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Abstract
Heart failure (HF) is a significant public health problem worldwide. It has long been noted that premenopausal women, 
compared to postmenopausal women and men, have lower rates for developing this disease, as well as subsequent morbidity 
and mortality. This difference has been attributed to estrogen playing a cardioprotective role in these women, though exactly 
how it does so remains unclear. In this review, we examine the presence of estrogen receptors within the cardiovascular 
system, as well as the role they play behind the cardioprotective effect attributed to estrogen. Furthermore, we highlight the 
underlying mechanisms behind their alleviation of HF, as well as possible treatment approaches, such as hormone replace-
ment therapy and exercise regimens, to manipulate these mechanisms in treating and preventing HF.
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Abbreviations
HF  Heart failure
HFrEF  Heart failure with decreased ejection 

fraction
GPR30/GPER  G-protein-coupled ER

Introduction

Cardiovascular disease continues to be a major cause of 
mortality worldwide [1]. One of its most significant manifes-
tations is heart failure (HF), stemming from structural and/
or functional cardiac defects [2]. However, it has long been 
noted that premenopausal women have lower cardiovascular 

disease risk, compared to aged-matched males, which may 
be owed, at least in part, to the presence of sex hormones 
like estrogen [3]. This is further supported by observations 
of HF being more highly prevalent among postmenopausal 
women [4]. As a result, sex hormones have been considered 
to possibly play key roles in protecting against HF develop-
ment [5], and substantial research has been conducted on 
the role of estrogen in cardiovascular disease etiology [6].

Estrogens have been found to exert a variety of beneficial 
effects on the cardiovascular system, such as antioxidative 
[5] and anti-inflammatory [7] activities, as well as being 
able to prevent atherogenesis [8], thrombosis [8], and cell 
proliferation [2]; it exerts cardiovascular protective effect 
mainly by inhibiting the proliferation of vascular smooth 
muscle cells [9]. All of these findings thus point to estro-
gen potentially serving as a cardioprotective agent, via its 
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ability to alter cardiovascular physiology and function in 
health and disease. In this review, we examine the literature 
regarding the molecular bases of estrogen and its receptor in 
counteracting against HF and how their dysregulation results 
in disease development. This research, in turn, provides a 
foundation for developing therapies to treat HF.

The role of 17‑β‑estradiol (E2) and its 
receptors in the cardiovascular system

The most common form of circulating estrogen is 
17-β-estradiol (E2), whose effects on the cardiovascular 
system are mediated through nuclear and membrane estro-
gen receptors (ERs), such as ERα, ERβ, and G-protein-
coupled ER (GPR30/GPER) [10]. One process mediated 
by E2 binding on ERs is nitric oxide (NO) production in 
cerebral and peripheral endothelial cells, through endothe-
lial NO synthase (eNOS) [10]. NO is a key vasodilator and 
cardio-protective factor, being able to maintain blood ves-
sel dilation, regulate blood pressure, and activate a variety 
of vaso-protective and anti-atherosclerotic processes in 
vascular endothelial cells [11]. By contrast, NO and cyclic 
guanosine phosphate (cGMP) pathways are downregu-
lated in postmenopausal women, owing to the activation 
of the renin–angiotensin–aldosterone system (RAAS) in 
response to lowered estrogen levels. These women have 
been characterized as possessing more rigid arteries and 
cardiac muscles, rendering them less sensitive to aberrant 
blood flow loads [12].

ERα

Among HF individuals with preserved ejection fraction 
(HFpEF), right ventricular (RV) dysfunction is a major pre-
dictor of mortality [13]. E2 has been documented to play a 
protective role in maintaining RV function and counteracting 
against maladaptive remodeling, via ERα. Investigations of 
the underlying mechanisms revealed that E2-ERα binding 
activated bone morphogenetic protein receptor 2 (BMPR2) 
signaling, which has been identified as a potent effector of 
cardiac contractile force [14, 15]. Previously, BMPR2, along 
with the peptide hormone Apelin, have been noted to be 
required for cardiac development and pulmonary vascular 
homeostasis [16]. Newer evidence, though, has indicated 
that the E2-ERα-BMPR2 pathway plays a role in maintain-
ing RV function, serving as the molecular basis for the cardi-
oprotective effect of E2 there [17]. This is further supported 
by ERα slowing down RV remodeling among female rats 
with pulmonary hypertension [7], as well as by Cheng et al., 
who induced RV hypertrophy, via pulmonary artery banding 
(PAB), among male rats, as well as both wild-type (WT) and 
ERα loss-of-function mutant females [18]. They discovered 

that mutant females, compared to WT and males, had dias-
tolic dysfunction and higher collagen type I to III ratios, 
indicating that ERα signaling in females defended against 
collagen buildup and diastolic dysfunction during the RV 
pressure overload response. Therefore, the protective effect 
of E2-ERα against diastolic dysfunction is sex-specific [18].

ERβ

ERβ has also been identified as playing cardioprotective 
roles in recent years [19–21]. For instance, ovariectomized 
(OVX) and ERβ-deleted mice showed aberrant vascular 
function, hypertension, higher death rates, and worsened 
HF [22]. Furthermore, ERβ has been observed to exert anti-
hypertrophic and anti-fibrotic actions among both OVX and 
non-OVX mice [21, 23, 24]. ERβ-deleted mice, compared to 
WT, also have been found to exhibit significant increases in 
inflammatory pathway activation, when the heart is subject 
to transverse aortic constriction (TAC)-induced hypertrophy 
[25]. By contrast, the presence of ERβ was able to attenu-
ate cardiac remodeling and apoptosis in the TAC mouse 
model, according to Fliegner et al. [26]. Additionally, ERβ 
was determined to be essential for controlling the proteome 
response to pressure overload, which might be a key fac-
tor in delaying the beginning of HF [27]. Following these 
findings, several unbiased studies also showed that ERβ 
activation was responsible for some of those anti-apoptotic 
effects attributed to E2 and sex difference. In accordance 
with these findings, Cao et al. [28] showed that E2 treatment 
in vivo reduced cardiac rupture likelihood among myocar-
dial infarcted (MI) male mice, which was accompanied by 
decreased matrix metalloproteinase-9 (MMP-9) activation 
and increased anti-apoptotic Bcl-2, compared to un-infarcted 
controls. E2 treatment was also found by Pedram et al. to 
prevent angiotensin II (Ang II)-induced cardiac hypertro-
phy, a precursor to diastolic stiffness, among female mice. 
Additionally, Ang II-induced myosin heavy chain synthesis, 
ERK activation, calcineurin activity, and interstitial fibrosis 
were all inhibited. Such prevention was only present among 
WT or ERα-null mice, not for ERβ-null, reinforcing that E2 
operated through ERβ to exert its cardioprotective effects 
[29]. All these findings thus suggest that ERβ could serve 
as a potential therapeutic target against HF, which is further 
supported by studies investigating ERα and ERβ agonists, in 
which ERβ was found to be the main receptor for E2 being 
able to rescue cardiac functioning in HF [30].

Aside from its cardioprotective role, ERβ activation is 
also a prerequisite for estrogen-dependent upregulation of 
both eNOS and inducible NOS (iNOS) in rat neonatal car-
diomyocytes [31]. eNOS, as well as neuronal NOS (nNOS) 
activities, have significant impacts on diastolic function, in 
which nNOS inhibition enhanced diastolic function in OVX 
rats, according to Jessup et al. [32] Tetrahydrobiopterin, 
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a NOS cofactor, is hypothesized to be activated by E2 in 
order to control NOS production. Therefore, E2 deficiency 
in OVX rats leads to less activated tetrahydrobiopterin being 
available, which may have caused nNOS uncoupling, result-
ing in them shifting from catalyzing NO formation to gen-
erating superoxides [32]. This increase in nNOS-produced 
superoxides and decrease in proper NOS metabolites may 
result in diastolic stiffness, impaired cardiac remodeling, 
and eventually HF.

GPR30

G-protein-couped receptors (GPCRs) are the main mem-
brane receptor class involved in mediating the effects of car-
diac disorders [33]. One of those GPCRs is GPR30/GPER, 
which has been found to exert positive impacts on female 
HF patients [34], via its engagement in non-genomic estro-
gen signal transduction in nervous, reproductive, skeletal, 
immune, and cardiovascular systems, as well as in metabo-
lism [35]. For instance, G1, a GPR30 agonist, was able to 
lower Ang II-induced hypertrophy among neonatal cardio-
myocytes, via stimulating the upregulation of the PI3K-Akt-
mTOR signaling pathway and inhibiting autophagy [36, 37]. 
GPR30, like ERβ, also appears to play a cardioprotective 
role against oxidative stress, as evidenced by the finding that 
a mitochondria-targeted antioxidant was able to reduce car-
diac oxidative stress, which was otherwise elevated, among 
female animals possessing cardiomyocyte-specific mutant 
GPR30 [38]. This is further supported by the fact that G1 
lowered cardiac atrial (ANP) and brain natriuretic peptides 
(BNP), as well as myosin heavy chain (MHC) levels, in Ang 
II-induced cardiac hypertrophy rats. With respect to Ang 
II stimulation, reactive oxygen species (ROS) are produced 
when it binds to the Ang II type 1 receptor (AT1R) [39, 40], 
which eventually leads to HF by increasing oxidative stress, 
hypertrophy, and apoptosis [41]. On the other hand, G1 
administration suppressed cardiac fibrosis, apoptosis, and 
oxidative stress, demonstrating that GPR30 activation was 
able to counteract against cardiac remodeling [42], which 
was further proven by Da Silva et al. [43], who discovered 
that G1 administration was necessary for improving dias-
tolic function among spontaneously hypertensive OVX rats. 
Chronic G1 treatment was also found to enhance aortic ring 
reactivity to acetylcholine by lowering cardiac angiotensin-
converting enzyme activity, AT1R protein expression, and 
Ang II immunoreactivity[44].

To further examine the role of GPR30 in cardiomyocytes, 
a cardiomyocyte-specific KO animal model was developed 
by Wang et al. [43]. There, they found that GPR30 KO 
had diastolic dysfunction, as well as other cardiovascular 
disease-associated traits, thereby proving that GPR30 may 
be necessary for maintaining overall cardiac function. An 
isoproterenol-induced HF model was also examined, in 

which the progression of left ventricular (LV) cardiomyocyte 
dysfunction, with significantly decreased dL/dtmax, dR/
dtmax, and  [Ca2+]i, as well as β-adrenergic receptor (AR) 
desensitization and maladaptive remodeling in terms of their 
shapes, was paralleled by LV chamber abnormalities. All of 
these changes, however, were reversed towards normal levels 
after G1 treatment, which could be due to the normalization 
of basal and β-AR-stimulated  Ca2+ handling, leading to the 
reversal of cardiomyocyte relaxation and force generation 
abnormalities stemming from HF. Therefore, G1 could serve 
as a potential therapeutic approach to counteract against HF, 
via restoring normal  [Ca2+] regulation [34]. This is further 
supported by reports of HF, or GPR30 deficiencies, both 
leading to reduced LV SERCA2a expression and activ-
ity [45–47], along with increased sarcolemmal  Na+-Ca2+ 
exchange, sarcoplasmic reticulum  Ca2+ leakage, and faulty 
 Ca2+ removal. On the other hand, GPR30 increases SER-
CA2a expression and activity to bolster myocardial  Ca2+ 
mobilization [47, 48], via reversing HF-induced alterations 
in cardiac β1- and β2-AR expression and activity. Overall, 
data suggests that elevated oxidative stress leads to cellular 
damage, defective  [Ca2+]i control, and remodeling during 
HF, whereas GPR30 activation was able to prevent cardi-
omyocyte apoptosis and unfavorable LV remodeling [45, 
47]. Therefore, GPR30 could possibly counteract against 
HFpEF, by restoring cardiac β-AR responsiveness, as well 
as counteracting against LV and cardiomyocyte contractile 
abnormalities [34] (see Table 1).

Pharmacological therapy

The beneficial effects of estrogen/ER activation on car-
diac functioning in HF have resulted in the development of 
numerous treatment approaches. One possible approach is 
to upregulate myocardial cGMP signaling, as examined in 
the Vericiguat Global trial in Subjects with Heart Failure 
and Reduced Ejection Fraction (VICTORIA), where it was 
found that the soluble guanylate cyclase (sGC) stimulant, 
vericiguat, exerted cardioprotective effects [49]. As lowering 
estrogen levels have been associated with lowered cGMP, it 
is thus reasonable to speculate that similar approaches to the 
VICTORIA trial could be used for activating estrogen/ER 
signaling in HF. Indeed, the myocardial cGMP-PKG sign-
aling pathway has been found to be deactivated in HFpEF, 
which has been found to occur among females independently 
of obesity and diabetes. Furthermore, among female mice, 
cGMP-PKG activation among cardiomyocytes by the phos-
phodiesterase type 5 (PDE5) inhibitor sildenafil was able 
to alleviate HF [50, 51], which, however, requires estrogen 
signaling to activate eNOS-dependent cGMP and PKGIα 
[51]. More specifically, it involves a nonnuclear signaling 
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mechanism, triggered by ER binding to striatin; this is 
blocked, though, in ER mutants [52].

However, discrepancies in the outcomes of clinical stud-
ies comparing hormone replacement therapies (HRT) for 
treating HF have been noted [53]. This may be due to cel-
lular and organ functioning among postmenopausal women 
with cardiovascular disease being affected by the complex 
hormonal environment. Exogenous substances, such as the 
progesterone endocrine disruptor medroxyprogesterone 
acetate, as well as conjugated estrogen from horse urine, 
failed to exhibit the same positive effects as endogenous hor-
mones [54]. Furthermore, they were associated with signifi-
cant negative side effects, such as increased blood clotting 
and inflammation, compared to transdermal estradiol [55]. 
Therefore, the timing for the initiation of hormone therapy, 
as well as the agents used, are likely factors behind its failure 
to achieve beneficial cardiac effects [56].

Despite the failures in hormonal therapy, though, estrogen 
has been found to improve cardiovascular-associated indi-
ces, such as exercise endurance and arterial NO-dependent 
dilation, as well as slowing down subclinical atherosclerosis 
development. It is also crucial, in terms of diastolic function, 
for lowering isovolumetric relaxation time and raising the 
E/A ratio. Therefore, we believe that the timing and route 
of estrogen administration may be essential for obtaining its 
beneficial effects. This was supported by evidence show-
ing transdermal administration of estrogen balanced out its 
benefits and side effects, transdermal delivery prevents the 
cardiovascular thromboembolic damage associated with oral 
oestrogen, while oral administration was associated with 
some negative cardiovascular effects [57]. The use of oral 
estrogens (diethylstilbestrol) increases thromboembolic car-
diovascular disease [58]. The “timing hypothesis” postulates 
that the recipient’s age and hormonal environment affect the 
effect of E2 injection on the vasculature [59, 60]. Age has 
been proven to be a significant factor in determining the 
vascular effects of E2 in women, with positive effects being 
seen in younger (60 years) postmenopausal women but not 
in older (> 60 years) postmenopausal women [61]. Hodis 
et al. [62] discovered that the effects of estradiol (with or 

without progesterone) on the development of atherosclerosis 
varied depending on the timing of therapy initiation, with 
benefit noted when it was started in women who were less 
than 6 years past menopause but not in those who were 10 
or more years past menopause. Therefore, the finding that 
estrogen administration during early menopause has more 
beneficial cardiovascular effects [62, 63], compared to other 
time points, suggests that future estrogen therapy approaches 
may be most successful if applied at younger ages. In fact, 
Gersh et al. suggested that if HRT was required, it should 
be started right away after the cessation of ovarian hormone 
production, and administered as transdermal estradiol, in 
conjunction with cyclic dosing of human-identical proges-
terone [64].Therefore, utilizing the proper timing, adminis-
tration method, and formulation for estrogen replacement 
therapy may maximize its benefits and minimize its side 
effects. At present, the existing clinical data on the timing 
and pathway of estrogen administration are insufficient, 
which may provide a possible new approach for clinical 
research on estrogen receptor activation, which still needs 
to be further studied.

Exercise therapy

It is worth noting that reaching the recommended 150 min/
week of physical activity is more difficult for female 
patients than for men because they face multiple barriers, 
such as time constraints caused by family or work respon-
sibilities and a feeling that corporate responsibility is either 
tedious or inappropriate for young people. Therefore, to 
address increased cardiovascular disease risk among post-
menopausal women, which may not be addressed by stand-
ard CR, alternative, cutting-edge exercise therapies must 
be investigated [65]. In fact, female congestive HF patients 
are able to dramatically increase their fitness level with 
CR, and actually exhibit greater improvements in tests like 
the 6-min walk test (6MWT), compared to male patients. 
Additionally, similar findings imply that exercise capacity, 
in the form of 6-min walk distance (6MWD), self-reported 

Table 1  Overview of the 
different types of estrogen 
receptors (ER) and their roles in 
the cardiovascular system

ER Mechanisms involved and outcomes References

ERα Activates bone morphogenic protein receptor 2 signaling [14, 15, 17, 18]
ERβ -Responsible for the anti-hypertrophic, anti-fibrotic, and anti-apop-

totic activities associated with 17-β-estradiol
-Controls cardiac proteome response to pressure overload

[21, 23–30]

GPR30 -Selective agonist G1 is able to reduce angiotensin II-induced hyper-
trophy among neonatal cardiomyocytes

-Counteracts against oxidative stress, apoptosis, and adverse left 
ventricular remodeling

-Lowers cardiac atrial natriuretic peptide, brain natriuretic peptide, 
and myosin heavy chain levels

-Reduced myocardial hypertrophy and fibrosis

[34–42, 44–48]
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exercise levels, and mood (CDS scores) are able to simul-
taneously improve over time in female HF patients [66]. 
Aerobic, as well as resistance exercise, has also been found 
to lower pro-inflammatory biomarkers among obese post-
menopausal women, who had lower levels of IL-2, IL-4, 
IL-6, and TNF-α [67]. This may be due to it counteracting 
the effects of increased adiposity and altered lipid profiles, 
stemming from hormonal changes, among postmenopausal 
women [68] (see Table 2).

Conclusion

In conclusion, the stimulation of estrogen receptors, particu-
larly through the administration of a specifically arranged 
HRT regimen, or via cardiac rehabilitation exercises, could 
serve as a possible treatment approach for improving car-
diac functioning post-HF, especially among postmenopau-
sal females. However, these treatment regimens should be 
tailored for the needs of each patient.
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