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Abstract 
Motivation: Cell-type annotation is fundamental in revealing cell heterogeneity for single-cell data analysis. Although a host of works have been 
developed, the low signal-to-noise-ratio single-cell RNA-sequencing data that suffers from batch effects and dropout still poses obstacles in dis
covering grouped patterns for cell types by unsupervised learning and its alternative–semi-supervised learning that utilizes a few labeled cells as 
guidance for cell-type annotation.
Results: We propose a robust cell-type annotation method scSemiGCN based on graph convolutional networks. Built upon a denoised network 
structure that characterizes reliable cell-to-cell connections, scSemiGCN generates pseudo labels for unannotated cells. Then supervised 
contrastive learning follows to refine the noisy single-cell data. Finally, message passing with the refined features over the denoised network 
structure is conducted for semi-supervised cell-type annotation. Comparison over several datasets with six methods under extremely limited 
supervision validates the effectiveness and efficiency of scSemiGCN for cell-type annotation.
Availability and implementation: Implementation of scSemiGCN is available at https://github.com/Jane9898/scSemiGCN.

1 Introduction
Single-cell RNA sequencing (scRNA-seq) which measures sig
nals of genetic molecular at cell resolution enables cell-type 
stratification to reveal cell heterogeneity, hence allows to un
cover cell lineages and composition of complex tissues, pro
viding detailed landscapes of cell fate trajectories and 
progress of diseases in organism (Tang et al. 2009, Treutlein 
et al. 2014, Han et al. 2020). Undoubtedly, exploring 
scRNA-seq data is fundamental to achieve such biological 
understanding and clinical applications (L€ahnemann et al. 
2020, Wu and Zhang 2020).

Cell-type annotation that distinguishes different types of 
cells is a vital step in scRNA-seq data analysis. Traditional an
notation methods first build unsupervised learning models to 
divide cells into subgroups according to the underlying differ
ence in scRNA-seq data, then find the marker genes for each 
group with differential expression analysis. By matching 
marker genes with known cell types, subgroups are labeled 
with annotations (Wu and Zhang 2020). Clustering is the key 
step in the pipeline, and a few of works have been proposed to 
process scRNA-seq data (Gr€un et al. 2015, Levine et al. 2015, 
Macosko et al. 2015, Wang et al. 2017). For example, SIMLR 
learned similarities between cells via multiple kernel learning, 
then applied spectral clustering to discover subgroups (Wang 

et al. 2017). SAFE-clustering integrated outcomes of four pop
ular clustering methods by hypergraph partitioning algorithms 
to obtain a consensus result (Yang et al. 2019). With the 
advantages of deep models in representation learning, a num
ber of cell-type annotation methods based on deep networks 
have been developed. Wang et al. (2021a) proposed a deep 
learning framework that iterated within multiple auto- 
encoders to learn graph embedding of cells, and then obtained 
cell clusters by k-means and Louvain. Tian et al. (2019)
trained an auto-encoder with both zero-inflated negative bino
mial loss and KL-divergence to learn low-dimensional embed
dings and clustering assignment simultaneously.

Although unsupervised methods are label-free, they require 
expertise to find marker genes or reference databases for a 
specific cell type (Shao et al. 2021). Decoupling clustering 
and annotating in the learning process may also lead to bio
logically meaningless subgroups. Cell-type annotation meth
ods based on semi-supervised learning emerge as an 
economic way to tackle these issues (Kim et al. 2019, Chen 
et al. 2021, Wei and Zhang 2021, Dong et al. 2022, 2023, 
Xu et al. 2022, Seal et al. 2023). Dong et al. (2023) employed 
word2vec to learn gene embeddings which were fed into 
branch bidirectional LSTM networks with a shared module. 
Then they trained their model with labeled and unlabeled 
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data in a multi-task learning manner. Similarly, Xu et al. 
(2022) proposed scSemiGAN which consisted of generative 
adversarial networks and a decoder to obtain cell-type identi
ties and latent representations of cells using labeled data as 
additional supervised signals. Wei and Zhang (2021) pro
posed to annotate unlabeled cells by alternatively updating a 
logistic regression model and spectral clustering as the former 
acted as a predictive model while the latter generated pseudo 
labels of cells under the consistency constraint. These semi- 
supervised cell-type annotation methods show promising 
results, but they can be further improved under the consider
ation of quality of scRNA-seq data.

Owing to technical artifacts of scRNA-sequencing, scRNA- 
seq data are contaminated with high level of noise caused by se
quencing depth, experimental designs, and operations, etc. 
(L€ahnemann et al. 2020). Apart from technical issues, cell-type 
annotation is also plagued with biological challenges. For exam
ples, transient biological states bring ambiguity in cell-type iden
tification (Kiselev et al. 2019), and skewed distributions of cell 
types make it difficult to capture patterns of rare categories. 
Thus, using raw scRNA-seq data directly for analysis generally 
leads to unsatisfactory outcomes. To ensure trustworthy discov
eries, efforts have been made to handle batch effects and drop
out of scRNA-seq data (Huang et al. 2018, Wei and Li 2018, 
Korsunsky et al. 2019, Yu et al. 2023).

In this paper, we present a semi-supervised method based 
on multi-layer graph convolutional networks (GCN) (Kipf 
and Welling 2017) called scSemiGCN for cell-type annota
tion. GCN has been employed for scRNA-seq data analysis 
for its outstanding ability to capture complex and high-order 
connections in networks (Wang et al. 2021a,b, Gao et al. 
2023, Lewinsohn et al. 2023). By representing cells as nodes 
in a network, holistic topological relationship between cells is 
built by messages passing in a forward GCN. The adjacent 
matrix in GCN, usually constructed by scRNA-seq data to 
depict the relationship between cells, is crucial in transmis
sion of information. But it may be unreliable due to the low 
signal-to-noise ratio of scRNA-seq data, and thus impairs the 
learning process, while few have taken it into account.

To address this issue, we apply SIMLR to learn similarities be
tween cells and subsequently employ Network Enhancement (NE) 
(Wang et al. 2018) as a denoising procedure that diminishes suspi
cious connections and strengthens forceful links. By replacing the 
two-sided normalized transmission matrix with the denoised simi
larity matrix that achieves favorable eigengap in GCN, 
scSemiGCN ensures a discriminative structure in the cell-to-cell 
network, which helps to improve the predictive power. 
Additionally, to achieve better representations of nodes in the net
work as initial features for GCN, the raw scRNA-seq data are pro
jected to a discriminative representation space by supervised 
contrastive learning (Khosla et al. 2020), where cells from the 
same types lie close and the different are far apart. To this end, all 
cells should be annotated beforehand. scSemiGCN preliminarily 
generates pseudo labels for unlabeled cells by k-nearest neighbors 
(KNN) leveraging the denoised similarity matrix and only a few la
beled cells. With the advantage of an enhanced network structure 
and discriminative initial features, we can finally attain a powerful 
two-layer GCN for cell-type annotation prediction learned with a 
small number of annotated cells.

To summarize, our contributions are as follows:

� We propose scSemiGCN consisted of topological denoising 
and feature refinement to handle low signal-to-noise-ratio 

scRNA-seq data for semi-supervised cell-type annotation. 
The framework of scSemiGCN is shown in Fig. 1. 

� By applying a denoising procedure to cell-to-cell similarities, 
we obtain a more reliable network structure from which we 
generate pseudo labels and build a denoised GCN. 

� We then refine scRNA-seq data by supervised contrastive 
learning with pseudo labels using the denoised GCN as 
backbone. Sequentially, we learn a denoised GCN for 
cell-type annotation with refine features and extremely 
limited supervision. 

� We evaluate scSemiGCN in six real scRNA-seq datasets and 
a more challenging continuum dataset by comparing with 
semi-supervised and unsupervised methods. Experimental 
results show its competitive or even better performance over 
competing methods utilizing only five percent of labeled cells. 

2 Materials and methods
2.1 Notations and preliminaries
We denote a scRNA-seq expression matrix as X 2 Rm�n that 
contains expression signals of n genes of m cells. The lower
case bold symbol xi 2 Rn denotes the expression signals of 
cell i. Suppose there are ml annotated cells and mu unanno
tated cells. The genomic expression matrix X can be denoted 
as X ¼ ½X l; Xu� where X l 2 Rml�n and Xu 2 Rmu�n are expres
sion matrices of annotated and unannotated cells, respec
tively. Considering there are c types of cells, let 
Y l 2 f0;1g

ml�c represent the cell-type indication matrix of X l 
where cell types of cells are denoted by one-hot coding in 
rows. We aim to infer the cell-type indication matrix Yu 2

f0;1gmu�c of the unannotated mu cells. Here we propose 
scSemiGCN to achieve this goal.

scSemiGCN consists of three stages. First, we generate 
pseudo labels for unannotated cells with KNN by leveraging 
a denoised similarity matrix. Then we refine the low signal- 
to-noise-ratio scRNA-seq data by projecting it onto a dis
criminative representation space in a supervised contrastive 
learning paradigm. Finally, we train a two-layer GCN with 
labeled cells for cell-type annotation using a more reliable 
topological network structure and discriminative features as 
input. Details are presented in the following sections.

2.2 Generate pseudo labels with 
topological denoising
Cell-to-cell similarities. We employ SIMLR (Wang et al. 
2017) to learn cell-to-cell similarities. SIMLR returns a simi
larity matrix S 2 Rm�m

þ by alternating optimization: 

minS;H;w −
Xm

i¼ 1

Xm

j¼1

XL

l¼ 1

wlKlðxi;xjÞSi;j þ bjjSjj2Fþ

ctraceðHTðIm−SÞHÞ þ q
XL

l¼ 1

wl log wl

s:t:HTH ¼ Id;
XL

l¼1

wl ¼ 1;wl � 0;

Xm

j¼ 1

Si;j ¼ 1; Si;j � 0

(1) 

where Im and Id are m�m and d�d identity matrices, re
spectively. The symbols d, b, q, and c denote non-negative 
hyperparameters. The parameter d can be set as the number of 
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desired clusters in the dataset. Both b and c are estimated by a 
data-driven approach and q is set as m2. The modified Gaussian 
kernels with different hyperparameters are used to define a se
ries of kernels fKlg

L
l¼1, each of which takes the form as 

Klðxi;xjÞ ¼
1

�
ðlÞ
i;j

ffiffiffiffiffiffi
2p
p exp −

jjxi − xjjj
2
2

2ð�ðlÞi;j Þ
2

0

@

1

A: (2) 

The scaled parameter �ðlÞi;j is computed by 

l
ðlÞ
i ¼

P

o2N ðlÞxi
jjxi − xojj2

kðlÞ
; �
ðlÞ
i;j ¼

rðlÞðl
ðlÞ
i þ l

ðlÞ
j Þ

2
; (3) 

where N ðlÞxi 
is the top kðlÞ nearest neighbors of xi in Euclidean dis

tance. By varying ðkðlÞ; rðlÞÞ, we obtain multiple kernels fKlg
L
l¼1. 

Following Wang et al. (2017), we generate 55 kernels by setting 
kðlÞ 2 f10; 12; 14; . . . ;30g and rðlÞ 2 f1:0; 1:25; 1:50; . . . ;2g.

Topological denoising. Apparently, kernels calculated by 
Equation (2) are still suspicious due to high dimensionality and 
high noise level of xi, causing ambiguous neighbors constructed 
in Euclidean space. Hence it may lead to an undermined similar
ity matrix S. Wang et al. (2017) proposed a diffusion step for S 
to alleviate such tendency. Alternatively, we here apply a more 
powerful Network Enhancement (NE) (Wang et al. 2018) 
which provides provable guarantee by spectral analysis of 

transition matrix in random walks. Specifically, NE defines the 
transition matrix T 2 Rm�m

þ as 

Ti;j ¼
Xm

o¼ 1

Pi;oPj;o
Pm

v¼ 1 Pv;o
; and Pi;j ¼

Si;jIfj2N igP
o2N i

Si;o
; (4) 

where N i is the k-nearest neighbors of cell i with size as K 
and If�g denotes an indicator function. The similarity matrix 
is updated by random walks: 

Stþ1 ¼ aT � St � T þ ð1 − aÞT; (5) 

where we initialize S0 with S returned by SIMLR, and a is a 
regularization parameter for restart. It can be shown that 
Equation (5) converges to an equilibrium graph, i.e. 

lim
t!1

St ¼ ð1 − aÞTðIm − aT2Þ
−1
: (6) 

where Im is a m�m identity matrix. Thus we can obtain a 
denoised similarity matrix as 

~S ¼ ð1 − aÞTðIm − aT2Þ
−1
: (7) 

Given the eigen-decomposition of the transition matrix 
T ¼ URU−1, where R is a diagonal matrix with eigenvalues 
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Figure 1. Framework of scSemiGCN. It consists of three stages: (i) generating pseudo labels for unannotated cells with denoised similarities in k-nearest 
neighbors (KNN); (ii) projecting raw features onto a discriminative representation space by supervised contrastive learning; (iii) training a cell-type 
annotation model with labeled cells in a two-layer graph convolutional network (GCN) using refined features and the denoised network structure 
as inputs.
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of T as diagonal elements and U is consisted of corresponding 
eigenvectors as columns, by Equation (7), we have 

~S ¼ ð1 − aÞURU−1ðIm − aURU−1URU−1Þ
−1
:

¼ ð1 − aÞURU−1ðUU−1 − aURRU−1Þ
−1

¼ Uðð1 − aÞRðIm − aR2Þ
−1
ÞU−1 ¼ U ~RU−1

(8) 

where ~R ¼ ð1 − aÞRðIm − aR2Þ
−1 is a diagonal matrix with 

~Ri;i ¼ ð1 − aÞRi;ið1 − aR2
i;iÞ

−1. Hence, the denoised similarity 
matrix ~S can be computed by Equation (8) instead of its itera
tion form Equation (5), with computational complexity 
as Oðm3Þ.

From Equation (8), it is proved that ~S obtains a larger 
eigengap than S has [cf. Lemma 3 in Wang et al. (2018)], 
thus results in a more discriminative similarity metric (or net
work structure).

Preliminary annotation. The entry of ~S, denoted as ~si;j, 
indicates the similarity between cell i and cell j. Once having 
a denoised similarity matrix ~S, we can generate pseudo labels 
for unannotated cells by KNN with labeled cells utilizing ~S as 
a similarity metric. Formally, for an unlabeled cell i, let 
NLkðiÞ ¼ ftop k oflabeledcellsmostsimilartocell ig, then the 
one-hot coding of pseudo label of cell i is 

~yi ¼ modeðfyjjcell j 2 NLkðiÞgÞ;

where yj represents the ground-truth label of cell j in one-hot 
coding and modeð�Þ denotes the majority voting operator. In 
our experiments, we simply set the size of nearest neigh
bors k¼ 1.

2.3 Refine scRNA-seq data by supervised 
contrastive learning with a denoised GCN
In this section, we propose to refine scRNA-seq data X with 
supervised contrastive learning (SCL) using precise labels of 
X l and pseudo labels of Xu for supervision. Each cell is pro
jected onto a discriminative representation space where cells 
from the same types lie together and the different are far 
apart, with dimensionality unchanged. We define the projec
tion as a one-layer GCN, i.e. 

~X ¼ fUðXÞ ¼ ReLUðAXUÞ; (9) 

where U 2 Rn�n is a learnable weight matrix and 
ReLUð�Þ ¼ maxð0; �Þ.

Vanilla GCN. In the vanilla graph convolutional network, 
the two-sided normalization symmetric matrix A that reveals 
the topological structure of the network is defined as 

A ¼ ~D
−1

2 ~A ~D
−1

2, where ~A is the adjacent matrix with self- 
connections and ~D is a diagonal matrix with its diagonal ele
ments as ~Di;i ¼

Pm
j¼1

~Ai;j.
Denoised GCN. From Equations (4) and (5), Wang et al. 

(2018) showed that Stþ1 remains as a two-sided normaliza
tion symmetric matrix in each iteration, i.e. Stþ11 ¼ 1 and 
ST

tþ1 ¼ Stþ1 with non-negative elements in Stþ1. Thus, the 
limit of Stþ1, i.e. ~S, is still a two-sided normalization symmet
ric matrix. Here, the bold symbol 1 indicates an all-one vec
tor with dimensionality of m, i.e. 1 ¼ ð1; 1; . . . ;1ÞT . Further, 
the following theorem indicates the range of eigenvalues of 
the limit.

Theorem 1 The eigenvalues of the equilibrium graph 
Equation (7) fall into the range ½0;1�.   

Proof. Wang et al. (2018) have shown that T is positive 
semi-definite and two-sided normalized with non-negative 
entities. Let k be an eigenvalue of T, by the Gershgorin circle 
theorem, we have jk−Ti;ij �

P
j6¼i jTi;jj, which implies k �

Ti;i þ
P

j6¼i jTi;jj ¼
Pm

j¼1 Ti;j ¼ 1 since T1 ¼ 1 and Ti;j � 0. 
Because T is positive semi-definite, we conclude that the 
eigenvalues of the transition matrix T 2 ½0; 1�. By Equation 
(8), the eigenvalue of ~S can be represented as ð1−aÞk

1−ak2 where k 

denotes the eigenvalue of T. Since a 2 ½0; 1�, we conclude our 
statement.                                                                                      w

In above proof, we simplify the claim in Wang et al. (2018)
by using the Gershgorin circle theorem.

In a word, ~S is a two-sided normalized symmetric matrix 
with eigenvalues in the range ½0; 1�. Thus, it can be used as A
in Equation (9), since it naturally avoids numerical instability 
or extreme gradients in GCN (Kipf and Welling 2017) and 
captures the denoised network structure simultaneously. In 
the end, Equation (9) can be rewritten as 

~X ¼ fUðXÞ ¼ ReLUð~SXUÞ: (10) 

The refined representation of cell i is indicated by ~xi, corre
sponding to the i-th row of ~X .

Supervised contrastive loss. Once we obtain the refined 
representations of cells by Equation (10), the unknown 
parameter U is optimized by minimizing the supervised 
contrastive loss 

Lcon ¼
X

i2B

−1
jPij

X

j2Pi

log
exp ð~zT

i ~zj=sÞ

exp ð~zT
i ~zj=sÞ þ

P
k2Mi

exp ð~zT
i ~zk=sÞ

;

(11) 

where B denotes a set of samples in mini-batch, and Pi and 
Mi are a set of samples in the mini-batch with the same label 
and different labels of cell i, respectively, and ~zi is the unit 
normalization of ~xi, i.e. ~zi ¼ ~xi=jj~x ijj2. The symbol s in 
Equation (11) denotes the free-tuning temperature, which we 
set as 0.5 in our experiments, and jPij counts the number of 
cells in Pi.

It should be noted that we only train a few steps with the 
supervised contrastive loss to learn the refined representa
tions of cells in a bid to improve robustness since the labels of 
unannotated cells are not accurate in the current stage.

2.4 Annotate cell types with limited supervision
With refined representations ~X and a denoised network 
structure ~S available, we finally build a two-layer GCN for 
cell-type annotation, i.e. 

Ŷ ¼ gWð~X Þ ¼ softmaxðReLUð~S � ReLUð~S ~XW1Þ �W2ÞÞ (12) 

where W1 2 Rn�h and W2 2 Rh�c are learnable parameters 
denoted by W. Here we use a denoised GCN with the same 
motivation as Equation (10). Each row of Ŷ represents pre
dicted cell-type probability distribution of cells. The model is 
merely optimized by the cross-entropy loss over labeled cells 
~X l, i.e. 
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Lc ¼ −
X

i2Bl

yiðlog ŷiÞ
T
; (13) 

where Bl is a mini-batch of cells with precise labels, and yi 
and ŷi are ground-truth annotation of cell i in one-hot coding 
and corresponding predicted cell-type probability distribu
tion, respectively.

3 Results
3.1 Competing methods and datasets
Four recently developed cell-type annotation methods were 
used for comparison with scSemiGCN, including CALLR 
(Wei and Zhang 2021), scSemiGAN (Xu et al. 2022), 
scSemiAE (Dong et al. 2022), and SIMLR (Wang et al. 
2017). We also compared our denoised GCN with the vanilla 
GCN (Kipf and Welling 2017) and Graph Attention 
Networks (GAT) (Veli�ckovi�c et al. 2018) which have been 
widely used for semi-supervised node classification in graph 
learning. All of the competing methods are semi-supervised, 
except the unsupervised SIMLR. Here we used the similarity 
matrix return by SIMLR to annotate the unlabeled cells with 
KNN for comparison.

We ran our experiments with six single-cell RNA-seq data
sets. Five of them, namely Buettner, Kolodziejczyk, Pollen, 
Usoskin, and Zeisel were taken from Wang et al. (2017), and 
the rest Cortex was created by Dong et al. (2022). Detail 
descriptions of these datasets are presented in Table 1.

3.2 Experimental settings
In our experiments, only five percent of cells in each dataset 
were supposed to have been annotated during training, and 
the rest were evenly divided for validation and test. The num
ber of annotated cells used in training for each cell type in 
each dataset is summarized in Supplementary Table S1. 
Accuracy, F1-score, and the area under the ROC curve 
(AUC) of predicted annotations of test sets are reported.

We apply SIMLR to learn to cell-to-cell similarities with 
default settings in its implementation (Wang et al. 2017). 
How the choice of SMILR’s parameters affects scSemiGCN is 
investigated and presented in Supplementary Figs S1 and S2. 
The regularized parameter a and neighborhood size K in net
work enhancement, i.e. Equation (7), should to be tuned in 
experiments. We set a in the range of ½0:4; 0:5; 0:6�. The range 
of neighborhood size K was set according to the average 
number of cells in each cell type. In Butter and Pollen, it was 
chosen between 18 and 20, while between 20 and 22 for the 
rest. The combination of a and K was determined by the 
highest accuracy in validation data for each dataset.

We set the number of genes as the dimension of input n for 
GCNs in all datasets except Cortex where we selected the top 
2000 most variable genes as input for GCNs. The 

dimensionality of the hidden layer h in Equation (12) was 
fixed as 100. The size of mini-batch Bl in Equation (13) was 
set as 100.

In stage II, we trained a denoised GCN in 10 epochs by su
pervised contrastive learning using SGD as the optimizer with 
learning rate as 0.05. In the final stage, we trained the two- 
layer GCN in 400 epochs using Adam as the optimizer, and 
the learning rate was set to be 0.001 in Buettner, Pollen, and 
Cortex, and 0.0005 for the rest.

3.3 Performance in cell-type annotation
We report the comparison between scSemiGCN and the com
peting methods for cell-type annotation under three metrics. 
Results are summarized in Table 2. AUC is not reported for 
CALLR and scSemiAE since they returned predicted labels 
without probability estimation. scSemiGCN demonstrates 
competitive and even dominant performance in all six data
sets, showing its favorable robustness and adaptability. In 
SIMLR, we annotated cells by KNN using the learned simi
larities where the size of neighborhood for annotation k was 
selected in the range of f1, 3, 5g and determined by valida
tion data. CALLR requires that there are at least two anno
tated samples per cell type in training. Hence, we used 10% 
of annotated cells when running CALLR in Pollen.

There is obvious gap between our scSemiGCN and the rest 
methods in Pollen. It should be noted that there were at most 
two annotated cells used in training for each cell type in this 
dataset (see Supplementary Table S1). The result implies 
scSemiGCN is highly effective in this extremely limited super
vision scenario.

Comparing between SIMLR and scSemiGCN, we see that 
scSemiGCN generally improves SMILR except in Buettner. 
Such improvement is particularly significant in Pollen, 
bought from both feature refinement and topological denois
ing as clarified in the following ablation studies. GCN out
performs GAT in four out of six datasets, which implies that 
GCN is a better graph-neural-network-based backbone than 
GAT for scSemiGCN.

We visualize latent representations generated by neural- 
network-based methods in three datasets with t-SNE (van der 
Maaten and Hinton 2008) in Fig. 2. Different categories are 
well separated in Kolodziejczyk of all methods. For the larger 
and more diverse Zeisel and Cortex, cell types with a larger 
proportion are more easily identified and the rare tends to be 
mixed with others. But we still see that the rare cell type of 
Zeisel indicated by green is better separated in scSemiGCN. 
Visualization of the rest datasets can be found in 
Supplementary Fig. S3.

3.4 Ablation studies and analysis
We also studied the effectiveness of feature refinement and to
pological denoising. To this end, we ran scSemiGCN bypassing 
stage II (withdrawing supervised contrastive learning), and 
denoising in stage I (withdrawing network enhancement), re
spectively, while keeping the remaining experimental settings 
unchanged. When skipping denoising in stage I, we correspond
ingly used vanilla GCN as the backbone instead. We present the 
results in Fig. 3. We can see that feature refinement helps in all 
datasets except Zeisel where there is marginal difference be
tween our full model and the model without supervised contras
tive learning. Network enhancement apparently boosts 
scSemiGCN in four out of six datasets and such improvement is 
significant in Pollen and Zeisel. For example, network 

Table 1. Detailed descriptions of scRNA-seq datasets.

Dataset No. of cells No. of genes No. of populations

Buettner 182 8989 3
Kolodziejczyk 704 10 685 3
Pollen 249 14 805 11
Usoskin 622 17 772 4
Zeisel 3005 4412 9
Cortex 3005 19 972 7
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enhancement brings nearly 10% of accuracy improvement in 
Pollen. We conclude that the combination of feature refinement 
and topological denoising delivers robustness and adaptability 
into scSemiGCN. Hence, we believe scSemiGCN is widely ap
plicable to scRNA-seq data.

3.5 Effect of the number of annotated cells
To investigate the impact of annotated proportion of cells 
used in training on scSemiGCN, we varied the ratio of anno
tated cells, ranging from 5% to 45% in training. For each an
notated ratio, we repeated random data split five times. The 

accuracy and AUC of test data are reported. Results of 
Usoskin and Zeisel are shown in Fig. 4. scSemiGCN can per
form better with more labeled data used for training, but it is 
also marginal since scSemiGCN can make good annotation 
using only a small proportion of labeled cells.

3.6 Parameter analysis
Network enhancement is at the core of scSemiGCN. To 
study how scSemiGCN is affected by the regularized pa
rameter a and the neighborhood size K in NE, we report ac
curacy of validation data under different settings of these 

Table 2. Summary of evaluation metrics for each method in test data of each dataset.a

[ACC, F1, AUC] Buettner Kolodziejczyk Pollen Usoskin Zeisel Cortex

SIMLR [0.978, 
0.978, 0.990]

[0.999, 
0.999, 1.000]

[0.905, 
0.847, 0.923]

[0.925, 
0.887, 0.933]

[0.929, 
0.806, 0.940]

[0.915, 
0.895, 0.970]

CALLR [0.314, 0.289,—] [0.961, 0.960,—] [0.784, 0.770,—]b [0.946, 0.940,—] [0.938, 0.934,—] [0.943, 0.942,—]
scSemiGAN [0.512, 

0.501, 0.690]
[0.994, 

0.994, 0.997]
[0.932, 

0.935, 0.993]
[0.959, 

0.958, 0.986]
[0.896, 

0.873, 0.970]
[0.950, 

0.949, 0.989]
scSemiAE [0.605, 0.512,—] [0.976, 0.976,—] [0.822, 0.811,—] [0.729, 0.714,—] [0.912, 0.900,—] [0.940, 0.940,—]
GCN [0.849, 

0.847, 0.900]
[0.997, 

0.997, 1.000]
[0.915, 

0.909, 0.984]
[0.929, 

0.929, 0.971]
[0.901, 

0.896, 0.980]
[0.608, 

0.583, 0.840]
GAT [0.791, 

0.784, 0.840]
[0.976, 

0.976, 0.988]
[0.856, 

0.833, 0.968]
[0.844, 

0.841, 0.900]
[0.908, 

0.903, 0.970]
[0.940, 

0.940, 0.986]
scSemiGCN [0.977, 

0.977, 0.983]
[1.000, 

1.000, 1.000]
[0.983, 

0.980, 1.000]
[0.949, 

0.948, 0.977]
[0.928, 

0.925, 0.970]
[0.953, 

0.953, 0.984]

a The best are indicated in blue font.
b We used 10% of annotated cells in training instead of 5% such that there are at least two labeled samples for each cell type.

scSemiAE scSemiGAN GCN GAT scSemiGCN

(a)

(b)

(c)

Figure 2. Visualization of latent representations generated by neural-network-based methods. Cell types are indicated by colors. Even there is not 
significant difference in separation among these methods, scSemiGCN is better at spotting a rare cell type in Zeisel indicated by red boxes. (a) 
Kolodziejczyk; (b) Zeisel; (c) Cortex.
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two parameters in Fig. 5. AUC and F1-score are demon
strated in Supplementary Figs S4 and S5. We observe that 
scSemiGCN is more sensitive to the neighborhood size K in 

Pollen than it is in the remaining three datasets, and we 
posit that it is attributed to the diversity of Pollen. We also 
notice scSeimiGCN seems to be more stable in a larger 

Buettner Kolodziejczyk Pollen

Usoskin Zeisel Cortex

Figure 3. Effectiveness of feature refinement and topological denoising. We ran scSemiGCN without supervised contrastive learning (w o SCL) and 
without network enhancement (w o NE), respectively, in comparison with our full model scSemiGCN. Performance in the test of all datasets is 
presented. Note that it cannot tell the difference between scSemiGCN and w o NE in Kolodziejczyk.

(a)

(b)

Figure 4. Influence of annotated ratio on the performance of scSemiGCN. For each ratio, we repeated random data split five times. Accuracy and AUC of 
test data are presented (mean±SD). (a) Usoskin; (b) Zeisel.
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dataset under various settings of the regularized parameter 
a, implying more efforts are needed to be taken to find an 
appropriate a for a smaller dataset.

3.7 Cell-type annotation for continuum 
immune cells
Additionally, we validated our method on a more challenging 
dataset built from the downsampled Tumor Immune Cell 
Altas (TICA) (Nieto et al. 2021). The constructed dataset 
consisted of 4223 cells from three cancer types, namely intra
hepatic cholangio-(ICC), ovarian cancers (OC) and non- 
small-cell lung cancers (NSCLC), including 25 immune cell 
types. We labeled this dataset as TICA-3C. Top 2000 most 
variable genes were used. We followed the previously 

described data splitting. Only 211 labeled cells were used for 
training (see Supplementary Table S2) and the rest was used 
for validation and test. We trained scSemiGCN on TICA-3C 
with the same hyperparameter setup as on Cortex except the 
neighborhood size in NE and the learning rate for training 
the two-layer GCN which were set as 50 and 0.002, 
respectively.

SIMLR and all deep learning methods performed poorly 
on the demanding TICA-3C with scSemiGCN achieving the 
highest accuracy 0.4432 (see Supplementary Table S3). We 
visualize the latent representations learned by scSemiGCN. 
As shown in Fig. 6, the complex and diverse T cells are mixed 
while the simpler B cells are better separated. Such observa
tion is also verified by the confusion matrix (see 

0.4 0.5 0.8
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Figure 5. Accuracy of validation data under different settings of hyperparameters. (a) Buettner; (b) Pollen; (c) Usoskin; (d) Cortex.

(b)(a) (c)

Figure 6. Visualization of latent representations of test data in TCIA-3C learned by scSemiGCN. Cell types are indicated by colors. (a) All 25 immune cell 
types; (b) T cells; (c) B cells. The rest cell types are indicated by NA in (b) and (c).
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Supplementary Fig. S6). Among T cells, the recently activated 
CD4 and effector memory CD8 are more easily recognized 
with recall as 0.669 and 0.716, respectively.

It shows that existing cell-type annotation methods may 
suffer in fine-grained cell-type classification and more efforts 
are needed to deal with such problem. Improvement from 
scSemiGCN shows that our method points to a poten
tial direction.

4 Discussion and conclusion
In this paper, we propose a robust and well adaptive semi- 
supervised cell-type annotation method called scSemiGCN, 
based on graph convolutional networks (GCN). To achieve 
reliable cell-type prediction from low signal-to-noise-ratio 
scRNA-seq data using limited annotation cells, we employ a 
denoising procedure to build a trustworthy connection struc
ture between cells, from which we obtain preliminary annota
tions for unidentified cells. Additionally, we refine the 
sequencing data by supervised contrastive learning built upon 
pseudo labels. Finally, we conduct message passing with re
fined features over the denoised topological structure of cell- 
to-cell network in a two-layer GCN to identify cells. 
Experimental results verify the effectiveness and efficiency of 
our method which attribute to feature refinement and topo
logical denoising.

However, there are still a few improvements should be con
sidered. From experimental results on TICA-3C, we see that 
scSemiGCN is unsatisfactory in distinguishing subtle differ
ence between cell types lie on a continuum. Similar to all of 
transductive semi-supervised learning methods, scSemiGCN 
should be trained with all samples including labeled and unla
beled cells, which limits its application in large-scale scRNA- 
seq datasets. Since advances in single-cell sequencing technol
ogies make multi-omics data available at the cell level, 
extending scSemiGCN to a universal model applicable to dif
ferent platforms, technologies, and species will be an intrigu
ing direction.

Supplementary data
Supplementary data are available at Bioinformatics online.
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