
Ogunleye et al. 2024 | https://doi.org/10.34133/hds.0108 1

RESEARCH ARTICLE

Large-Scale Machine Learning Analysis 
Reveals DNA Methylation and Gene Expression 
Response Signatures for Gemcitabine-Treated 
Pancreatic Cancer
Adeolu  Ogunleye1†, Chayanit  Piyawajanusorn2†, Ghita  Ghislat3*,  
and Pedro J.  Ballester2*

1Department of Organismal Biology, Uppsala University, Uppsala, Sweden. 2Department of Bioengineering, 

Imperial College London, London, UK. 3Department of Life Sciences, Imperial College London, London, UK.

*Address correspondence to: ghita.ghislat@imperial.ac.uk (G.G.); p.ballester@imperial.ac.uk (P.J.B.)

†Joint first authors.

Background: Gemcitabine is a first-line chemotherapy for pancreatic adenocarcinoma (PAAD), but 
many PAAD patients do not respond to gemcitabine-containing treatments. Being able to predict such 
nonresponders would hence permit the undelayed administration of more promising treatments while 
sparing gemcitabine life-threatening side effects for those patients. Unfortunately, the few predictors of 
PAAD patient response to this drug are weak, none of them exploiting yet the power of machine learning 
(ML). Methods: Here, we applied ML to predict the response of PAAD patients to gemcitabine from the 
molecular profiles of their tumors. More concretely, we collected diverse molecular profiles of PAAD 
patient tumors along with the corresponding clinical data (gemcitabine responses and clinical features) 
from the Genomic Data Commons resource. From systematically combining 8 tumor profiles with 16 
classification algorithms, each of the resulting 128 ML models was evaluated by multiple 10-fold cross-
validations. Results: Only 7 of these 128 models were predictive, which underlines the importance of 
carrying out such a large-scale analysis to avoid missing the most predictive models. These were here 
random forest using 4 selected mRNAs [0.44 Matthews correlation coefficient (MCC), 0.785 receiver 
operating characteristic–area under the curve (ROC-AUC)] and XGBoost combining 12 DNA methylation 
probes (0.32 MCC, 0.697 ROC-AUC). By contrast, the hENT1 marker obtained much worse random-level 
performance (practically 0 MCC, 0.5 ROC-AUC). Despite not being trained to predict prognosis (overall 
and progression-free survival), these ML models were also able to anticipate this patient outcome. 
Conclusions: We release these promising ML models so that they can be evaluated prospectively on 
other gemcitabine-treated PAAD patients.

Introduction

Pancreatic cancer (PC) is the seventh leading cause of death 
among all cancers (495,773 new cases and 466,003 deaths world-
wide in 2020 [1]). Surgical resection remains the only potential 
therapeutic option for patients with early-stage PC [2]. However, 
PC is difficult to diagnose due to nonspecific initial symptoms. 
Consequently, most patients are at the advanced or metastatic 
stage when they are diagnosed, where the 5-year survival rate is 
about 3% [3]. In addition, PC also lacks effective early detection 
methods, predictive biomarkers, and risk prediction models.

While several target therapies, chemotherapies, and immu-
notherapies have been approved for PC, gemcitabine has 
been widely used as the standard first-line treatment for PC. 
Gemcitabine is administered in combination with other cyto-
toxic agents, such as nab-paclitaxel, carboplatin, cisplatin, or 
oxaliplatin. Such gemcitabine-containing treatments generally 

offer enhanced patient survival and clinical benefit [4–10]. The 
anti-proliferative properties of gemcitabine come from inhibit-
ing DNA synthesis [11]. Gemcitabine requires intracellular 
phosphorylation to be converted into its active form, difluoro-
deoxycytidine triphosphate (dFdCTP), which competes with 
deoxycytidine triphosphate (dCTP) for incorporation into 
DNA during DNA elongation, resulting in inhibition of DNA 
synthesis and inducing apoptosis of cancer cells [12]. However, 
54% of gemcitabine-treated PC patients can exhibit primary 
resistance [13]. It is therefore important to find an effective way 
to anticipate which patients will benefit from gemcitabine. In 
this way, a more promising drug treatment could be adminis-
tered without delay while avoiding gemcitabine’s adverse effects 
for patients who are unlikely to respond.

Several studies examined the gemcitabine-related biomark-
ers involved in its metabolism [14,15]. Most studies about pre-
dictive markers of gemcitabine treatment response focus on 
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human equilibrative nucleoside transporter 1 (hENT1) expres-
sion, with high hENT1 expression being reported to show clini-
cal benefit in selected treatment settings and survival endpoint 
[16–19]. However, some studies did not observe these benefits 
[20,21]. This might be due to study differences such as the way 
hENT1 expression is measured, different clinical endpoints, or 
different gemcitabine combos. This study will propose promis-
ing alternatives for this marker.

Computational models exploiting multi-omics and/or clini-
copathological data to predict cancer patient outcomes have 
shown their value [22–27]. When the outcome is patient response 
to drugs, there is abundant preclinical pharmaco-omics data 
available [28]. These datasets have enabled drug response predic-
tion via univariate markers [29,30] or gene expression signatures 
[31–33]. Machine learning (ML) algorithms, such as logistic 
regression, random forest, and deep neural network, have more 
recently been implemented to analyze such datasets and offer 
opportunities in personalized therapy to better understand mech-
anisms of drug resistance [34]. There are now a plethora of stud-
ies predicting drug response using ML trained on preclinical 
pharmaco- omics data [31,35–42]. Clinical pharmaco-omics 
datasets, despite being the most relevant for the patient, are 
much less available to train and evaluate ML models [43]. This 
is the reason for the small number [44–49].

ML techniques have been proven to be powerful tools to gen-
erate predictive computational models from the typically high-
dimensional pharmaco-omics datasets. In particular, large-scale 
ML analysis, including algorithms enhancing supervised learning 
with feature selection such as optimal model complexity (OMC), 
has been shown to be advantageous [44,45,50]. To our knowledge, 
despite its promise, no study has yet applied a broad panel of ML 
algorithms to classify PC patients’ response to gemcitabine using 
various molecular profiles and clinical datasets. With this pur-
pose, we retrospectively collected molecular profiles of The 
Cancer Genomic Atlas (TCGA)-Pancreatic Adenocarcinoma 
(PAAD) tumors from the U.S. National Cancer Institute (NCI) 
Genomic Data Commons (GDC) database (https://gdc.cancer.
gov/). One of the objectives of GDC is generating standardized 
molecular profiles and clinical datasets across different cancer 
genome programs [51]. We span 8 molecular profiles ranking 
from 1,339 miRNA isoforms (isomiR) to the 450,000 DNA meth-
ylation of CpG probes and 8 ML classification algorithms that 
employed all features and OMC feature selection, producing a 
total of 128 diverse models to predict PAAD patients’ responses 
to gemcitabine. The goal of this study is to identify the robust ML 
model to classify gemcitabine responders and nonresponders in 
PAAD patients and to compare the predictive performances to 
gemcitabine single-gene marker.

Methods

Clinical data acquisition and preprocessing
The most common type of PC is PAAD [52]. The open access 
molecular profiling and clinical data of 185 primary pancreatic 
tumor samples in TCGA-PAAD project was downloaded from 
GDC application programming interface (API) (version 25.0). 
Neuroendocrine tumors and other noncancerous samples were 
thus not considered. To ensure the consistency of drug name, 
misspelling and synonyms (e.g., gemzar and gemcitabine HCl) 
of drugs were standardized according to the NCI drug diction-
ary and DrugBank to gemcitabine. Then, drug response infor-
mation for each patient was obtained by querying the clinical 

records. The patients with missing gemcitabine response or 
responding inconsistently to a drug were excluded to retain 
only valid records. The patients who received gemcitabine prior 
to tumor resection were removed as indicated by the time of 
tumor procurement and the start of treatment. After these cura-
tion steps, 70 gemcitabine-treated PAAD patients remained. 
The gemcitabine responses provided by TCGA-PAAD were 
binarized into 2 classes: responder and nonresponder. We 
defined a responder as a patient who had complete response 
(CR) or partial response (PR), and a nonresponder as a patient 
who had stable disease (SD) or progressive disease (PD). TCGA- 
PAAD reports best response over the entire treatment period, 
starting from the initiation of the treatment until the end of treat-
ment, i.e., not only the response observed at last follow-up.

Molecular data acquisition and preprocessing
The curated gemcitabine responses were combined with the 
corresponding molecular profiles via TCGA patient IDs. Eight 
molecular profiles provided by GDC were considered in this 
analysis. The mRNA and miRNA expressions were generated 
from next-generation sequencing (NGS). mRNA(FPKM) was 
defined as mRNA in fragment per kilobase of exon per million 
mapped fragments (FPKM) unit, while mRNA(FPKM-UQ) 
was defined as mRNA in upper-quartile normalized FPKM 
unit. miRNA and isomiR were log2-transformed reads per 
million mapped reads (RPM). CpG (5′-cytosine-phosphate- 
guanine-3′) is beta values of DNA methylation level at known 
CpG sites using about 450,000 probes from Illumina Human 
Methylation 450 BeadChip. CGI is the average methylation 
beta of all probes’ values at known CpG sites corresponding 
to their CpG island. CNV(mean) is the average of copy number 
variations (CNVs) across segmented DNA corresponding to their 
gene using CNTools (version 3.8) of R package (version 3.5.1). 
CNV(median) is determined in the same way as CNV(mean), 
except the median is calculated. Those features missing any 
value across patients were removed. Thus, 8 datasets were gen-
erated, where each dataset was served as a set of features and 
subjected to ML classification algorithms to make the predic-
tions. Note that we consider slightly different profile normaliza-
tion to elucidate the impact of these differences on ML model 
performance.

Data preparation for ML
A computational framework was developed to estimate the 
predictive ability of molecular profiles on PAAD patients’ 
response to gemcitabine as shown in Fig. 1. In brief, each data-
set was randomly split into a training and testing set using 
stratified K-fold, for K values of 5, 10, and 70. Eight ML clas-
sification algorithms, including classification and regression 
tree (CART), random forest (RF), extreme gradient boosting 
(XGBoost), light gradient boosting machine (LGBM), logistic 
regression (LR), support vector classifier (SVC) with linear 
kernel, SVC with the radial basis function (RBF) kernel, and 
k-nearest neighbors (KNN) algorithms, employed all features 
and OMC feature selection, producing a total of 128 models 
that were used to predict patients’ responses to gemcitabine. 
We performed 5 K-fold cross-validation (CV) repetitions, each 
with different random seed to assess the variability of resulting 
ML models. The median of evaluation metrics across 5 repeti-
tions was reported. All analyses of this study were performed 
using Python version 3.7.3 (https://www.python.org/) and 
scikit-learn version 0.24.2 (https://scikit-learn.org).

https://doi.org/10.34133/hds.0108
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Building all-features classification models
Stratified K-fold standard CV runs were performed to estimate 
the predictive performance of ML algorithms for classification 
using all available features in each molecular dataset. After par-
titioning of the samples into K-folds, one of the K-folds was 
used as the test set for testing the model trained on the remain-
ing K − 1 folds. The CV process was then repeated K times with 
each one of the K-folds used sequentially once in the test set. 
CV ensures that each patient has exactly one out-of-sample 
prediction regardless of the value of K. Model performance was 
not calculated on the test set of every fold and then averaged 
because each of the test sets would be too small and thus harm 
comparison to CV with other K values. As it is common with 
low-sample scenarios, we used instead a merged CV, where the 
70 out-of-sample predictions were merged from all folds and 
Matthews correlation coefficient (MCC) was calculated once 
with all 70 samples.

Building OMC classification models
The OMC models [45] were implemented in this study to over-
come the high dimensionality problem, in this case, the number 
of features is larger than the number of patients. Stratified 
K-fold nested CV was performed to estimate how well classi-
fication ML algorithms perform using only the most relevant 
features to gemcitabine responses. In brief, the analysis of vari-
ance (ANOVA) test was used to calculate the P value of each 
feature, with a low P value indicating high discriminative power 

in terms of gemcitabine response. Then, classification algo-
rithms were trained on only the considered subset of features 
(the top 2 to n/2 subset of features, where n is the number of 
samples). Among all n/2 trained models in the inner loop of 
the nested CV, the best model that achieved the highest MCC 
was selected and used to predict samples in its outer loop. The 
resulting 70 out-of-sample predictions were also merged from 
all folds, and each model performance metric was calculated 
once with all 70 samples.

Building a model based on hENT1 expression
hENT1 has been identified as a prognostic molecular marker 
in PC patients treated with gemcitabine [16,17]. To compare 
the performance of the best models to that of using a single 
hENT1 gene only, hENT1 expression derived from the 
mRNA(FPKM) profile was trained on the same algorithms as 
the 2 most predictive models (RF and XGBoost) using stan-
dard 10-fold CV from merging the out-of-sample predictions 
from the 10 folds.

Model performance evaluation
When a model estimated real-valued class probabilities, these 
were transformed to binary classes by setting a threshold to 0.5. 
The probabilities above this threshold were classed as respond-
ers; otherwise, they were classed as nonresponders. The 4 con-
fusion matrix categories, including true positives (TP), true 
negatives (TN), false positives (FP), and false negatives (FN), 

Fig. 1. ML workflow to predict PAAD patient response to gemcitabine. The TCGA-PAAD clinical, biospecimen, and molecular profiles comprising mRNA in FPKM, and FPKM-UQ 
unit, miRNAs and isoforms, copy number variation, DNA methylation at CpGs, and CGI profiles from high-throughput technologies of patient tumors were retrieved from the 
NCI GDC. These molecular profiles were matched with corresponding clinical information using the patient’s TCGA barcode. The samples meeting the exclusion criteria were 
filtered out to retain only valid high-quality records. Each molecular profile of the tumors was preprocessed and subsequently submitted by each of the 8 supervised learning 
algorithm analyses. The performances of the resulting all-features ML models were evaluated by 10-fold CV (5 repetitions per model, each using a different random seed). 
Thus, 5 MCC and ROC-AUC determinations were carried out for each model. To mitigate the high dimensionality of the datasets, each of the 8 algorithms was coupled with 
the OMC strategy, with the resulting models undergoing identical performance evaluation. Overall, a total of 128 ML models (16 binary classification models for each of the 
8 molecular profiles) were evaluated on the same cohort of patients. Further details can be found in the Methods section.

https://doi.org/10.34133/hds.0108
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were counted and used to calculate performance metrics includ-
ing MCC and receiver operating characteristic–area under the 
curve (ROC-AUC).

Construction of protein–protein interaction (PPI) 
network
To unravel the relationships among the genes corresponding 
to 12 predictive CpG probes, these genes were mapped to 
STRING database version 11.5 (https://string-db.org/) [53] to 
retrieve both known and predicted protein–protein interac-
tions (PPIs). We limited the species to “Homo sapiens” and 
required at least the minimum confidence interaction score 
(combine score > 0.15). The text mining, experiments, data-
base, co-expression, co-occurrence, neighborhood, and gene 
fusion evidences were included to construct PPI.

The pathway enrichment analysis
In order to understand the roles of the genes found to be asso-
ciated with the predictive CpG probes in PAAD treated with 
gemcitabine, the genes corresponding to 12 CpG probes were 
subjected to the Database for Annotation, Visualization and 
Integrated Discovery (DAVID) web server [54] for Gene 
Ontology (GO) pathway enrichment analysis. In addition, the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analysis was also investigated using the KEGG 
Orthology-Based Annotation System (KOBAS) web server 
(http://kobas.cbi.pku.edu.cn/) [55]. A statistically significant 
P value was calculated using a Fisher exact test, which further 
employed the Benjamini–Hochberg multiple-testing correc-
tion for the correct P value. The significant enriched pathways 
were identified based on a P value less than 0.05. For each 
pathway, input genes that are part of the pathway are counted, 
and the enrichment ratio was also calculated.

Statistical analysis
The two-tailed unpaired Welch’s t test was used to generate P 
values in data analysis. The median overall survival (OS) and 
progression-free survival (PFS) were calculated for 4 groups, 
including actual and predicted responders and nonresponders, 
representing the time point on the Kaplan–Meier plot where 
50% of the patients in each group have survived (for OS) or 
have not experienced disease progression (for PFS). Log-rank 
test was used to compute statistical differences in OS and PFS. 
The univariate and multivariate Cox regression analyses were 
performed to assess hazard ratio (HR) and 95% confidence 
intervals (CIs) of gemcitabine response predictors (4 mRNAs 
and 12 CpG probes). A P value less than 0.05 was considered 
as statistically significant.

Results
A total of 70 molecularly profiled PAAD patients treated with 
gemcitabine (41 nonresponders and 29 responders) were derived 
from TCGA-PAAD project. The patient’s distribution and avail-
able features of each molecular profile, spanning from the 1,339 
miRNA isoform expressions to the 450,000 methylation levels 
of DNA probes, were presented in Fig. S1. We trained each of 
8 molecular profiles from PAAD patients’ tumor on 8 classifica-
tion ML algorithms with and without OMC feature selection, 
producing a total of 128 gemcitabine response prediction mod-
els. Computational pipeline is described in the Methods section 
and is represented in Fig. 1.

ML model performances at predicting PAAD patient 
response to gemcitabine
For each of the algorithm–profile pair, the model performance 
was evaluated by stratified 10-fold CV with 5 repetitions, each 
repetition with a different random seed. Figure 2 shows the 
out-of-sample median MCC (mMCC) of the 5 repetitions (the 
boxplot with these 5 MCC determinations can be seen in Fig. 
S2). OMC models, which are enhanced with further feature 
selection, tend to perform better than all-features models. 
Indeed, only 31 (48.4%) of the 64 OMC models yield mMCC 
values below 0.1, compared to 56 (87.5%) of the all-features 
models. Models exploiting mRNA and DNA methylation pro-
files distinguish responders from nonresponders with mMCCs 
of over 0.3. Both mRNA(FPKM) and mRNA(FPKM-UQ) 
exhibited the similar predictive performances regardless of nor-
malized gene expression metrics used. mRNA(FPKM) achieved 
the highest MCC; hence, it is recommended for this challenging 
problem. RF-OMC and LR-OMC incorporating mRNAs are 
the 2 best ML models, achieving mMCC of 0.44, and 0.4, 
respectively. In addition, XGBoost incorporating DNA meth-
ylation of CpG probes obtained mMCC of 0.32. Such poor 
performance was also observed when using SVC for these prob-
lem instances. All nonresponders were misclassified using some 
molecular profiles [either mRNA(FPKM), mRNA(FPKM-UQ), 
CpG, or CGI], leading to undefined MCCs. Median ROC-
AUCs range from 0.407 to 0.674 (Fig. 2).

OMC models are generally more predictive while 
retaining a concise subset of predictive features
OMC is the process of selecting the most informative features 
that considerably reduces the number of features for model 
building. As shown in Fig. 2, the OMC models tend to be more 
predictive, whereas the all-features models obtained a near-
random predictive level. The most predictive models with an 
mMCC of at least 0.3 were OMC models that employed either 
mRNAs or CpG probes (Fig. S3). These 7 predictive OMC 
models also obtained the highest median ROC-AUCs in this 
challenging problem, ranking from 0.654 with CART-OMC 
employing mRNA(FPKM) to 0.785 with RF-OMC employing 
mRNA(FPKM) (Fig. 3). We employ MCC as the main evalu-
ation metric, as it is less flattering than ROC-AUC.

The differential expression of the gemcitabine 
predictors
mRNA expression is the most predictive profile for stratifying 
PAAD patients treated with gemcitabine, giving the highest 
MCC. Four (SEPW1P, RP11-179A10.1, ATF4P4, and CTC-
429L19.3) of 60,483 mRNAs are the most predictive features 
selected by RF-OMC that employed mRNA(FPKM) profile 
(mMCC of 0.44). Figure 4 and Table S2 show the differential 
expression of these 4 predictive genes between the responders 
and nonresponders using two-sided Welch’s t test. All these 4 
predictive genes are significantly (P < 0.01) up-regulated in 
responders compared to nonresponders. CTC-429L19.3 is the 
most expressed genes, while ATF4P4, RP11-179A10.1, and 
SEPW1P are the least expressed genes. Interestingly, these 4 
predictive genes were commonly selected by other 5 most pre-
dictive OMC models with an mMCC of at least 0.3 employing 
mRNA profiles (Table S3). In particular, CART-OMC, the sec-
ond most predictive model that employed mRNA(FPKM), also 

https://doi.org/10.34133/hds.0108
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combined the same 4 predictive mRNAs to build classification 
tree (mMCC of 0.35) (Fig. S4).

While 12 of 450,000 CpG probes [cg03208198 (COL18A1 
and MIR6815), cg07239938 (ELANE), cg11528307 (C14orf80 
and CRIP1), cg15200796 (TMEM191C), cg16049691 (AHRR), 
cg16379910 (B2M), cg17804635 (ZNF703), cg23854567 (PXN), 
cg24128434 (DNAH2), cg25653341 (PLOD3), cg27152190 
(RP11-429P3.3), and ch.2.184672693R] were selected as predic-
tive features by XGBoost-OMC that employed DNA methyla-
tion of CpG profile, the genes found to be related to each of these 
probes are between the brackets except for ch.2.184672693R for 
which GDC did not report any associated genes. Two-sided 
Welch’s t tests show that the responders had significantly (P < 
0.01) higher DNA methylation of these predictive CpG probes 
than nonresponders, except cg03208198, which showed lower 
DNA methylation in responders (Fig. 4 and Table S2). In addi-
tion, the feature importance for the top 2 best models was shown 
in Fig. S10. It has been found that ENSG00000267197.1 was 
selected by RF-OMC model as the most important feature in 
predicting gemcitabine response (Fig. S10A), while cg27152190 
is the most importance feature for XGBoost-OMC model pre-
diction (Fig. S10B).

PPI network analysis of genes corresponding to the 
12 predictive CpG probes
The interactions among the genes corresponding to 12 predic-
tive CpG probes were assessed using STRING web server [53], 
which integrates both known and predicted PPIs. Deciphering 
the protein interaction network could help in understanding 
the physical and functional associations of these protein that 

could influence chemo-susceptibility. Eleven of 13 genes cor-
responding to predictive CpG probes were mapped in the 
STRING database, while the remaining 2 non-protein-coding 
genes were not mapped (MIR6815 is miRNA, and RP11-429P3.3 
is antisense). Figure 5 shows the network with 11 nodes and 14 
edges of PPI. The nodes are proteins, while edges are their inter-
actions (PPI enrichment P value of 0.035). The known and pre-
dicted interactions were observed among 6 proteins (CRIP1, 
PXN, COL18A1, B2M, ELANE, and PLOD3). TMEM191B and 
DNAH2 were linked with text mining of scientific literature evi-
dence. The remaining 3 genes (C14orf80, AHRR, and ZNF703) 
were disconnected nodes in the network. These 13 genes cor-
responding to predictive CpG probes were also enriched in 
cancer-associated pathways in GO and KEGG pathway enrich-
ment analysis (see the next section). Overall, the results show 
that these gene interactions could contribute to the gemcitabine 
resistance in PAAD patients.

An analogous analysis could not be performed with the 4 
predictive mRNAs, as these do not code for proteins and hence 
are not included in the STRING database. Two of them (ATF4P4 
and SEPW1P) are annotated as pseudogenes, while the other 2 
(RP11-179A10.1 and CTC-429L19.3) are long noncoding RNAs.

GO and KEGG pathway enrichment analysis of genes 
corresponding to the 12 predictive CpG probes
The GO enrichment analysis of genes corresponding to 12 pre-
dictive CpG probes revealed a total of 43 significantly (P < 0.05) 
enriched GO pathways (Fig. S5 and Table S4) across 3 GO 
categories: biological process (BP), cellular component (CC), 
and molecular function (MF). By analyzing BP, we found that 

Fig. 2. Heatmap presenting the mMCC of the five 10-fold CV repetitions for each of the 128 models. The vertical axis shows the considered molecular profiles, while the 
horizontal axis shows the ML algorithms used. The first 8 columns on the left show supervised ML algorithms implemented with OMC feature selection considering only 
the subset of informative features during the model training (the suffix “OMC” was added to the algorithm name), while the remaining 8 columns on the right show the 
corresponding algorithms that used all features available in datasets. Five MCCs were obtained from five 10-fold CV runs ranking from −1 to 1. The mMCC was shown in the 
heatmap. A positive MCC means that the model accurately predicts gemcitabine responses better than a random classifier. MCC of 0.0 indicates a prediction no better than 
a random. A negative MCC means that the model performs worse than a random. A model that obtained undefined MCC, predicting the same class for all instances where the 
denominator of MCC is zero, is indicated as blank boxes. The 2 most predictive molecular profiles were mRNA expression and DNA methylation of CpG: mMCC of 0.44 from 
RF-OMC using mRNA expression profiles and mMCC of 0.32 from XGBoost-OMC using DNA methylation of CpG profile. In addition, the OMC models tend to perform better 
than the corresponding all-features models.

https://doi.org/10.34133/hds.0108
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genes were enriched in 39 GO BP pathways. Most of these 
pathways are cancer-related pathways and contributed to can-
cer progression, for example, cell differentiation and develop-
ment, cell proliferation, regulation of cell adhesion, and cell 
motility. Cancer cells undergo rapid proliferation and migra-
tion [56]. Cellular adhesion is also an important process in 
cancer progression, as it allows cancer cells to interact with and 
invade surrounding tissue [57]. Additionally, the extracellular 
matrix and extracellular structures are important components 
of the tumor microenvironment and play a critical role in can-
cer progression [58]. These pathways provide insights into the 
underlying biological mechanisms that drive cancer develop-
ment. Interestingly, 8 genes (COL18A1, PXN, ZNF703, AHRR, 
PLOD3, CRIP1, B2M, and ELANE) were predominantly enriched 
in response to chemical and response to stimulus pathways. 
Dysregulation of these 8 enriched genes in response to chemical 
or stimulus pathways could promote carcinogenesis and drug 
resistance [59–61]. Six of these 8 enriched genes were also linked 
with known and predicted interaction evidences in PPI net-
work, suggesting that these genes may function in coordinated 
manner and contributed to drug resistance (Fig. 5). Furthermore, 
GO enrichment through CC showed that the terms endoplasmic 
reticulum lumen, macromolecular complex, and specific granule 

lumen indicate an intracellular localization where they are 
likely to interact. By analyzing MF, 2 genes were enriched in 
transcriptional repressor activity and RNA polymerase II tran-
scription factor binding pathways. This pathway was related to 
gemcitabine mechanism, which was involved in negative regu-
lation of transcription from an RNA polymerase II promoter 
that led to apoptosis [62].

The KEGG pathway enrichment analysis (Table S5) showed 
that genes corresponding to CpG probes were significantly 
(P < 0.05) enriched in 10 KEGG pathways, with the metabolism 
of xenobiotics by cytochrome P450 pathway being particularly 
noteworthy due to its involvement in drug metabolism and 
patient response to treatment. Overexpression of cytochrome 
P450 causes rapid drug elimination before it reaches the target 
site [63]. Moreover, antigen processing and presentation path-
way is critical for the recognition of tumor cells by the immune 
system. Tumor cells can present antigens on their surface, 
which can be recognized by T cells and trigger an immune 
response. Immunotherapy approaches such as immune check-
point inhibitors target this pathway to enhance T cell activity 
and improve antitumor immunity [64].

Fig. 3. ROC-AUC across five 10-fold CV runs of the 7 most predictive models with 
the highest median ROC-AUC. (A) Highest ROC-AUC among five 10-fold CV runs for 
each model. A ROC curve depicts the trade-off between the true-positive rates and 
the false-positive rates of a classifier by varying the threshold of the probability of 
response. A ROC-AUC of 1 is the best model performance at distinguishing between 
responders and nonresponders, while a ROC-AUC of 0.5 corresponds to the random 
guessing denoted by a dashed line. RF-OMC that employed the mRNA model has the 
highest ROC-AUC of 0.785. (B) ROC-AUC variability across the five 10-fold CV runs 
for each of the 7 most predictive models with the highest median ROC-AUC. The 
horizontal dashed line at 0.5 represents random-level performance.

Fig. 4. Boxplot showing the differential expression of the predictive genes and 
DNA methylation of CpG probes between responders and nonresponders. The y 
axis represents the normalized expression level for 4 predictive genes from RF-
OMC employing mRNA(FPKM) profile (A) and 12 predictive DNA methylation CpG 
probes from XGBoost-OMC employing CpG profile (B) between responders and 
nonresponders. The corresponding gene(s) for each CpG probe can be found in Table 
S6. The orange line inside each boxplot represents the median expression across 
patients for a given feature, while the green triangle represents the mean expression. 
The boxplot for each feature contains the P value of mean differential expression 
between responders and nonresponders using a two-sided Welch’s t test. ****P ≤ 
0.0001, significant difference in expression levels between 2 groups.
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Altogether, our findings show that dysregulation of DNA 
methylation of predictive CpGs in this study could be associ-
ated to the alteration of their corresponding genes and path-
ways in which they are involved, leading to cancer development 
and gemcitabine resistance in PAAD patients. The pathway 
enrichment analysis provides insight into the underlying bio-
logical mechanisms of genes corresponding to predictive CpG 
that could be targeted for cancer therapy. However, functional 
validations are needed to test our bioinformatics findings.

Assessing the robustness of the best model in 
predicting PAAD patients’ gemcitabine responses
We next investigated the effect of training dataset sizes on the 
predictive performance of the best model. Leave-one-out CV 
(LOOCV), 5-fold CV (5CV), and 10-fold CV (10CV) were used 
to evaluate the RF-OMC that employed mRNA(FPKM) profile 
model performance. All the CVs were repeated exactly in the 
same manner for all-features models. The MCCs and ROC-
AUCs of 5 repetitions, each with different random seeds, are 
presented in Fig. 6. The results show the improvement in pre-
dictive performances as we increase the training dataset size 
from 80% of the data in 5CV to 99% of the data in LOOCV, 
while all-features models obtained a near-random predic-
tive level and were significantly worse than those obtained 
from OMC models in all cases (Fig. 6). We also investigated 
whether the performances obtained from the signal in the data-
set was better than what would be predicted by chance from 

class-permuted version. As a result, all permutation models 
were significantly worse than those arising from OMC models 
in all cases (Fig. S6). The similar result was obtained when using 
XGBoost-OMC, which employed DNA methylation of CpG 
profile and showed improved predictive performance as the 
training dataset size increased (Fig. S9).

CpG-based XGBoost-OMC can predict survival of 
gemcitabine-treated PAAD patients
We evaluated the OS (defined as the time interval from the date 
of diagnosis to death or the last known follow-up date) and PFS 
(defined as the time interval from the date of diagnosis to disease 
progression or the last known follow-up date) time difference 
between actual and predicted responders and nonresponders 
by the XGBoost-OMC combined 12 CpG probes. Among 70 
patients with survival data and gemcitabine responses, 41 
(58.6%) nonresponders and 29 (41.4%) responders (Fig. 7A), 
XGBoost-OMC incorporating 12 CpG probes classified these 
patients into 43 predicted nonresponders and 27 predicted 
responders. The confusion matrix was shown in Table S3.

Fig. 5. The PPI network analysis. The genes associated with the 12 predictive CpG 
probes (Table S8), as annotated by the GDC, were input into STRING database for 
PPI network analysis. Out of 13 genes corresponding to predictive CpG probes, 11 
protein-coding genes were found in the STRING database, while the remaining 
2 genes (MIR6815 and RP11-429P3) were not found as they are non-protein-coding 
genes (MIR6815 is miRNA, and RP11-429P3.3 is antisense). These 11 protein-coding genes 
were connected by 14 edges representing their known and predicted interactions 
as shown in the legend. A PPI enrichment P value of 0.035 was obtained, indicating 
that the protein input has more interactions among themselves than what would 
be expected for a set of proteins of the same size and degree distribution drawn at 
random from the genome. As a result, the proteins were connected as a group. The 
nodes in the PPI network represent proteins, and the edges represent their known 
and predicted interactions.

Fig. 6. The impact of training dataset size on the performance of best model versus 
its corresponding all-features model. The boxplots present the distributions of MCC 
(A) and ROC-AUC (B) obtained across five 10-fold CV runs of RF-OMC employing 
mRNA(FPKM) profile with 5CV, 10CV, and LOOCV (i.e., K = 5, 10, and 70, respectively). 
RF incorporated OMC feature selection (RF-OMC) was represented in deep purple, 
while RF trained on all available 60,483 mRNA features [RF(all-features)] was 
represented in light purple. Each boxplot contains the P value of mean differential 
expression between 2 groups with a two-sided Welch’s t test. ****P ≤ 0.0001. The 
model performances improved as the training dataset size increased. In addition, the 
OMC models significantly outperformed the corresponding all-features models in all 
CVs. The dashed line represents the random classifier at MCC of 0 and ROC-AUC of 
0.5. MCC or ROC-AUC of 1 indicates a perfectly accurate prediction.
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The median OS and PFS were calculated for 4 groups, 
including actual and predicted responders and nonresponders 
by the XGBoost-OMC model. The median OS and PFS were 
not significantly different between the actual and the predicted 
responders (log-rank test P value of 0.19 for OS and 0.14 for 
PFS) and nonresponders (log-rank P value of 0.33 for OS and 
0.11 for PFS). The actual responders had significantly longer 
OS (median OS was 72.7 months) and PFS (median PFS was 
53.3 months) than actual nonresponders (median OS was 
19.7 months; median PFS was 12.1) with log-rank test P value < 
0.005. Similarly, the predicted responders had longer OS (median 
OS was 35.3 months) and PFS (median PFS was 17.1 months) 
compared to the predicted nonresponders (median OS was 
20.6 moths; median PFS was 13.1). However, the difference was 
not statistically significant with log-rank test P value of 0.19 
and 0.09 in OS and PFS, respectively (Fig. 7B).

mRNA-based RF-OMC can also predict survival of 
gemcitabine-treated PAAD patients
Among 65 mRNA profiled patients, 36 nonresponders and 29 
responders (Fig. 8A), RF-OMC incorporating 4 mRNAs classi-
fied these patients into 35 predicted nonresponders and 30 pre-
dicted responders. The confusion matrix was shown in Table S3. 
The median OS and PFS were not significantly different between 
the actual and the predicted responders (log-rank test P value of 
0.21 for OS and 0.15 for PFS) and nonresponders (log-rank P 
value of 0.45 for OS and 0.20 for PFS). The OS and the PFS were 
significantly longer in the actual responders (median OS was 
72.7 months; median PFS was 53.3 months) compared to the 
actual nonresponders (median OS was 17.7 months; median PFS 
was 10.2 months) with log-rank test P value < 0.005. Similarly, 
the OS and PFS were longer in the predicted responders (median 
OS was 35.3; median PFS was 16.4) compared to the predicted 
nonresponders (median OS was 21.1; median PFS was 12.2) with 
log-rank test P value of 0.19 for OS and 0.04 for PFS (Fig. 8B).

Notably, the median OS and PFS time of actual response to 
gemcitabine and those predicted by CpG-based XGBoost and 
mRNA-based RF-OMC models exhibited the similar results. 
The median PFS of predicted responders and predicted non-
responders by the mRNA-based RF-OMC model shows a sta-
tistically significant difference (log-rank test P value of 0.04), 
despite the small sample size (Fig. 8B). This suggests that RF- 
OMC combining 4 mRNAs could be a prognostic predictor of 
gemcitabine-treated PC patients.

Identification of the predictive 4 mRNAs and the 
12 CpG probes as the independent survival predictors 
in gemcitabine-treated PAAD patients
We next investigated whether gemcitabine response predictors 
(predictive 4 mRNAs and 12 CpG probes) could be survival 
predictors in PAAD patients. The univariate Cox regression 
analysis of 4 mRNAs from 65 mRNA profiled patients revealed 
that 3 genes could be independent biomarkers for prediction 
of OS and PFS (P < 0.05) (Fig. S7A). The high expression of 
SEPW1P (HR = 0.59 for OS; HR = 0.72 for PFS), RP11-
179A10.1 (HR = 0.63 for OS; HR = 0.58 for PFS), and CTC-
429L19.3 (HR = 0.64 for OS; HR = 0.58 for PFS) was 
significantly associated with improved OS and PFS, but it was 
not significant in multivariate Cox regression analysis (Fig. S7, 
A and C). These finding were consistent with the differential 
expression of these 4 mRNAs, which were shown to be highly 
expressed in responders (Fig. 4).

Furthermore, the univariate analysis of the 12 CpG probes 
from 70 DNA methylation profiled patients revealed that 3 CpG 
probes could be used as independent biomarkers for OS pre-
diction (P < 0.05) (Fig. S7B). The high DNA methylation of 
cg15200796 (HR = 0.68) and cg16049691 (HR = 0.7) was sig-
nificantly associated with improved OS. In contrast, high DNA 
methylation of cg03208198 (HR = 1.4) was significantly associ-
ated with poor OS. In addition, 4 CpG probes could be used 
as independent biomarkers to predict PFS (P < 0.05) (Fig. 
S7B). The high DNA methylation of cg07239938 (HR = 0.71), 
cg15200796 (HR = 0.77), and ch.2.184672693R (HR = 0.61) was 
associated with improved PFS, whereas high DNA methylation 
of cg03208198 (HR = 1.47) was negatively associated with PFS. 
The remaining CpG probes had no significant association with 
patient survival. In multivariate Cox regression analysis, only 
cg03208198 (HR = 1.56 for OS; HR = 1.41 for PFS) was shown 
to be significantly associated with OS and PFS (Fig. S7D). These 
results were consistent with the differential expression of these 
12 CpG probes, where high DNA methylation of cg03208198 
was associated with nonresponders, while the remaining CpG 
probes showed high DNA methylation in responders (Fig. 4). 
These suggest that gemcitabine response predictors could be used 
as independent survival predictors of PAAD patients receiving 
gemcitabine.

Subsequently, we also performed univariate Cox regression 
analysis on hENT1 gene. The result in Fig. S8A shows that 
hENT1 gene was not significantly associated with both OS 

Fig. 7. Comparison between the median OS and PFS time of actual patient response to gemcitabine and those predicted by the CpG-based XGBoost-OMC model. (A) Flowchart 
of patient selection. (B) Median OS (defined as the time interval from the date of diagnosis to death or the last known follow-up date) and PFS (defined as the time interval 
from the date of diagnosis to disease progression or the last known follow-up date) time for 4 groups, including actual and predicted responders and nonresponders by the 
XGBoost-OMC model. The median OS and PFS are defined as the time point on the Kaplan–Meier plot, where 50% of the patients in each group have survived (for OS) or have 
not experienced disease progression (for PFS). The figure highlights the ability of the CpG-based XGBoost-OMC model to accurately predict patient gemcitabine response, 
as demonstrated by the similar trend between the predicted and actual outcomes. The actual and predicted responders had longer OS and PFS than actual and predicted 
nonresponders.
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(HR = 1.01; P = 0.63) and PFS (HR = 1.0; P = 0.76) in the 
univariate model, suggesting that hENT1 gene was not prog-
nostic in PAAD patient receiving gemcitabine. In addition, Fig. 
S8B demonstrates poor patient stratification by using hENT1 
gene trained on RF model, in which there was a trend toward 
better survival in predicted nonresponders.

The effect of data integration on the gemcitabine 
response prediction
We next investigated the effect of data integration on the predic-
tive performance of the best model. The RF-OMC was trained 
on mRNA profile, clinical features (Table S1), and integrated 
mRNA and clinical features. Figure 9A shows the MCCs across 
five 10-fold CV repetitions. Combining mRNA and clinical fea-
tures (FPKM + clinical) did not improve the model performance 
(mMCC of 0.44) compared to those built on only mRNA features 
(FPKM) (mMCC of 0.44). RF-OMC prediction based on only 
clinical data (clinical) led to the lowest performance (mMCC of 
0.014). If merging the 2 best molecular profiles provided a per-
formance boost, it would justify the time and financial overhead 
of determining both profiles in every patient. However, RF-OMC 
integrating the 2 most predictive CpG methylation and mRNA 
profile performed worse than those by individual profile (mMCC 
of 0.349). Last, RF-OMC employed all the molecular profiles and 
clinical features (All_profiles) did not improve the prediction 
(mMCC of 0.253). Overall, there is no benefit in integrating 
patients’ clinical data with molecular profiles on the predictive 
performance of the best model. Importantly, increasing number 
of features could reduce the model performances as a curse of 
dimensionality. We did not carry out systematic ablation experi-
ments combining more than 2 profiles mostly due to unfavorable 
cost–benefit reasons.

Comparing the model prediction based on mRNA 
and CpG methylation profiles to the hENT1, a  
well-established gemcitabine response biomarker
Many studies reported that hENT1 has shown to be a predictive 
biomarker of gemcitabine response in PC. The high expression 
of hENT1 is associated with sensitivity to gemcitabine and 
increased overall and disease-free survival [16,17,65]. Figure 
9B shows that RF-OMC combining 4 mRNAs (mMCC of 0.44) 
significantly outperformed RF prediction using only hENT1 

gene expression (mMCC of −0.066). Similarly, XGBoost-OMC 
combining 12 CpG probes (mMCC of 0.32) obtained a signifi-
cantly higher MCC compared to XGBoost that employed only 
hENT1 gene expression (mMCC of −0.045). Table S6 also 
presents the predictive performances in terms of MCC and 
ROC-AUC. The results suggest that the prediction based on 
either 4 predictive mRNAs or 12 CpG probes outperforms 
those by hENT1 single-gene biomarker in predicting gem-
citabine responses.

Discussion
Omics-based precision oncology, also known as targeted thera-
pies or genomic medicine, has improved cancer patient manage-
ment. The focus has been on either single-gene marker [17,66,67], 
a single molecular profile [67–70], or the discovery of rare action-
able mutations [71,72]. However, predicting drug responses is a 
challenging task in oncology. Using a single-gene marker or a 
few molecular profiles is often insufficient to correctly predict 
drug responses [50,73,74]. The previous researches [44,50,75] 
demonstrated that the multiple molecular profiles provide new 
opportunities to identify robust biosignatures that can discrimi-
nate drug responses and aid to tailor treatments for individual 
cancer patients [44,50,75].

Supervised ML algorithms are increasingly being applied to 
the multiple molecular profiles as they can predict the clinical 
outcomes for new data based on what they learned from the previ-
ous data. Owing to well-curated molecular profiling data of GDC, 
we present a large-scale analysis of supervised 128 ML models 
built on multiple molecular profiles and algorithms to predict 
gemcitabine responses in 70 PAAD patients. Smaller sample sizes 
are not uncommon for cancer-specific drug response prediction 
problems [76]. Here, out-of-sample predictions were carried out 
with rigorous CV procedures, which have been shown to antici-
pate held-out test set performance in smaller datasets than the 
one used in our study [77].

Using five 10-fold CV runs, 7 of 128 (5%) models are pre-
dictive with mMCC > 0.3. These 7 predictive models were all 
OMC models. Training only the most informative features in 
OMC models increases the chance of making accurate predic-
tion by removing the irrelevant features from high dimen-
sionality dataset early prior to model training, and model 
performance improves compared to all-features models. The 

Fig. 8. Comparison between the median OS and PFS time of actual patient response to gemcitabine and those predicted by the mRNA-based RF-OMC model. (A) Flowchart of 
patient selection. (B) Median OS (defined as the time interval from the date of diagnosis to death or the last known follow-up date) and PFS (defined as the time interval from 
the date of diagnosis to disease progression or the last known follow-up date) time for 4 groups, including actual and predicted responders and nonresponders by the RF-OMC 
model. The median OS and PFS are defined as the time point on the Kaplan–Meier plot where 50% of the patients in each group have survived (for OS) or have not experienced 
disease progression (for PFS). The figure highlights the ability of the mRNA-based RF-OMC model to accurately predict patient gemcitabine response, as demonstrated by the 
similar trend between the predicted and actual outcomes. The actual and predicted responders had longer OS and PFS than actual and predicted nonresponders.
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2 most predictive molecular profiles in this study revealed 4 
of 60,483 mRNAs (0.066%) from RF-OMC model and 12 of 
450,000 CpG probes (0.027%) from XGBoost-OMC model 
as the most informative biosignatures for predicting gem-
citabine responses in PAAD patients. These models did not 
only exhibit high out-of-sample mMCC values robust to dif-
ferent partitions and repetitions, but these values were also 
significantly higher than those from all-features models (Fig. 6) 
and class-permuted models (Figs. S6 and S9). Moreover, the 
performance of these 2 OMC models monotonically increased 
with larger training set sizes (Fig. 6). Last, note that, in general, 

other combinations of molecular profiles and algorithms will 
be predictive in different drugs and cancer types [44,45,50].

The RF-OMC model nonlinearly combined 4 predictive mRNA 
features including SEPW1P, RP11-179A10.1, ATF4P4, and CTC-
429L19.3 that have accurately predicted PAAD patients’ responses 
to gemcitabine. Two of these predictive mRNAs (ATF4P4 and 
SEPW1P) are pseudogene, while the remaining mRNAs are RNA 
genes (RP11-179A10.1 and CTC-429L19.3) (Table S7). These genes 
might be involved in drug resistance and cancer progression 
through alterations in their expression. Other studies have already 
examined the roles of these genes in other types of cancer. For 
example, depletion of SEPW1P enhances tumor suppressor activi-
ties in breast cancer [78]. The single-nucleotide polymorphisms 
(SNPs) located in long noncoding RNA RP11–179A10.1 were 
reportedly associated with poorer outcomes in ovarian cancer [79], 
but their association with PAAD has not been documented.

Previous studies have shown that potential cancer biomark-
ers can be identified using DNA methylation profiles [80–82]. 
In this study, we could identify 12 DNA methylation of CpG 
probes affecting 14 genes as the predictive biomarkers of gem-
citabine responses in PAAD patients by XGBoost-OMC model. 
The genes found to be associated with these CpG probes are 
presented in bracket: cg03208198 (COL18A1 and MIR6815), 
cg07239938 (ELANE), cg11528307 (C14orf80 and CRIP1), 
cg15200796 (TMEM191C), cg16049691 (AHRR), cg16379910 
(B2M), cg17804635 (ZNF703), cg23854567 (PXN), cg24128434 
(DNAH2), cg25653341 (PLOD3), cg27152190 (RP11-429P3.3), 
and ch.2.184672693R (not linked to any gene). The 2 CpG 
probes (cg115283072 and ch.2.184672693R) were commonly 
selected by other models that employed CpG profile, including 
CART-OMC, LGBM-OMC, and RF-OMC, with mMCC of 0.28, 
0.18, and 0.18, respectively (Table S8). In addition, we also inves-
tigated the differential expression of gemcitabine response pre-
dictors and found that increased 4 mRNA expressions and 
DNA methylation of 11 CpG sites in pretreatment biopsies 
from gemcitabine-treated PAAD patients are correlated with 
better response to therapy, while increased DNA methylation 
of cg03208198 predicts resistance to therapy (Fig. 4). In fact, 
dysregulation of DNA methylation (hypo- or hypermethylation) 
is related to affected gene activation or associated with gene 
silencing including known tumor suppressor genes and loss of 
gene functions in cancer [83]. Some of the genes corresponding 
to the predictive CpG probes have been previously reported to 
be associated with the prognosis and clinical outcomes in vari-
ous cancers. The high expression of COL18A1 in PC [84], gastric 
cancer [85], and esophageal squamous cell carcinoma [86] showed 
poor clinical outcomes. Down-regulation of CRIP1 has also 
been identified in invasive PC [87]. ZNF703 is an oncogenic 
transcriptional regulator involved in cell adhesion, movement, 
and proliferation [88]. Overexpression of ZNF703 is linked to 
tamoxifen resistance [89]. From this subset of predictive genes, 
we carried out PPI and pathway analyses to further support 
follow-up mechanistic studies. Here, we found that the genes 
corresponding to predictive CpG probes were significantly 
enriched in a number of cancer-associated pathways and drug 
resistance from GO and KEGG pathway database (Fig. S5 and 
Tables S4 and S5).

We next analyzed the survival difference observed between 
predicted responders and nonresponders by using the best mod-
els among gemcitabine-treated PAAD patients. The Kaplan–
Meier survival analysis shows that the median OS and PFS were 
not significantly different between the actual and the predicted 

Fig.  9.  Comparison of the predictive performances of the best model to those 
combining other datasets and those using hENT1 single gene only in predicting 
gemcitabine response in PAAD patients. (A) Boxplots comparing the MCCs obtained 
from five 10-fold CV runs (each dot represents a run) of the RF-OMC prediction 
based on mRNA profile [mRNA(FPKM)], combining mRNA and clinical dataset 
[mRNA(FPKM) + Clinical], combining mRNA and CpG profile [mRNA(FPKM) + CpG] 
and clinical data only (Clinical) (Table S1), and combining all of 8 molecular profiles and 
clinical data (All_profile + Clinical). MCC ranges between −1 (misclassification) and 1 
(perfect classification), with 0 corresponding to no better than a random. Altogether, 
integrated patients’ clinical data have no effect on the predictive performance of 
the best model. Importantly, increasing number of features could reduce the model 
performances. (B) To compare the predictive performances of the 2 most predictive 
models with those using hENT1 only, hENT1 gene expression from mRNA(FPKM) 
profile was trained on the same algorithms as the 2 most predictive models (RF 
and XGBoost). Boxplots comparing the MCCs of the 2 most predictive models 
[mRNA(FPKM)_RF-OMC and CpG_XGBoost-OMC] to those using the expression 
of the hENT1 gene only (hENT1_RF and hENT1_XGBoost) in gemcitabine response 
prediction of PAAD patients. The 2 most predictive models obtained in this study 
significantly outperformed the prediction based on hENT1 expression as a single 
predictor. Statistical comparisons between different models were performed using 
two-sided Welch’s t test. Stars denote the P value, where nonsignificant “ns” means 
0.05 < P ≤ 1.00. *0.01 < P ≤ 0.05, **0.001 < P ≤ 0.01, ***0.0001 < P ≤ 0.001, 
and ****P ≤ 0.0001.

https://doi.org/10.34133/hds.0108


Ogunleye et al. 2024 | https://doi.org/10.34133/hds.0108 11

responders and nonresponders from the best models. Both OS 
and PFS were increased in responders compared to nonre-
sponders (Figs. 7 and 8). The univariate analysis suggests that 
gemcitabine response predictors could be used as independent 
features for survival prediction of PAAD patients receiving gem-
citabine (Fig. S7). Some studies have reported these genes as 
predictors of PAAD survival outcomes [68,90]. Note that build-
ing a better predictor of PAAD survival would require consider-
ing all PAAD patients regardless of the administered drug, 
which is out of the scope of this study.

Additionally, merging features did not improve the model 
performances (Fig. 9A). Clinical features alone were barely 
predictive, and combining them with predictive mRNA profile 
did not improve the model performance. Furthermore, there 
is no improvement by integrating 2 most predictive molecular 
profiles. In addition, loss in predictive accuracy was observed 
when combining all molecular profiles and clinical features. 
These suggest that RF-OMC was not able to capture the hidden 
informative features when the dimensionality dataset exceeded 
500,000 features.

Furthermore, several studies have reported hENT1 expres-
sion as a gemcitabine response biomarker in PC [16,17], but the 
mMCC across five 10-fold CV runs was barely predictive 
(mMCC ~ 0), while the prediction based on 4 predictive mRNAs 
(mMCC of 0.44) and 12 predictive CpGs (mMCC of 0.32) 
achieved a significantly higher performance (Fig. 9B). This 
could suggest the attractiveness of the identified biosignatures. 
However, the improvement of these ML models over the hENT-
1marker will have to be more accurately quantified in a prospec-
tive clinical trial.

Although the best models, based on mRNAs and CpG pro-
files, have predictive and robust performances, there are several 
limitations to be considered. First, this is a retrospective study 
using publicly available data from TCGA-PAAD project. While 
the number of patients is large for a cancer-specific drug response 
study (diagnosis or prognosis datasets are not restricted to a 
single administered drug and hence are larger), a larger cohort 
would further improve model performance. Indeed, as shown 
in Fig. 6, the more data used to train the model, the more accu-
rate the model. Second, an independent validation cohort would 
further test the generalizability of the best model, i.e., whether 
this is able to stratify patients with different characteristics or 
technical validations (e.g., sample preparation, sequencing pro-
cedure, and bioinformatics pipeline). With that said, this is not 
critical here as it is when using clinical trial data, as TCGA data 
come from clinical practice in different hospitals. Third, the 
effect of drug combinations could be further evaluated along 
with its individual effect, as a few patients were given other drugs 
in combination with gemcitabine.

Conclusions
In summary, this systematic ML analysis revealed the discov-
ery of predictive, reproducible, and robust gene expression 
and DNA methylation computational models for gemcitabine-
treated PAAD patients. These models can be employed as 
response signatures to guide clinicians to stratify PAAD 
patients who will respond to gemcitabine in order to propose 
other suitable drugs without delay and avoid side effects to 
patients who are unlikely to respond. In addition, these signa-
tures could be a starting point to explore the gemcitabine 
resistance mechanism.
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