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Abstract

The endocrine system is a fundamental type of long-range cell-cell communication that is 

important for maintaining metabolism, physiology, and other aspects of organismal homeostasis. 

Endocrine signaling is mediated by diverse blood-borne ligands, also called hormones, including 

metabolites, lipids, steroids, peptides, and proteins. The size and structure of these hormones are 

fine-tuned to make them bioactive, responsive, and adaptable to meet the demands of changing 

environments. Why has nature selected such diverse ligand types to mediate communication in the 

endocrine system? What is the chemical, signaling, or physiologic logic of these ligands? What 

fundamental principles from our knowledge of endocrine communication can be applied as we 

continue as a field to uncover additional new circulating molecules that are claimed to mediate 

long-range cell and tissue crosstalk? This review provides a framework based on the biochemical 

logic behind this crosstalk with respect to their chemistry, temporal regulation in physiology, 

specificity, signaling actions, and evolutionary development.
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Background

The endocrine system

The endocrine system is a large network of organs in the body that produces, stores, 

and secretes blood-borne factors called hormones. These hormones serve as the central 

long-range communication system of the body and maintain various physiological states. 

The discovery of endocrine organs and endocrine hormones dates back to the observation 

that the removal of specific organs would induce dramatic phenotypes, including disease or 

even death. Remarkably, these phenotypes could be entirely reversed by re-administration 

of crude biochemical preparations of the organs that were excised. These observations 

gave rise to the hypothesis that specific “factors” secreted by these excised organs were 

important for normal homeostasis and health. However, within the endocrine system, 

the roles of molecules traditionally labeled as “signaling metabolites” or “hormones” 

are not strictly defined, as they share many similarities. Distinctive features, such as 

their contribution to metabolic reactions—where metabolites often serve as precursors 

or intermediates and hormones exert regulatory control—provide a basis for differential 

consideration. Additionally, the specificity and affinity of receptor interactions offer further 

delineation; metabolites generally exhibit lower affinity and broader receptor interactions, 

contrasting with the high-affinity, targeted receptor binding characteristic of hormones. 

However, contextual factors may confer attributes of both systems to each class. The 

eventual biochemical purification and identification of such factors, which include insulin 

from the pancreas 1,2, thyroid hormone from the thyroid gland 3,4, glucocorticoids from the 

adrenal gland 5,6, and sex hormones from the reproductive organs 7, provided direct evidence 

of the presence of endocrine hormones, and by extension, endocrine communication.

In addition to the traditional biochemical, activity-guided fractionation methods, newer 

genetic techniques have also brought forth a new era of endocrine hormone discovery and 

research into endocrine communication. For instance, hormones such as fibroblast growth 

factor 21 (FGF21) 8,9, leptin 10, and growth differentiation factor 15 (GDF15) 11-14 were 

identified, not from organ resections, but through genetic screening and characterization. 

Interestingly, unlike classical endocrine organs like the thyroid or pancreas, the cell types 

and organs or tissues producing these hormones cannot be easily resected or even clearly 

delineated. This highlights the increasing complexity of the origins of endocrine hormones, 

with many tissues contributing to organ communication beyond classical glands alone.

Why does the body rely on endocrine signaling?

French physiologist Claude Bernard was the first to suggest that the exchange of chemical 

messengers is essential for maintaining the stability of the internal environment, or “milieu 

interieur” 15. Signaling involves a complex series of interactions beginning with the release 

of a secreted signaling molecule or ligand. The ligand travels by blood to interact with a 

specific receptor on a target cell. This interaction triggers a cascade of intracellular events, 

often mediated by second messengers, leading ultimately to a specific cellular response. The 

response might be a change in gene expression, protein function, or cell behavior 16,17. The 

endocrine system serves to integrate multiple physiological processes, ensuring that organs 
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and tissues function in a coordinated manner, especially in response to external or internal 

challenges.

Disruptions of endocrine communication can result in various disorders. The translation 

of endocrine hormones to new therapeutics has dramatically improved human health. 

Most classically, deficiency of insulin from the pancreas results in diabetes, leading to 

persistently elevated blood glucose levels due to impaired glucose uptake in peripheral 

tissues, particularly in muscle and adipose tissues 18,19. The absence of insulin is central to 

diabetes, a condition that was once invariably lethal. The discovery that diabetic symptoms 

could be managed, or even reversed, by injecting insulin paved the way for endocrine 

research 2. Abnormalities in adrenal, parathyroid, and reproductive function can lead to 

disorders such as adrenal disorders, parathyroid disorders, reproductive disorders, and 

tumors. Another example is leptin deficiency, where deficiency leads to abnormal energy 

metabolism, hyperphagia, and obesity 10. Likewise, defects in growth hormone (GH) 

or insulin-like growth factor (IGF) can lead to dwarfism. Therapeutically, synthetic GH 

addresses growth deficiencies in children and adults, while leptin therapy can normalize 

body weight in cases of congenital leptin deficiency.

Recent advances and the need for a new framework

Over the past few decades, the development of more sensitive mass spectrometry methods, 

including proteomics, peptidomics, lipidomics, and metabolomics 20,21 in combination 

with genetic approaches has accelerated the discovery of signaling molecules. The 

success of such techniques in screening novel molecules is exemplified by the fact that 

novel adipokines such as isthmin-1 (ISM-1) and ependymin related protein 1 (EPDR1) 

have been discovered with the aid of proteomics-based mapping of secretomes 22,23. 

In parallel, N glucosyl taurine and supra basin derived peptides have been discovered 

by metabolomics and peptidomics respectively 24,25. This development has enabled an 

expanded understanding of intercellular communication. However, since each new molecule 

brings a unique aspect of biology, our current classification and frameworks primarily based 

on organ expression might not fully encompass the physiological relevance, regulation, 

and function of these signaling molecules. While our present knowledge has provided a 

solid foundation, it is helpful to have a comprehensive framework that also incorporates 

an understanding of their differences in production, their modes of action, their targets, 

and their regulatory processes. Moving forward, the line among traditional hormones, 

cytokines, and other signaling molecules may blur, broadening our understanding of how 

cells communicate over long distance. Here, we discuss a structured way to study these 

molecules, helping to understand their roles in health and disease.

Functions, specificity, and selectivity of cellular targets

Small molecules (metabolites, lipids), peptides, and proteins are all essential for various 

biological processes and cellular signaling, but they exhibit differences in their structure, 

size, function, and mechanisms of action (Fig. 1). Secreted proteins have diverse functions, 

including enzymatic, signaling, and regulation of gene expression. They are large, often 

complex molecules composed of several chains of amino acids and have a molecular weight 
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that can range from a few thousand to several million daltons. Given that proteins have 

unique three-dimensional structures that determine their function and interactions with other 

molecules, they generally act through specific protein-protein interactions, which depend on 

the structural complementarity between the interacting partners 26. These interactions can be 

transient or stable, depending on the nature of the proteins involved and the cellular context. 

Peptides (< 50 amino acids in size), small molecules, and lipids, on the other hand, are low-

molecular weight compounds. Small molecules typically have a molecular weight of less 

than 900 Da 27. They consist of a limited number of atoms and are composed of relatively 

simple structures, such as sugars, lipids, and amino acids. Secreted small molecules play a 

wide range of roles in biological processes, including energy metabolism, cellular signaling, 

and serving as building blocks. They can act as neurotransmitters, hormones, or secondary 

messengers in cell signaling pathways (Fig. 1).

Selectivity and specificity

There are several reasons why nature utilizes different chemical modalities for cell and 

tissue crosstalk. The selection of ligands, determined by their size and other chemical 

properties, dictates the tissue-specific expression and functionality of proteins and small 

molecules. This diversity allows for a high degree of specificity and selectivity in 

interactions between signaling molecules and their target receptors 28. With this large 

collection of molecular sizes and structures available, cells can fine-tune their interactions, 

ensuring that each signaling molecule can selectively activate or inhibit its target without 

disrupting unrelated pathways. The minimal specificity characteristic of the receptors for 

these ligands allows for specific interactions, which is a cornerstone of pharmacological 

interventions 29. While small molecules easily diffuse through extracellular spaces to reach 

their target cells, larger peptides and proteins often require specific transport mechanisms 

such as receptor-mediated internalization, vesicle-mediated transport, or carrier proteins. 

Small molecules and lipids can often diffuse through cell membranes and extracellular 

spaces, allowing for rapid and direct interactions with target molecules or receptors. Smaller 

signaling molecules frequently bind to protein targets via non-covalent interactions, such 

as hydrogen bonding, ionic interactions, or hydrophobic interactions. For instance, FGF21, 

FGF19, and leptin are proteins that act as hormones and signal through specific receptors. 

FGF21 and FGF19 act via the FGF receptors (FGFRs) 1c, 2c, and 3c in conjunction with 

the obligate co-receptor β-Klotho 9,30. FGFRs, 1, 2, and 3 are predominantly expressed 

in white adipose, brown adipose, and brain tissues. Interestingly, the activity of FGF19 

for FGFR1c/β-Klotho is regulated by a single amino acid in the C-terminus of FGF19 31. 

β-Klotho, a shared co-receptor of FGF19 and FGF21 mediates its pharmacological functions 

in tissue-specific manner. For example, β-Klotho in liver and adipocytes is dispensable for 

the effects of FGF19 and FGF21 on weight loss 32. However, it is indispensable in neurons, 

where FGF19, FGF21, and bFKB1 (bispecific FGFR1/β-Klotho-activating antibody) require 

the β-Klotho receptor complex to exert their weight loss functions.

Similarly, leptin is a highly selective signaling molecule, binding to the leptin receptor 

(LEPR) with high specificity 33. The structural features of leptin, including its four-helix 

bundle configuration, allow it to interact only with LEPR. Glucagon-like peptide-1 (GLP-1) 

and neuropeptide Y (NPY) are peptide hormones, and they also signal through specific 
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receptors, commonly G-protein coupled receptors (GPCR). GLP-1’s selectivity is due to 

its unique peptide sequence fitting into the binding pocket of GLP-1 receptor (GLP-1R). 

NPY signals via multiple GPCRs (Y1, Y2, Y4, Y5), showing selectivity based on sequence 

variations between different NPY family peptides 34. On the other hand, prostaglandins 

(PGs) are lipid-based signaling molecules that interact with a series of GPCRs (PGD2 

receptor (DP), PGE2 receptors (EP1–4), PGF2α receptor (FP), PGI2 receptor (IP), 

thromboxane A2 receptor (TP), chemoattractant receptor-homologous molecule expressed 

on TH2 cells (CRTH2)). The diversity of receptors allows for high selectivity based on 

the specific structure of each PG. Fatty acid esters of hydroxy fatty acids (FAHFAs), and 

palmitic acid esters of hydroxy stearic acids (PAHSAs) are specific types of lipids that have 

been identified as signaling molecules involved in various metabolic processes, including 

insulin sensitivity, insulin secretion, and thermogenesis 35,36. FAHFA/PAHSA lipids signal 

via multiple receptors, including GPCRs and nuclear receptors. The specificity of these 

interactions depends on the chain length and degree of saturation of fatty acids. Lastly, 

lactate and serotonin, while both being metabolites, differ significantly in their signaling 

mechanisms. As a signaling molecule, lactate exhibits low specificity and interacts with a 

broad spectrum of protein receptors, G protein-coupled receptor 81 (GPR81, also known as 

hydroxycarboxylic acid receptor 1 (HCA1)) in certain tissues. Its signaling is less specific 

than the proteins and peptides described above, likely due to its simpler molecular structure. 

Serotonin (5-hydroxytryptamine) is a biogenic amine that signals via an array of GPCRs and 

ligand-gated ion channels, making it a highly specific and versatile signaling molecule 37,38.

To understand the development of specificity, it is helpful to elucidate its origin from an 

evolutionary perspective. The synthesis of signaling molecules requires a certain metabolic 

state and a considerable amount of energy. Thus, cells have evolved mechanisms to select 

signal molecules that are metabolically economical and space-saving. It is interesting to 

observe a conserved uniformity among organisms in employing smaller signaling molecules 

for quick and frequent responses like neuronal transmission and muscle contraction 39. 

Why does an organism recruit different sizes of signal molecules? The answer might lie 

in versatility contributed by the availability of different signal molecules where size plays 

an important role. For example, neurotransmitters like dopamine and γ-aminobutyric acid 

(GABA) can diffuse in less than 1 millisecond across 20 nm synaptic cleft 40. Smaller 

molecules confer a great advantage to an organism in mediating a rapid signaling event 

because smaller molecules are mobile and can be stored in higher amounts as a readily 

accessible signal pool. Moreover, the synthesis of signaling molecules demands a particular 

metabolic stage and requires a large amount of energy 41.

In summary, the nature of the ligand (protein, peptide, lipid, metabolite) greatly influences 

its receptor specificity and signaling selectivity (Table 1). These characteristics, in turn, 

reflect the complexity of the molecular structures and the specific needs of the tissues in 

which they function.

Modulation of signaling strength and duration: spatial, temporal, and chemical modalities

Key elements such as the spatial distribution, temporal aspects, and chemical nature of 

signals determine the routing of information and its physiological impact. The spatial 
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distribution, timing, and chemical nature of signals can change both the intensity and 

durability, which is fundamental for managing complex cellular activities. Cells employ 

different modes of signaling to adapt to these temporal variations: paracrine for short 

distances and endocrine for longer distances. Both the size and structure of the signaling 

molecules contribute to the versatility and specificity of cellular responses, with smaller 

molecules being advantageous in mediating rapid signaling events due to their high mobility 

and greater storage capacity. For instance, the molecular size of endocrine peptides, such as 

triiodothyronine (T3), thyrotropin-releasing hormone (TRH), and met-enkephalin correlates 

inversely with their signaling speed, enabling rapid diffusion and receptor engagement. 

Small peptides likely can quickly traverse biological fluids and initiate fast physiological 

responses due to reduced steric hindrance and high receptor affinity. In terms of time 

scale, small molecules typically work faster as they are often under enzymatic regulation, 

providing rapid control of production and degradation. Larger molecules are often subject 

to transcriptional regulation and usually respond at a slower pace. Small molecules such 

as neurotransmitters (e.g., dopamine, serotonin, and acetylcholine) diffuse rapidly, leading 

to rapid and frequent responses such as neuronal transmission and muscle contraction. On 

the other hand, larger molecules, including proteins (e.g., insulin, glucagon, and growth 

factors) and larger peptides, exhibit slower diffusion rates, allowing for sustained signaling. 

These larger molecules often modulate processes requiring prolonged regulation such as 

metabolism, growth, and development.

An example of these processes can be seen in lipolysis, where the body breaks down fats to 

generate lipids that are subsequently used as precursors in various biological processes. One 

example where lipids serve as precursors involves the synthesis and secretion of eicosanoids, 

a family of hormone-like lipids, such as PGs. PGs are derived from arachidonic acid, a 

polyunsaturated fatty acid released from the phospholipid layer of cell membranes during 

lipolysis. This fatty acid is then converted into PGE2 through a series of enzymatic reactions 

involving cyclooxygenase enzymes (COX-1 and COX-2) and PGE synthase 42. Once 

produced, PGE2 is secreted from the cell and can bind to its specific receptors. PGs play 

key roles in the metabolic crosstalk among adipose tissue, the immune system, and the liver. 

In the context of obesity, PGs released from adipose tissue contribute to inflammation by 

recruiting immune cells to the adipose tissue, promoting a chronic low-grade inflammatory 

state often seen in metabolic syndrome. Additionally, PGE2 communicates with the liver to 

regulate lipid metabolism 43. This example illustrates how lipolysis can rapidly initiate the 

production of lipid-derived secreted signaling molecules that can control a wide range of 

physiological processes.

Biosynthesis, production, and degradation

Protein and peptide biosynthesis

Mechanistic understanding of the synthesis of secreted molecules is important to appreciate 

their regulation and physiological function. Secreted proteins are synthesized based on 

the genetic information encoded in mRNA. They have an N-terminal signal sequence for 

secretion following synthesis through translation on ribosomes. Processing of precursor 

proteins can give rise to distinct peptides with different functions via two mechanisms: 
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mRNA splicing by mRNA editing enzymes, or posttranslational processing by enzymes in 

the endoplasmic reticulum. Peptide hormones are most often synthesized as prohormones 

(precursor proteins) which are then cleaved to generate the active hormone 44. For 

posttranslational processing, the precursor protein has an N-terminal signal sequence, and 

the secreted chain is flanked with specific proteolytic enzyme sites. Cell-type specific 

enzyme expression enables the posttranslational generation of fragments of the precursor 

proteins to generate specific proteins or peptides. Apolipoprotein (Apo)-B100 and Apo-B48 

are two distinctive apolipoproteins encoded from the same gene, APOB 45. Apo-B48 is a 

protein with a molecular weight of 240 kDa (Fig. 2a), and ApoB100 is a very large protein 

with a molecular weight of > 550 kDa (Fig. 2b). The exclusive presence of the mRNA 

editing enzyme Apobec-1 in intestinal cells of most vertebrates truncates the APOB gene 

for efficient chylomicron formation and lipid absorption 46. While both facilitating fatty acid 

transport by forming lipoprotein complexes, Apo-B100 is exclusively present in the liver and 

Apo-B48 in the intestine 47. Cholecystokinin (CCK), a peptide hormone composed of only 

8 amino acids, acts centrally as a neurotransmitter and regulates food intake (Fig. 2c). In 

contrast, in the gastrointestinal tract, the size of CCK is larger around 31–58 amino acids, 

and it acts as a peptide hormone involved in digestion (Fig. 2d) 48,49 In addition, several 

other CCK peptides have been reported (Fig. 2e).

Metabolite and lipid biosynthesis

Metabolites and lipids are synthesized through metabolic pathways involving a series of 

enzymatic reactions. They can be degraded by enzymes or spontaneously decompose. 

Lactate, once considered to be a waste product and fatigue agent, has proved to be 

the metabolite phoenix as major energy fuel and primary precursor for gluconeogenesis 
50. While not functioning as an endocrine factor, lactate does bridge the gap between 

glycolysis and oxidative metabolism and also fuels the oxidative machinery of mitochondria 

in glycolytically active cells. The lactate shuttle hypothesis considers this interconnection 

to occur under aerobic conditions within and among cells, tissues, and organs 51. Examples 

of this lactate shuttle phenomenon can be seen in the exchange between skeletal muscle 

and other tissues such as the brain, liver, heart, and kidney. This shuttling is regulated 

through concentration gradients and is mediated by the monocarboxylate transporter (MCT) 

family, ensuring that lactate fulfills its role in metabolic coordination without invoking 

the specialized signaling typically associated with hormones. Beyond its role as an energy 

substrate, lactate contributes to the biosynthesis of L-lactate-derived amino acids, which 

could be considered endocrine molecules. Li et al. demonstrated that exercise-induced 

secretion of N-lactoyl-phenylalanine (Lac-Phe) helps in reducing adiposity and body 

weight by suppressing appetite52. Lac-Phe synthesis, a reaction catalyzed by the cytosolic 

enzyme carnosine dipeptidase 2 (CN2 or CNDP2), involves the condensation of lactate 

and phenylalanine. Intriguingly, the non-specificity of CNDP2 allows it to catalyze the 

condensation of different amino acids (such as leucine, isoleucine, and valine), leading 

to the synthesis of diverse N-lactoyl-amino acids. The utilization of the highly dynamic 

substrate lactate to generate metabolites not only broadens the responsive elements to 

physical activity but also contributes to long-lasting endocrine effects. This example of a 

substrate-driven production of bioactive metabolites represents a large, understudied area 

where many similar metabolites as expected to exist. Another example is the synthesis of 
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T3 (and thyroxine (T4)). This process is unique because it involves the transformation of a 

protein, thyroglobulin, into a metabolite hormone 53. T3 synthesis starts with the iodination 

of tyrosine residues within the thyroglobulin protein, a step that requires the specialized 

enzyme thyroperoxidase. The iodinated tyrosine residues within the thyroglobulin molecule 

are then coupled to form the hormones T3 and T4. The thyroid gland has a remarkable 

ability to concentrate iodine, which is essential for the iodination of tyrosine residues on 

thyroglobulin, a precursor protein in the thyroid hormone synthesis process. Few metabolic 

pathways are directly dependent on a specific dietary mineral. Second, the biologically 

active form of the hormone, T3, is predominantly formed outside the thyroid gland through a 

process known as peripheral deiodination. This is an unusual feature in hormone metabolism 

because the full activation of the hormone occurs not at the site of its synthesis, but in the 

peripheral tissues where it exerts its effect. The flexibility of this process allows the body to 

fine-tune the amount of active T3 hormone available based on the metabolic demands of the 

body, further emphasizing the unique nature of thyroid hormone synthesis and regulation. 

Therefore, large quantities of T3 and T4 can be stored within the thyroid gland as part of 

the thyroglobulin protein, and then released when needed. This unique aspect of thyroid 

hormone synthesis and storage allows for the rapid release of hormones when the body's 

metabolic demands increase 4.

Metabolites as biomarkers

With the advancements in metabolomics techniques, the identification of small metabolites 

has exponentially increased and enabled us to discover the novel biomarkers involved in 

the pathophysiology of metabolic and non-metabolic diseases. Changes and perturbations 

in the metabolite signature of organisms could help in advance diagnosis of diseases and 

drug designing. Molecular metabolite profiling will enable a deeper understanding of the 

metabolic aspects of diseases and develop early therapeutic interventions 54. For instance, 

the galactose/glycerolipid metabolic pathway is disturbed in diabetic kidney disease (DKD) 

suggesting glycerol-3-galactoside as a potential biomarker 55. Circulating metabolites, 

hexanoylcarnitine, kynurenine, and tryptophan have been associated with improvement in 

the prediction of all-cause mortality in type 2 diabetes 56.

Degradation

The initiation of a signaling event to facilitate a specific cellular response necessitates the 

termination of that signal. In circulation, proteins and peptides undergo degradation either 

extracellularly via proteases or intracellularly through proteases or the ubiquitin-proteasome 

pathway. Molecules exposed to extracellular spaces are vulnerable to enzymatic degradation, 

which can impact the signal range 57,58. However, stable signal molecules can traverse 

longer distances. For instance, metabolites like lactate can rapidly diffuse out of the cellular 

environment. This speed is dependent on their concentration gradient and the availability of 

transporters. Additionally, the enzymatic conversion of lactate back to pyruvate can occur 

within seconds to minutes, contingent upon enzymatic activity and substrate availability. 

Similarly, lipids like PGE2 are rapidly degraded, with a half-life of less than a few minutes 

in circulation and in tissues 59. Uptake of PGE2 by cells can occur within seconds, and 

its enzymatic degradation by 15-hydroxyprostaglandin dehydrogenase (15-PGDH) in the 

cytoplasm can also occur within seconds to minutes. Peptides such as GLP-1 are degraded 
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and inactivated extremely quickly by dipeptidyl peptidase-4 (DPP-4), resulting in a half-life 

of only about 1–2 min 60. This rapid degradation ensures that insulin secretion is tightly 

regulated and can quickly respond to changes in blood glucose levels. In contrast, proteins 

like leptin, due to their larger size and complexity, have a slower degradation rate, with a 

half-life of 40 min in mice 61. Their degradation, occurring either through proteolysis in 

the kidneys and liver or via receptor-mediated endocytosis in target cells, can take minutes 

to hours. This duration depends on factors such as protein stability and the availability of 

receptors and proteolytic enzymes. These examples underscore the wide range of speeds 

at which different types of signaling molecules can be degraded, ranging from seconds for 

small metabolites and lipids to minutes or even hours for larger proteins.

Evolutionary adaptability of endocrine hormones

Diversification of signaling molecules and adaptability in evolution

Small molecules could be considered more ancient in the context of cellular signaling 

and the evolution of life. Before the emergence of complex life forms, primitive cells 

relied on simple chemical interactions to facilitate cellular processes and communication. 

Small molecules would have been more accessible and easier for these primitive cells to 

synthesize and utilize than larger, more complex molecules such as peptides and proteins. 

As life evolved and organisms became more complex, so did the signaling molecules used 

for communication between cells and organs. The emergence of peptides and proteins as 

signaling molecules would have allowed for greater specificity, selectivity, and versatility 

in cellular communication and regulation of physiological processes. However, small 

molecules have remained essential components of cellular signaling and metabolic processes 

in all organisms, from bacteria to humans. They continue to serve as neurotransmitters, 

hormones, and secondary messengers, playing a critical role in various biological processes 

such as energy metabolism, cell growth and differentiation, and immune responses.

Diversification of signaling molecules forms the bedrock of biological diversity. The 

emergence of a diverse range of ligands exerts significant selection pressure on enzymes 

to evolve 62. The accumulation of a ligand library, a consequence of evolutionary exposure 

spanning billions of years, introduces incremental advancements. For instance, gene 

superfamilies encoding conus peptides rapidly evolve through gene duplications, enzyme 

mutations, and functional deletions in response to environmental changes 63. The ability 

to use a variety of signaling molecules allows for the development of complex, adaptable 

regulatory systems that can evolve to meet new challenges.

A great mystery: why are there so many different chemical types of endocrine hormones?

In mammals, secreted signaling molecules are diverse, ranging from small molecules such 

as metabolites (e.g., catecholamines), lipids and steroids (e.g., PGs and corticosteroids), 

peptides (2–50 amino acids in size, e.g., GLP-1 and neuropeptides), to larger protein 

molecules (> 50 amino acids in size, e.g., leptin, insulin and other tyrosine kinase receptor 

ligands). Why has nature evolved such chemical diversity in endocrine hormones, and 

what functional relevance does that have to their signaling? One might speculate that 

the size, structure, and properties of these molecules have been shaped by evolution to 
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facilitate nuanced control over countless biological processes. The evolution from simpler 

life forms to multicellular organisms has led to increased diversity in signaling molecules 

and complexity in signal transduction pathways, driving a dynamic process of intercellular 

communication. Metabolites, due to their small size and direct dependence on substrate 

availability, can serve as quick response messengers to changes in cellular metabolic status, 

such as during exercise 52,64,65 or fasting 66. Lipids and steroids, due to their lipophilic 

nature, can pass through cell membranes and exert potent modulatory effects on intracellular 

targets such as nuclear receptors 27. Peptides, falling between small molecules and proteins 

in size, not only often act as rapid local regulators (e.g., neuropeptides) but also serve as 

important hormonal regulators (e.g., incretins) 67,68. Finally, proteins, the largest and most 

diverse group of signaling molecules, can exert a wide array of effects on cells due to their 

structural and functional diversity 33,69,70. This diversity ensures that the endocrine system 

can fine-tune its responses according to the distinct needs of different physiological states.

Evolutionary contrast in insulin size: comparing humans and cone snails

The discovery of insulin, a critical hormone for blood glucose regulation, is a milestone in 

the advancement of drug discovery and enhancing the longevity of humans 2. Insulin varies 

remarkably between humans and other species, including, drosophila 71 and cone snails 72. 

In humans, insulin is a 51 amino acid (5.7 kDa) protein hormone secreted by pancreatic 

β-cells and stored in secretory vesicles as hexamers (Fig. 3a). The formation of the hexamer 

starts with the oligomerization of three dimers held together by zinc ions. Storing insulin 

as hexamers in secretory vesicles is critical as it protects the insulin from degradation and 

fibrillation 73. To facilitate glucose uptake into cells and lower systemic blood glucose 

levels, the insulin hexamer molecules must dissociate into dimers, and finally into the 

functional monomer. This insulin monomer not only acts as a signaling ligand for insulin 

receptors but also has faster pharmacokinetics, resulting in lower stability in circulation. 

The hexamer-to-monomer transition is a slow process and this predicament has spurred the 

engineering of a fast-acting monomer insulin analog for diabetes 74. The C-terminus of B 

chain in the insulin molecule facilitates the dimerization process and also confers receptor 

activation 75. Intriguingly, the engineering of a fast-acting insulin analog has been done by 

nature thousands of years ago. In contrast to human insulin, insulin present in the venom 

of the cone snails, Conus. geographus is comparatively a smaller peptide of 10–40 amino 

acids and is typically monomeric in structure. Cone snail insulin also lacks the C-terminus 

region responsible for dimerization in human insulin. Interestingly, cone snail insulin is 

extremely potent and fast-acting in lowering blood glucose in vertebrates, including humans 
63. Cone snails use insulin in their venom as an offensive weapon to catch the prey by 

causing hypoglycemia that sedates the prey (Fig. 3b) 72. It is fascinating that to target the 

different insulin receptors, different fish species fine-tune the ligand specificity by producing 

different versions of insulin (cone snail insulins (Con-Ins) G1 and Con-Ins G3) (Fig. 3). 

The rationale for such divergence is the evolutionary pressures stemming from constantly 

changing prey-predator relationships. Cone snail insulin peptides and other constituents of 

their venom are the most rapidly diverging and evolving ligands in biology 72. However, 

the prey of cone snails is constrained to evolve their insulin receptor specificity. So the 

evolutionary contrast of insulin in humans and cone snails exemplifies the essence of ligand 
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size in nature. In this example, insulin is united by function and divided by structure and 

action – used as an offensive weapon in cone snails and defensive in humans.

Future perspectives

As we continue to deconstruct the biology of cellular communication, we acknowledge 

the presence of an extensive array of distinct signaling molecules, each possessing unique 

characteristics and functions. These entities, defined by their individual structure, size, 

and physicochemical properties, not only carry out designated roles but also contribute 

to the multidimensional architecture of intercellular and intracellular signaling pathways. 

Despite the considerable advancements in our understanding of these processes, it is 

apparent that we are only beginning to explore this vast landscape of signaling biochemistry. 

The acceleration in the discovery of signaling molecules, propelled by advancements 

in high-resolution mass spectrometry methodologies, mandates the development of an 

inclusive and evolving classification system. This system should move beyond the traditional 

organ-specific classification and include the synthesis, regulation, specificity, and signaling 

responses of these molecules, thus providing a more integrative view of their physiological 

implications. As advancements in detection methodologies continue to evolve, we anticipate 

the identification of an even more diverse collection of these molecules, further enriching 

our understanding of the intricate landscape of cellular signaling pathways and mechanisms. 

High-throughput metabolomics combined with deep mining of data from biobanks, such 

as the UKBioBank, and where feasible, the use of genetic models will be crucial for the 

discovery and elucidation of the roles of these signaling molecules within a spectrum of 

physiological and pathological conditions, and for confirming their therapeutic potential. 

Therefore, the continuous endeavor to identify novel signaling molecules and subsequent 

elucidation of their physiological roles will remain a central theme in metabolism in the 

coming years.
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GLP-1 glucagon-like peptide 1
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Figure 1. 
Structures and complexities of selected ligand types. The figure illustrates a spectrum of 

molecular complexities and sizes, displaying from right to left. On the far right, the structure 

of the secreted protein ISM-1 is shown, representing the larger and more complex end of the 

spectrum. Moving leftward, the structure of an 11-mer peptide is depicted, which is smaller 

and less complex than proteins. Further left, the structure of cortisol represents a middle-of-

the-range molecule in terms of size and complexity. On the far left, the structure of Lac-Phe 

is presented, highlighting a relatively simple metabolite. The diversity in size, complexity, 

and formation of each structure underscores the sophisticated nature of intercellular and 

inter-organ communication.
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Figure 2. 
Tissue-specific contrast of size and structure. Evolutionary processes build proteins and 

synthesize peptides with specific characteristic features fine-tuned to make them bioactive, 

versatile, and dynamically regulated. (a and b) Splicing of apolipoprotein generates two 

specific proteins, ApoB-100 of 500 kDa in the liver (a) and ApoB-48 of 240 kDa in the 

intestine (b). (c and d) CCK, a proteolytically processed peptide hormone composed of 8 

amino acids, acts as a neurotransmitter in the brain (c). In contrast, in the gastrointestinal 

tract, the size of CCK varies from 31–58 amino acids and it functions as a digestive 

peptide hormone (d). (e) The enzyme prohormone convertase 1 (PC1) serially cleaves the 

prohormone, procholecystokinin (proCCK), into peptides of different size.
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Figure 3. 
Insulin size architecture tailored by nature. Human insulin has acquired a propensity to 

self-assemble into dimers and hexamers, protecting itself from enzymatic degradation. To 

facilitate the glucose uptake of cells and lower circulating blood glucose levels, human 

insulin hexamer molecules have to first dissociate into dimers and functional monomers (a). 

In contrast, in cone snails, nature has designed insulin molecules with minimum structure 

and yet it is fully functional and incredibly fast-acting. The cone snail insulin is readily 

secreted as a monomeric unit and, in contrast to human insulin, is used as an offensive 

weapon (b).
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Table 1

Ligand size of different classes of secreted signaling molecules and their established roles in metabolism. A, 

angstrom; nm, nano meter; kDa, kilo dalton.

Class Molecule Ligand
size

Source Known role in metabolism References

Metabolites Acetylcholine 0.5 Å Neurons Stimulates muscle contraction, involved in 
learning- and memory

76,77

Serotonin 0.5 Å Brain, gut Regulates mood, appetite, and sleep, also 
affects memory and learning

37,38

Norepinephrine 0.5 Å Brain, sympathetic 
nervous system

Affects attention and response actions, 
involved in the fight-or-flight response

78,79

Lactate 0.5 Å Muscles, red blood 
cells, brain, other 

tissues

Waste product of anaerobic metabolism, also 
used as an energy source by other tissues

51,80

Succinate 0.5 Å Mitochondria Involved in the citric acid cycle, signal hypoxia 
and inflammation

81 

β-hydroxybutyrate 0.5 Å Liver Used as an energy source during periods of 
fasting or intense exercise

82 

Lac-Phe 1 Å Macrophages Secreted after exercise, known to suppress 
appetite

83 

T4 1 nm Thyroid gland Regulates metabolism and growth, controls 
rate of energy use

3,84

Kynurenine 1 Å Liver, other tissues Plays a role in the regulation of immune 
responses and neuroactive signaling

85 

Acylcarnitines 1.5 Å Various tissues Involved in fatty acid metabolism, transport 
fatty acids into mitochondria for β-oxidation

86,87

Steroids/lipids Resolvins/maresins 0.5 nm White blood cells, 
certain tissues

Involved in the resolution of inflammation, 
promote tissue regeneration

88,89

Prostaglandins 1.5 nm Various cells Regulate inflammation, involved in the 
regulation of bone metabolism

90,91

Sphingolipids 1.5 nm Various cells Regulate cellular processes including 
differentiation, proliferation, cell signaling, 
and apoptosis

92,93

Cholesterol 1 nm Liver, dietary intake Function as structural molecule in cell 
membranes and precursor for steroid 
hormones, regulates SREBP transport

94,95

FAHFA 1.5 nm Various tissues Modulate insulin sensitivity, inflammation, and 
thermogenesis

35

PAHSA 1.5 nm Various tissues Potent regulators of glucose homeostasis and 
insulin secretion

36 

Testosterone 1.5 nm Testes, adrenal glands Promotes muscle and bone growth, stimulates 
production of red blood cells

96 

Estrogen 1.5 nm Ovaries, adrenal 
glands

Plays a role in energy balance and glucose 
homeostasis

7,97

Glucocorticoids 
(Cortisol)

2 nm Adrenal gland Regulates metabolism and immune response, 
helps body respond to stress

6,98

Peptides GLP-1 30 AA Intestine Enhances insulin secretion and reduces 
glucagon secretion

99,100

Ghrelin 28 AA Stomach Stimulates appetite and food intake, also plays 
a role in energy balance

101 

NPY 36 AA Brain, nervous system Potent stimulator of food intake, influences 
energy homeostasis

102,103
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Class Molecule Ligand
size

Source Known role in metabolism References

CCK 58 AA Intestine Stimulates digestion of fat and protein through 
the release of digestive enzymes from the 
pancreas

48,49

Oxytocin 9 AA Hypothalamus Stimulates contraction of uterus and milk 
ejection in breastfeeding, promotes bonding 
and social behavior

104,105

Secretin 27 AA S cells of the small 
intestine

Regulates water homeostasis and secretion of 
gastric juice

106,107

Amylin 37 AA Beta cells of the 
pancreas

Slows gastric emptying, promotes satiety 108,109

PYY 36 AA L cells in the ileum 
and colon

Reduces appetite, slows gastric emptying 110 

Proteins Glucagon 3.5 kDa Pancreas Stimulates conversion of stored glucose 
(glycogen) in the liver into glucose

111,112

Insulin 5.8 kDa Pancreas Regulates glucose metabolism, promotes the 
storage of glucose

1,113

Leptin 16 kDa Adipose tissue Regulates appetite and energy expenditure 10 

FGF21 22.3 kDa Liver Regulates glucose and lipid metabolism 9,114

FGF19 21.8 kDa Ileum Regulates bile acid synthesis and energy 
homeostasis

115,116

GDF15 35 kDa Multiple Suppresses appetite, enhances glucose and 
lipid metabolism

11-14

NRG4 12 kDa Liver, brown adipose 
tissue

Regulates hepatic lipogenesis and systemic 
energy metabolism

117 

Adiponectin 28 kDa Adipose tissue Regulates glucose levels and fatty acid 
breakdown

118 

ISM-1 52 kDa Adipose tissue, 
various tissues

Regulates glucose uptake and lipid synthesis 23 

PM20D1 55 kDa Various tissues Involved in the biosynthesis of N-acyl amino 
acids and energy expenditure

119 

Dkk3 38 Skeletal muscle Involved in muscle differentiation and 
regeneration

120 

Apo-B48 240 kDa Intestine Involved in transport of dietary lipids from 
intestines to peripheral tissues (primarily 
adipose and skeletal muscle)

121 

Apo-B100 550 kDa Liver Involved in liver-mediated removal and 
metabolism of LDL

45 
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