microstructure.

We initially define SNP sets by extracting SNPs within a
1-Mbp window (Fig. 1A) for computational convenience and sys-
tematically perform genome-wide association tests. Beyond that,
SNP sets can be defined by SNPs in genes that are not physically
connected but have biological support in the literature or existing
database. For example, we define a SNP set by SNPs located in
nine genes (SHANK2, LDLRAP1, NEFM, NEFH, NEFL, CLDN11,
NRP1, INA, DLGAP2) in the Gene Ontology (GO) gene set
GO_NEUROFILAMENT (GO:0005883). Then, we perform super-
variant identification and validation on the UKB British data set
for this SNP set. The constructed supervariant with positive effect
on the FAvalue of whitematter tract FXST achieves P=7.27×10−10

on the first part of data set and P=1.88×10−3 on the second part.
SNPs contributing to this supervariant are located in genes NEFM,
NEFL, DLGAP2, and NRP1. These results suggest the genetic effect
of this gene set on the white matter microstructure.

External validation of supervariants

We validate the 314 supervariants in three independent validation
data sets with European ancestry, including the UKBW (n=1927),
ABCD European (n=4399), and HCP European (n=319), and per-
form a meta-analysis (Fig. 1B). SNPs contributing to the supervar-
iants equal to or more than three times out of 10 are extracted
and aggregated into supervariants using additive coding on each ex-
ternal validation data set. Then, the associations between supervar-
iants and phenotypes are assessed by a linear regression adjusting
for covariates. Finally, the meta-analysis for the three validation
data sets (n=6645) is performed. The replication results are summa-
rized in Supplemental Table S3. In themeta-analysis, 40 (12.7%) out
of 314 identified supervariants pass the 1.6×10−4 (0.05/314) Bon-
ferroni significance level. It is also noteworthy that 128 (40.7%)
supervariants have P-values below the 0.05 level. All the 128

Figure 2. The number of discovered and validated supervariants in UKB
White British (n = 30,842) with different times of replication. The outer lay-
er counts the number of supervariants for eachwhitematter FA phenotype
that can be discovered and validated in at least six times replication, the
middle layer counts the ones that can be discovered and validated in at
least eight times, and the inner layer counts those can be discovered and
validated in 10 times. The full names of 21 white matter tracts are detailed
in Figure 3B.
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supervariants have concordant effect directions on the discovery
and validation data sets. These results show a high degree
of generalizability of findings among the European-ancestry co-
horts. We find that all of 33 supervariants located in the SNP set
Chr5_83 have P-values below the 0.05 level in the meta-analysis,
suggesting consistent signals in this locus across independent
data sets.

Comparison with previous GWASs on white matter phenotypes

We compare the supervariant results with the previous largest
GWASs for DTI-derived phenotypes (FA, MD, AD, RD, and MA)
along 21 white matter tracts (Zhao et al. 2021a). First, we find
that 204 out of 314 (65.0%) associations identified in the current
study overlap with previous GWAS findings. Therefore, most of

A

B

Figure 3. Identified supervariants associated with 22 white matter FA phenotypes in UKB White British (n = 30,842). (A) Ideogram of genomic regions
influencing white matter FA phenotypes, including 78 previously identified regions and 23 additional regions identified in the current study. The colors
represent the 21 white matter tracts (and the global average). Each signal point indicates that this white matter tract is associated with the genomic region.
(B) The number of supervariants associated with 21 white matter tracts in human brain. The color scale represents the number of supervariants ranging
from one to 28 associated with this white matter tract.
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the identified associations are concordant with the previous
GWASs on white matter phenotypes (Zhao et al. 2021a).
Moreover, we replicate 78 out of the 151 genomic regions discov-
ered by Zhao et al. (2021a) and identify additional 23 regions (Fig.
3A). Within 23 novel regions with potential effects on white mat-
ter microstructure, 31 supervariants are identified to be associated
with the mean FA of 14 white matter tracts (Supplemental Table
S4). It is worth mentioning that, among them, supervariant
FXST_Chr8_25+ (validation P=1.30×10−4) can be replicated
with P-values lower than 1.6 ×10−4 (0.05/314) in the meta-analy-
sis. In addition, supervariants GCC_Chr5_172+ (validation P=
3.9 ×10−3) and SCR_Chr19_48+ (validation P=3.29×10−2) have
P-values lower than 0.05. The effect directions of these three super-
variants are consistent on the discovery set and three validation
sets. These three supervariants preserve low P-values when further
adjusting for the effect of SNPs identified in previous GWASs for
DTI-derived phenotypes (Zhao et al. 2021a) in a conditional anal-
ysis, suggesting they are independent from previous identified loci
(Supplemental Note S2).

The shared genetic loci with complex traits and disorders

Weconduct association lookups for contributing SNPs to 314 super-
variants and SNPswithin LD (r2≥0.6) to evaluate the shared genetic
influences betweenwhitemattermicrostructure and other complex
traits. In theNHGRI-EBI GWAS catalog (Buniello et al. 2019), the se-
lected SNPs have been associated with a wide range of complex
traits in different trait domains, such as brain structural traits (e.g.,
cortical volume and thickness), neurodegenerative diseases (e.g.,
Alzheimer’s disease and Parkinson’s disease), psychiatric disorders
(e.g., bipolar disorder and schizophrenia), psychological traits
(e.g., neuroticism), cognitive performance (e.g., intelligence and
math ability), smoking, educational attainment, and anthropomet-
ric traits. These results are summarized in Supplemental Table S5.
We highlight the colocalizations of SNPs contributing to three
supervariants located in novel loci and with P-values lower than
0.05 in the meta-analysis of external validation data sets.

Supervariant FXST_Chr8_25+ is composed of 344 SNPs in ge-
nomic region 8p21.2. These SNPs locate in genes NEFM and NEFL

A

B

Figure 4. Selected supervariants and linkage disequilibrium structure. (A) Supervariant AverageFA_Chr3_14+. (B) Supervariant SCR_Chr19_48+. Black
lines represent the physical location of selected SNPs on the chromosome. The color scale represents the linkage disequilibrium (r2) between each pair of
selected SNPs.
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and intergenic regions and have been related to brain structural
traits (e.g., pallidum volume [Zhao et al. 2019] and brainmorphol-
ogy [van der Meer et al. 2020]), math ability (Lee et al. 2018), and
educational attainment (Fig. 5A; Okbay et al. 2022). Fornix-stria
terminalis (FXST) connects the hippocampus and amygdala to
the hypothalamus. Same as these brain structures, FXST is a critical
component of the limbic system. Studies have shown that FXST is
closely involved in emotion processing and memory (Douet and
Chang 2015; Dzafic et al. 2019). In addition, the limbic system in-
teracts with the basal ganglia, where pallidum is located. Of note,
the basal ganglia and the limbic system have been associated with
mathematical calculation and quantitative concepts in previous

neuroimaging studies (Arsalidou and Taylor 2011; Pina et al.
2022). Our findings of the shared genetic locimay explain the con-
nection between the limbic system, basal ganglia, and math
ability.

Supervariant SCR_Chr19_48+ consists of 82 SNPs involving
genes ARHGAP35, SAE1, FKRP, STRN4, PRKD2, andDACT3within
genomic region 19q13.32. The contributing SNPs have been relat-
ed to brain structural traits (e.g. cortical thickness [van der Meer
et al. 2021] and surface area [Shadrin et al. 2021]), educational at-
tainment (Okbay et al. 2022), smoking initiation (Justice et al.
2017; Liu et al. 2019), externalizing behaviors of attention deficit
hyperactivity disorder (ADHD), substance abuse, and antisocial

A

B

C

Figure 5. Selected supervariants with shared genetic loci associated with other complex traits and disorders. (A) Supervariant FXST_Chr8_25+. (B)
Supervariant SCR_Chr19_48+. (C) Supervariant GCC_Chr5_172+. Black lines represent the physical location of selected SNPs on the chromosome.
Physical location of SNPs that have been associated with other complex traits in the NHGRI-EBI GWAS catalog are shown. Colors of dots represent different
trait categories.

Genetic supervariants for brain white matter

Genome Research 25
www.genome.org



behavior (Fig. 5B; Karlsson Linner et al. 2021). The genomic region
19q13.32 where gene APOE is located has also been related to
Alzheimer’s disease (Moreno-Grau et al. 2019) and schizophrenia
(Goes et al. 2015). Superior corona radiata (SCR) plays the role of
transferring information to and from the cerebral cortex, where
the disruption of whitematter integrity has been found in patients
with ADHD (Onnink et al. 2015), Alzheimer’s disease (Yin et al.
2015), and schizophrenia (Meng et al. 2019) compared with
healthy controls. Our findings suggest the shared genetic influ-
ence between SCR and multiple disorders.

Supervariant GCC_Chr5_172+ selects 17 SNPs located in
gene SH3PXD2B within genomic region 5q35.1. Contributing
SNPs have been associated with cortical surface morphology
(Naqvi et al. 2021) and eosinophil count (Fig. 5C; Kichaev et al.
2019). GCC is the front part of corpus callosum, connecting the
lateral and medial surfaces of the frontal lobes (Standring 2015).
Corpus callosum serves as a hub between hemispheres and enables
communications between two sides of our brain. Our findings
suggest the shared genetic influence between white matter micro-
structure and brain structural traits. Overall, white matter micro-
structure has genetic links with a wide range of complex traits
and diseases. Integrating the genetic findings with these traits
and diseases may help explain the underlying mechanisms that
lead to changes in brain structure and function and the risk of
brain-related disorders.

Biological annotations and gene-level analyses

We annotate 19,798 SNPs selected to form 314 identified supervar-
iants usingANNOVAR (Wang et al. 2010) and summarize the func-
tion of SNPs and their corresponding genes in Supplemental Table
S2. Regarding the physical positions of SNPs, 10,230 SNPs locate in
619 protein-coding genes, and the remaining are in the noncoding
RNAgenes or intergenic regions.Out of 306 SNPswithin exon, 114
are nonsynonymous variants, and six SNPs are loss-of-function
variants. Based on the criteria of SIFT score (Kumar et al. 2009)
and PolyPhen-2 score (Adzhubei et al. 2013), seven nonsynony-
mous variants are predicted to be deleterious variants (Supplemen-
tal Table S6).

For the detected protein-coding genes, we perform lookups in
the NHGRI-EBI GWAS catalog (Buniello et al. 2019) and previous
GWASs for white matter to explore their previously reported
gene-trait associations. Our results replicate 415 genes reported
by Zhao et al. (2021a) and some other genes reported in previous
studies for human white matter (Sprooten et al. 2013, 2014; Ver-
haaren et al. 2015; Jian et al. 2018; Rutten-Jacobs et al. 2018;
Zhao et al. 2021b; Zhang et al. 2021) and find 204 novel genes
(Supplemental Table S7). Of the 619 detected genes, 227 have pre-
viously been implicated in cognitive function, education, neurot-
icism, neuropsychiatric disorders, neurodegenerative diseases, and
reaction time, such asARIH2 (Lee et al. 2018; Kulminski et al. 2022)
and PTCH1 (Nagel et al. 2018; Thorp et al. 2021;Okbay et al. 2022).
In particular, 57 out of the 227 pleiotropic genes are novel genes of
white matter microstructure, and these findings substantially un-
covered the gene-level pleiotropy between white matter micro-
structure and these traits (Fig. 6A).

To explore the biological interpretation of results, we conduct
GO enrichment analysis (Liberzon et al. 2011) for 619 identified
protein-coding genes and 204 novel white matter–associated
genes, respectively. The results are shown in Figure 6, B and C,
and Supplemental Tables S8 and S9. At a FDR 5% level, the GO
terms of 544 biological processes, 100 molecular functions, and

92 cellular components are significant in the enrichment analysis
for 619 protein-coding genes. Most of them are related to the
development and regulation of the nervous system, such as neu-
ron development (GO:0048666) and neuron differentiation
(GO:0030182). As for the 204 novel white matter–associated
genes, the GO terms of 11 biological processes, three molecular
functions, and 10 cellular components are significant at a FDR
5% level, including cytoskeleton organization (GO:0007010) and
positive regulation of catalytic activity (GO:0043085).We also per-
form the enrichment analysis of tissue-specific differentially ex-
pressed genes (DEGs) in 13 brain tissues (GTEx v8). We observe
the enrichment of detected genes in the DEG of all brain tissues
(P<1.5 ×10−9 for 619 protein-coding genes and P<1.1 ×10−3 for
204 novel white matter–associated genes), especially in the amyg-
dala, putamen basal ganglia, and hypothalamus (Supplemental
Table S10).

We further examine the gene expression level of detected
genes in brain tissues using the GTEx v8 (Lonsdale et al. 2013)
and BrainSpan (2011) databases. We present the results of genes
involved in three supervariants located in novel loci and with P-
values lower than 0.05 in the meta-analysis of external validation
data sets (Fig. 7). Genes NEFM and NEFL show high expression in
all the brain tissues, suggesting their important role in brain struc-
ture or function. ARHGAP35, SAE1, and STRN4 show moderate
to high expression in all the brain tissues. The expression of
SH3PXD2B is regional specific and concentrated in the cerebellum
and cerebellar hemisphere (Fig. 7A). Regarding the development
stage of brain samples in BrainSpan, NEFM and NEFL have higher
expression from late childhood to adulthood, and SAE1, STRN4,
and ARHGAP35 show more expression from parental stage to in-
fancy compared with adulthood (Fig. 7B).

Discussion

In this study, we perform supervariant identification and valida-
tion to identify genetic loci associated with human white matter
microstructure. We adopt the concept of the supervariant to ac-
count for potential multi-SNP effects. We discover and validate
314 supervariants in UKBWhite British. The results are further val-
idated in three independent validation data sets. The identified 23
loci have not been reported in the previous GWASs on white mat-
ter microstructure (Zhao et al. 2021a). The identified loci share ge-
netic influences with a wide range of complex traits. We annotate
SNPs contributing to identified supervariants and performGO en-
richment analysis of corresponding genes. These genes are en-
riched in the development and regulation of the nervous system
and DEG sets of brain tissues.

Comparing the results of supervariants and the previous larg-
est GWASs on white matter phenotypes (Zhao et al. 2021a), we
find that approximately two-thirds of the locus-trait associations
identified in the current study are concordant with GWASs.
Additionally, we identify 31 supervariants whose loci have not
been reported in previous GWASs.

We report three supervariants located in novel loci and
with P-values lower than 0.05 in the meta-analysis of external
validation data sets. The contributing SNPs of supervariant
FXST_Chr8_25+ locate in genes NEFM and NEFL. They both
show exclusive expression in the brain tissues (Fagerberg et al.
2014). NEFM encodes the neurofilament medium chain, and
NEFL encodes the neurofilament light chain. Neurofilaments are
essential structural scaffolding proteins of neurons, which play a
role in intracellular transport to axons and dendrites and are
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commonly used as a biomarker of neuronal damage (Khalil et al.
2018). Several studies have found the associations between protein
NEFL level and Alzheimer’s disease diagnosis and progression (Ols-
son et al. 2016; Zetterberg et al. 2016; Preische et al. 2019). The as-
sociation between gene NEFM and Parkinson’s disease has also
been reported (Krüger et al. 2003).

Supervariant SCR_19_48+ involves the genes ARHGAP35,
SAE1, FKRP, STRN4, PRKD2, and DACT3. Among them,

ARHGAP35, SAE1, and STRN4 show moderate to high expression
in all the brain tissues. ARHGAP35, a RHO GTPase-activating pro-
tein in the radial glia-like neural stem cells within the ventricular
zone of the medial ganglionic eminence, regulates dendritic spine
formation, axon elongation, and pontine midline crossing (Kaur
et al. 2020). SAE1-regulating protein structure and intracellular lo-
calization has been shown to promote human glioma progression
(Yang et al. 2019). STRN4 belongs to the striatin family of scaffold

A B

C

Figure 6. Gene-level analysis of 619 protein-coding genes. (A) Detected genes that have been linked to cognitive traits and brain-related disorders in
previous GWASs. The novel and previously reported genes of human white matter are labeled with two different colors (red and blue, respectively). (B)
Gene Ontology (GO) enrichment analysis for 619 protein-coding genes. At a FDR 5% level, the GO terms of 544 biological processes, 100 molecular func-
tions, and 92 cellular components are significant. The top 10 of each category are shown. (C) GO enrichment analysis for 204 novel white matter–asso-
ciated genes. At a FDR 5% level, the GO terms of 11 biological processes, three molecular functions, and 10 cellular components are significant.
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proteins. The local expression of the gene STRN4 in neuronal den-
drites controls the dendritic spine morphology (Lin et al. 2017).

The contributing SNPs of GCC_Chr5_172+ are mainly
mapped to the gene SH3PXD2B. This gene encodes an adapter pro-
tein required for podosome formation and is involved in cell adhe-
sion andmigration of numerous cell types (Mehes et al. 2019). The
adapter protein encoded by SH3PXD2B belongs to the same family
as the gene SH3PXD2A, which has been related to white matter
hyperintensity (Persyn et al. 2020) and integrity (Standring
2015). The above evidence from existing literature supports our
findings that these genes have potential genetic effects on white
matter microstructure.

In addition to the three loci with P-values lower than 0.05 in
the meta-analysis of external validation data sets, other novel loci
are worth further analysis. Particularly, we identify 23 genomic re-
gions that have not been associated withwhitematter phenotypes
in the previousGWASs (Zhao et al. 2021a).We also detect 204 nov-
el genes that have not been linked towhitematter. These genes are
enriched in biological processes, including cytoskeleton organiza-
tion and positive regulation of catalytic activity. These genes could
provide further research directions to understand the genetic ar-
chitecture of white matter microstructure.

It is worth noting that supervariants can group SNPs in mul-
tiple loci together. For example, the supervariant SCR_Chr19_48+
is formed by SNPs within three LD blocks involving multiple
genes. Thus, several potential genetic loci can be detected at the
same time, which may also indicate the existence of joint effects
among those genes. Such joint effects may have implications for
the underlying mechanisms involving multiple genes.

Furthermore, our results indicate that the SNP set Chr5_83
may play an important role in the genetic underpinning of white
matter microstructure. We identify 33 supervariants associated
with multiple white matter tracts in this locus. More than half of
the contributing SNPs in this locus locate in the gene VCAN,
which is involved in cell adhesion, proliferation, migration, and
angiogenesis. This gene shows a higher expression level in white
matter than in other brain tissues (Thul and Lindskog 2018) and

has been associated with white matter integrity (Elliott et al.
2018; Rutten-Jacobs et al. 2018).

There are multiple limitations and future directions to our
study and analysis results. First, although we conduct both inter-
nal and external validation to increase the producibility, the repli-
cation rate on three independent validation data sets can be
improved. It is worth mentioning that participants from the three
data sets have different age ranges (middle and elderly ages for
UKB, children and adolescents for ABCD, and young and middle
ages for HCP). The heterogeneity in the age periods may influence
the generalization of results. Second, we identify 314 supervariants
on the discovery set and then apply 0.05/314 as the threshold for
significance on the validation set. Further validation of the identi-
fied genetic loci in other independent data sets is needed. Third,
we currently focus on the population with European ancestry.
Replicating the identified loci in independent populations from
other resources or ethnic groups would be important. Fourth, we
initially define a SNP set by extracting SNPs within a 1-Mbp win-
dow for computational convenience as a systematic approach, so
the SNPs contributing to a supervariant are constrained in a local
region. This can be followed by considering predefined SNP sets
such as genes within a pathway or gene set, which can be any-
where in the genome. Then, the corresponding supervariants
can select SNPs located in functional-related genes on different
chromosomes. Fifth, functional annotations of SNPs, such as an-
notation PCs (Li et al. 2020) and CADD (Kircher et al. 2014), pro-
vide rich biological information. We could further consider
prioritizing SNPs based on annotation information when ranking
the SNPs within the SNP set. For example, we can rank the SNPs
based on their CADD scores instead of marginal t-statistic and
then select the top SNPs to form supervariants following the
same supervariants construction procedure. If multiple annota-
tion scores are considered, we can perform SNPs ranking and select
top SNPs based on each annotation score first separately. Then, the
final supervariant is composed of SNPs that are selected from any
of individual annotation score. In further investigation, we can
evaluate the performance of different strategies to incorporate

A B

Figure 7. Expression of genes involved in three supervariants located in newly identified loci. (A) Expression of selected genes in 13 brain tissues in GTEx
v8 database. (B) Expression of selected genes in 11 brain developmental stages in BrainSpan database.
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functional annotations. Sixth, we evenly divide the UKB White
British data for discovery and internal validation of supervariant.
However, different splitting ratios may impact the results of the
analysis. After considering a variety of ratios for the two random
subsets of the data set from extremely unbalanced 1:9, 2:8, 8:2,
and 9:1 to relatively balanced 3:7, 4:6, 5:5, 6:4, and 7:3, we find
that relatively balanced splitting ratios lead to robust results (re-
sults are detailed in the Supplemental Note S3). Thus, we choose
to evenly divide the data set in the analysis. Additionally, we rep-
licate our procedure 10 times, partly to limit the impact of the ran-
dom splitting. Seventh, we use additive coding to aggregate SNPs
selected to form supervariants, which may have limited power to
identify epistatic or interactive effects among SNPs. However,
supervariants can also be constructed using depth importance
score from a forest-basedmodel as the importancemeasure and in-
dicator coding to aggregate signals (Hu et al. 2020; Hu et al. 2021).
Simulation studies have shown that supervariants constructed in
this way can detect SNPs with interactive effects (Hu et al. 2020).
In further analysis, we can consider using indicator coding and
depth importance score to detect potential epistatic effects among
SNPs. Last but not least, the current study is limited to tract-specific
FA parameters. Other parameters derived from DTI, such as MD,
AD, RD, and MA, could provide complementary information
and are worth further investigation to explore the genetic architec-
ture underlying white matter microstructure.

Methods

Imaging phenotypes derived from DTI data

The DTI data used in this study come from the UKB, ABCD, and
HCP studies. They are publicly available with the permission of
the UKB (https://www.ukbiobank.ac.uk), ABCD study (https://nda
.nih.gov/abcd/), and HCP (https://www.humanconnectome.org/
software/connectomedb and https://www.ncbi.nlm.nih.gov/pro
jects/gap/cgi-bin/study.cgi?study_id=phs001364.v1.p1). The data
resources have obtained informed consent from all participants
and have obtained approval from their research ethics committees
or institutional review boards. The UKB study has ethics approval
from the North West Multicentre Research Ethic Committee (ap-
proval number 21/NW/0157). All procedures in the ABCD study
were approved by the centralized and institutional review boards
at each data collection site (approval numbers 201708123 and
160091). All experimental procedures in the HCP study were ap-
proved by the institutional review boards at Washington
University (approval number 201204036).

Detailed acquisition and preprocessing procedures have been
described in brain imaging documentation (https://biobank.ctsu
.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf) for the UKB, Casey
et al. (2018) for the ABCD, and Sotiropoulos et al. (2013) for the
HCP. Standard registration and quality control are conducted for
three data sets by the ENIGMA-DTI pipeline (Jahanshad et al.
2013; Kochunov et al. 2014). Theworkflows of processing and der-
ivation ofmean FA of whitematter tracts are detailed by Zhao et al.
(2021a) and in Supplemental Note S4. The ID and full names of
these 21 white matter tracts are listed in Supplemental Table S11.

Genotyping and quality control

We analyze the imputed genotype data from the UKB (Field ID:
22828), ABCD (Release 3.0), and HCP. In this study, we consider
the biallelic variants and exclude SNPs with duplicated names
and positions. We perform standard genetic quality controls on
participants with both imaging and genotype data in each data

set using PLINK (Purcell et al. 2007). Participants with missing ge-
notype rates >10% are removed. We also exclude subjects whose
genetic gender is inconsistent with self-reported gender and rela-
tives closer than or equal to a third-degree relative (Bycroft et al.
2018). Genetic variants with low call rates (missing rate≥10%),
low minor allele frequency (minor allele frequency≤0.01), dis-
rupted Hardy–Weinberg equilibrium (P-value<1× 10−7), and low
imputation quality (imputation INFO score < 0.8) are excluded.
The positions of imputed genotypes from the ABCD are in the
GRCh38 coordinate. We convert the positions to the GRCh37 co-
ordinate by liftOver (https://genome.ucsc.edu/cgi-bin/hgLiftOver)
in line with the UKB and HCP.

Supervariant identification and internal validation

on the discovery set

We use the data of the UKB participants withWhite British ances-
try as the discovery set to limit the potential effect of population
stratification. The ancestry assignment is based on the self-report-
ed ethnic background (data-field 21000), whose accuracy was ver-
ified by Bycroft et al. (2018). After quality controls, the discovery
set contains 30,842 participants and 8,900,385 SNPs.

To construct supervariants associated with phenotypes, a
ranking and aggregation method (Song and Zhang 2014; Hu
et al. 2020) is used, which is an adaptive method consisting of
four steps.

Four steps are shown in Figure 1A and described in detail be-
low. In step a, chromosomes are divided into nonoverlapping local
SNP sets. We divide the whole genome into 2723 nonoverlapping
local SNP sets according to the physical position so that each set
consists of SNPs within a segment of physical length 1 Mbp.
Each SNP set corresponds to a genomic region on chromosomes.
We use the chromosome number and set number to denote each
predefined SNP set. For instance, SNP set Chr1_1 consists of
SNPs on Chromosome 1 with a base-pair position value falling be-
tween one and 999,999, and Chr1_2 composes of those with a
base-pair position value between 1,000,000 and 1,999,999. In ad-
dition to defining SNP sets by extracting SNPswithin a 1-Mbpwin-
dow, SNP sets can also be defined by SNPs in genes that are not
physically connected but have biological support in the literature
or existing database. In step b, within each predefined SNP set, var-
iants are ranked and reordered based on their positive and negative
effect sizes on the phenotype, respectively, which leads to a rank-
ing of SNPs in terms of their marginal contribution to the pheno-
type. Because the true effect sizes are unknown, we estimate the
marginal effect of each SNPon the phenotype using a linear regres-
sion model while controlling for covariates: age (at imaging), sex,
image site, age-squared, the interaction between age and sex, the
interaction between age-squared and sex, and the top 10 PCs pro-
vided by the UKB.We use the t-test statistic for testing whether the
coefficient of variant is significantly different from zero to order
SNPs both descendingly and ascendingly so that variantswith pos-
itive or negative effects are accounted for (Song and Zhang 2014).
In step c,we empirically determine the number of top SNPs to form
a supervariant following the method of Hu et al. (2020).
Specifically, we explore each possible cutoff value, aggregate the
top SNPs using additive coding, and test the association between
the aggregated scorewith the phenotypewhile adjusting for covar-
iates. Then, we select the best cutoff value that achieves the lowest
P-value in the association test. Because the t-test statistics of SNPs
are ranked both descendingly and ascendingly, two supervariants
with the positive effect and negative effect are formed, respective-
ly, for each predefined SNP set. In step d, top SNPs selected in step c
within each SNP set are aggregated using additive coding (summa-
tion of the number of minor alleles of each SNP) into
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supervariants. A supervariant is denoted by the phenotype, SNP
set, and effect direction as “pheno_set_+/−”. We test the associa-
tion between aggregated score and phenotype while adjusting
for age (at imaging), sex, image site, age-squared, the interaction
between age and sex, the interaction between age-squared and
sex, and the top 10 PCs.

We consider the following discovery and internal validation
procedure (Fig. 1B; Hu et al. 2021). The complete set is randomly
divided into two sets with equal sizes (n=15,421 for each set):
one for the construction of supervariants and the other for vali-
dation. The minor allele of each SNP is kept the same on two
parts of data set. We apply the aforementioned ranking and ag-
gregation method for supervariant construction on the first
part of the data set. After the construction of the supervariants,
we then validate their associations with the white matter pheno-
type through linear regression on the second part. We control for
age (at imaging), sex, image site, age-squared, the interaction be-
tween age and sex, the interaction between age-squared and sex,
and the top 10 PCs in the regression analyses as covariates to re-
move potential bias. We use 4.17×10−7 (i.e., 0.05/(2723×2× 22))
as the threshold for supervariant candidacy on the first part of
data set because 5446 supervariants and 22 phenotypes are con-
sidered. A supervariant is regarded as validated if its linear regres-
sion coefficient achieves the level of 0.05/22 significance on the
second part of the data set, adjusting for the number of pheno-
types. We repeat the above procedure 10 times and retain the
supervariants that can be discovered and validated multiple
times.

External validation of supervariants

We replicate the supervariants on three validation data sets
consisting of participants with European ancestry: the UKBW
(n =1927), ABCD European (n=4399), and HCP European (n=
319). The ancestry assignment in the ABCD and HCP are based
on self-reported ethnic groups. The relatedness between partici-
pants is checked based family IDs. We random select one partici-
pant for each family ID to remove relatedness. SNPs contributing
to the supervariants (equal or more than three times out of 10
times replication) are extracted. SNPs with inconsistent minor al-
leles to the discovery sets are flipped. Then, contributing SNPs
are aggregated into supervariants using additive codingon each ex-
ternal validation data set. A linear regression on FA phenotypes is
used to test the significance of association with supervariants con-
trolling for age, sex, age-squared, the interaction between age and
sex, the interaction between age-squared and sex, and the top 10
PCs properly. After obtaining P-values for each supervariant on
three data sets, a meta-analysis is performed on these validation
data sets using METAL (Willer et al. 2010) with the sample-size
weighted approach.

Biological annotation and gene-level analyses

We annotate 19,798 SNPs selected to form 314 identified supervar-
iants using ANNOVAR (Wang et al. 2010). Nonsynonymous vari-
ants are predicted to be deleterious when the SIFT score (Kumar
et al. 2009) is lower than 0.05 and the PolyPhen-2 score
(Adzhubei et al. 2013) is larger than 0.9. For 619 protein-coding
genes, we perform the lookups of previously reported gene-trait as-
sociations with P-value <5×10−8 in the NHGRI-EBI GWAS catalog
2022-11-08 (Buniello et al. 2019). We focus on brain-related com-
plex traits and characterize them into six groups: cognitive (e.g.,
general cognitive ability, cognitive performance, math ability,
and intelligence), education (e.g., years of education and college
completion), reaction time, neuroticism, neurodegenerative dis-

eases (e.g., Alzheimer’s disease, Parkinson’s disease), and neuro-
psychiatric disorders (e.g., major depressive disorder,
schizophrenia, bipolar disorder, ADHD, alcohol use disorder, and
autism spectrum disorder). The GO enrichment analysis of identi-
fied genes is performed by GENE2FUNC in FUMA (Watanabe et al.
2017) based on the Molecular Signatures Database (MSigDB; ver-
sion 7.0) (Liberzon et al. 2011). We also perform the enrichment
analysis of tissue-specific DEGs in 54 tissues (GTEx v8) via
GENE2FUNC in FUMA (Watanabe et al. 2017).
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