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1   |   INTRODUCTION

Non-small cell lung cancer (NSCLC) is recognized as 
an aggressive and deadly malignancy globally. Recently, 

there has been remarkable revolutionary progress made in 
NSCLC management, especially the progress in precision 
medicine and targeting therapy.1,2 Though the advances in 
management of NSCLC have significantly improved the 
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Abstract
Background: Metabolic disturbance is a hallmark of cancers. Targeting key 
metabolic pathways and metabolism-related molecular could be a potential 
therapeutic approach. Uncoupling protein 2 (UCP2) plays a pivotal part in the 
malignancy of cancer and its capacity to develop resistance to pharmaceutical 
interventions. However, it is unclear about the mechanism of how UCP2 acts in 
the tumor growth and metabolic reprogramming process in non-small cell lung 
cancer (NSCLC).
Methods: Here, we conducted qRT-PCR to investigate the expression of UCP2 in 
both NSCLC tissues and cell lines. Subsequent functional studies including colony 
formation assay, CCK-8 assay, and glycolysis assay were conducted to investigate 
the functions of UCP2 in NSCLC. The regulatory mechanism of UCP2 toward the 
mammalian target of rapamycin (mTOR) and hypoxia-inducible factor-1 alpha 
(HIF-1α) signaling in NSCLC was confirmed through western blotting.
Results: We observed a significant upregulation of UCP2 in both NSCLC tissues 
and cell lines. The increased expression of UCP2 has a strong association with a 
worse outlook. Silencing UCP2 remarkably dampened NSCLC cell proliferation 
and glycolysis capacities. Mechanically, UCP2 promoted NSCLC tumorigenesis 
partially via regulating the mTOR/HIF-1α axis.
Conclusion: Taken together, we explored the functions as well as the mecha-
nisms of the UCP2/mTOR/HIF-1α axis in NSCLC progression, uncovering poten-
tial biological signatures and targets for NSCLC treatment.
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screening, diagnosis, and treatment of NSCLC, there are 
still cases where the outlook for NSCLC patients remains 
unfavorable.3,4

Metabolism reprogramming, as a hallmark of cancer, 
is vital for cancer cells to sustain uncontrolled growth 
and survival under stressful conditions.5 In NSCLC, glu-
cose and mitochondrial metabolism play vital roles in 
tumorigenesis, that metabolism reprogramming leads 
to enhanced cell growth and proliferation.6 Therefore, 
targeting specific molecular that correlated with cancer 
cell metabolic reprogramming is a promising therapeutic 
strategy.7

Uncoupling protein 2 (UCP2) has been found upreg-
ulated in various cancer types, leading to tumorigene-
sis, cancer progression and chemotherapy resistance.8 
Recently, studies have shown that UCP2 could induce 
a metabolic shift toward the glycolytic pathway, sus-
taining the Warburg effect which promotes cancer 
progression.9 Increasing data has indicated that UCP2 
is associated with energy metabolism regulation in 
cancers. Through metabolic and energetic transforma-
tion, oxidative stress and reactive oxygen species (ROS) 
can be decreased by metabolic and energetic transfor-
mation, and overexpression of UCP2 in cancer cells to 
avoid cell apoptosis. Thus, UCP2 represents a promising 
target for therapeutic interventions in cancer treatment. 
Nevertheless, there is still limited knowledge regarding 
the specific functions and underlying mechanisms of 
UCP2 in NSCLC.

Here, the expression of UCP2 in NSCLC tissues and 
cell lines were detected. We observed a significant upregu-
lation of UCP2 in NSCLC tissues versus neighboring non-
malignant tissues, and UCP2 was overexpression in cell 
lines as well. Functionally, inhibition of UCP2 suppressed 
NSCLC cell proliferation and glycolysis. Mechanically, 
UCP2 promoted NSCLC progression by regulating the 
signaling pathway involving the mammalian target of 
rapamycin (mTOR) and hypoxia-inducible factor-1 alpha 
(HIF-1α). As a result, the potential of UCP2 as both a di-
agnostic biomarker and a therapeutic target for addressing 
NSCLC holds great promise.

2   |   METHODS

2.1  |  Data collection

We downloaded UCP2 expression profile in lung cancer 
from the TCGA lung cancer cohort in the UCSC Xena pro-
ject, including 483 tumor tissues as well as 347 normal tis-
sues. We used Kaplan–Meier Plotter website to generate 
the overall survival (OS) curve as well as the progression 
free survival (PFS) curve of UCP2 in lung cancer.

2.2  |  Clinical sample collection

Forty paired fresh NSCLC tissue samples and correspond-
ing para-carcinoma nonmalignant tissue samples were 
collected at Sun Yat-sen University Cancer Center. To 
ensure the integrity of the tissue, we instantly stored all 
the tissue samples in liquid nitrogen. Total RNA was iso-
lated and conducted to qRT-PCR analysis. The research 
protocols involving human samples were permitted by 
the Ethics Committee of Sun Yat-sen University Cancer 
Center and conducted in compliance with the Declaration 
of Helsinki. All patients were informed and signed con-
sent forms.

2.3  |  Cell culture and transfection

Normal lung cells (Beas2b cells) and NSCLC cells (PC9, 
H1299, H1975 and A549 cells) were purchased from 
ATCC (USA). Cell authenticity was confirmed by DNA 
fingerprinting. Assays were routinely performed to detect 
mycoplasma infection.

The Lipofectamine 3000 system (Invitrogen, USA) was 
used to perform transfection. UCP2 siRNAs were sup-
plied by Ruibo (China). Here are the siRNA sequences: 
si-UCP2#1, 5′-CACTG​TCG​ACG​CCT​ACA​AGA​CCATC-3′; 
si-UCP2#2, 5′-GTCAT​AGG​TCA​CCA​GCT​CAG​CACAG-3′; 
si-UCP2#3, 5′-GACGA​GAU​ACA​UGA​ACU​CUGC-3′.

2.4  |  qRT-PCR analysis

TRIzol (Invitrogen) was employed to isolate total RNA. 
Takara PrimeScript™ RT reagent Kit and TB Green Premix 
Ex Taq™ (Japan) were applied for qRT-PCR assays. The ex-
pressions of mRNAs were detected by the 2−ΔΔCt method. 
β-Actin was used as the control for mRNA expression. 
The primers sequences for qRT-PCR were supplied by 
Ruibo: β-actin, Forward, 5′-CGGGA​AAT​CGT​GCG​TGAC-
3′, Reverse, 5′-CAGGA​AGG​AAG​GCT​GGAAG-3′; UCP2, 
Forward, 5′- TCCTG​AAA​GCC​AAC​CTCATG-3′, Reverse, 
5′-GGCAG​AGT​TCA​TGT​ATC​TCGTC-3′.

2.5  |  Cell counting kit-8 assay (CCK-8)

After transfection, 103 cells were seeded in 96-well plates, 
and then, the cells underwent incubation under proper 
conditions for 48 h. We added 10 μL CCK-8 solution 
(Dojindo, Japan) to the culture medium and underwent 
incubation for 2 h. The OD values were detected at 450 nM 
on a Bio-Tek EPOCH2 microtiter plate reader (USA), and 
the data were recorded.
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2.6  |  Colony formation assay

After transfection, 103 cells were seeded in 6-well plates. 
Then the cells were incubated at 37°C for 14 days until vis-
ible clones were observed with the naked eye. Later, using 
paraformaldehyde we fixed the clones and stained it with 
crystal violet. Finally, we captured and counted the clones.

2.7  |  Detection of glycolytic metabolism

Glucose Assay Kit (Beyotime, China) was employed to 
detected the glucose consumption in NSCLC cells. After 
transfection, cells were seeded (106 cells/well). We col-
lected the cell culture medium to evaluate the reduction of 
glucose concentration. On the other hand, Lactate Assay 
Kit (Dojindo, Japan) was utilized to measure the lactate 
production in cell culture medium. Finally, ADP/ATP 
Ratio Assay Kit (Dojindo) was employed to measure the 
ATP/ADP ratio.

2.8  |  Western blotting

Briefly, PMSF and RIPA lysis buffer (Beyotime) were 
employed to extract the NSCLC cell proteins. To detect 
the concentration of cell proteins, Pierce BCA Protein 
assay kit was conducted. Cell proteins were isolated 
by 10% SDS-PAGE before transferring to PVDF mem-
branes. Using 5% skim milk, we blocked PVDF mem-
branes at room temperature for 1 h. Later, with primary 
antibodies, the membranes were incubated overnight at 
4°C, including UCP2 (1:1000, #DF8626, Affinity, USA), 
mTOR (1:500, #AF6308, Affinity), p-mTOR(Ser2448) 
(1:500, #AF3308, Affinity), S6K (1:500, #AF6226, 
Affinity), p-S6K(Thr389) (1:500, #AF3228, Affinity), 4E-
BP (1:500, #AF6432, Affinity), p-4E-BP(Thr70) (1:500, 
#AF2308, Affinity), HIF-1α (1:500, #AF1009, Affinity) 
and α-Tubulin (1:1000, #AF4651, Affinity). Next day, 
with HRP-linked secondary antibody (1:3000, #S0001, 
Affinity), the membranes were washed before incuba-
tion at room temperature for 2 h. Finally, the membranes 
were visualized by ECL Detection Reagent (Yeasen, 
China), and ImageJ software was used to quantify the 
relative grayscale value.

2.9  |  Statistical analyses

We used SPSS 25.0 software to conduct statistical analy-
ses. Comparation of the differences between groups was 
conduct with t-tests. The data were expressed as the 

mean ± standard deviation (SD). Statistical significance 
was determined for differences with a p < 0.05.

3   |   RESULTS

3.1  |  The upregulation of UCP2 in 
lung cancer and correlated with a poor 
prognosis

We downloaded the microarray series data from the TCGA 
database to determine the expression of UCP2 in lung can-
cer. The result showed that UCP2 was increased in lung 
cancer tissues (Figure 1A). Next, we investigate the effects 
of UCP2 high expression on patients' outcome with lung 
cancers through Kaplan–Meier Plotter database. We dis-
covered that high expression level of UCP2 in lung cancer 
led to worse OS (Figure 1B) and PFS (Figure 1C). Then, 
we assessed UCP2 expression in 40 pairs of NSCLC tissues 
and corresponding para-carcinoma nonmalignant tissue 
samples. The results demonstrated that UCP2 was upreg-
ulated in NSCLC tissues (Figure 1D). Further experiments 
showed that UCP2 also expressed at high levels in NSCLC 
cell lines (Figure 1E).

3.2  |  NSCLC proliferation were 
suppressed by UCP2 inhibition

We designed three siRNAs in PC9, H1975, and A549 cell lines 
to decrease the UCP2 expression based on the overexpres-
sion of UCP2 in NSCLC. Figure 2A shows that the UCP2 ex-
pression were significantly downregulated after si-UCP2#1 
transfection. Therefore, we selected si-UCP2#1 to perform 
the following experiments. In CCK-8 assays, downregula-
tion of UCP2 suppressed NSCLC cell growth (Figure 2B). 
Moreover, inhibition of UCP2 reduced NSCLC cell colony 
formation number (Figure 2C,D). In general, downregula-
tion of UCP2 inhibited cell proliferation in NSCLC.

3.3  |  UCP2 inhibition suppressed cell 
glycolysis in NSCLC

Next, glucose consumption analysis, lactate production analy-
sis as well as ATP/ADP ratio analysis were conducted in PC9, 
H1975, and A549 cell lines to detect the impacts of UCP2 on 
NSCLC glycolysis. We observed that knockdown of UCP2 con-
siderably decreased glucose consumption levels (Figure 3A), 
lactate generation levels (Figure 3B), and the ATP/ADP ratio 
(Figure 3C) in NSCLC. These findings indicated that knock-
down of UCP2 could inhibit NSCLC glycolysis.
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3.4  |  UCP2 promoted NSCLC progression 
through the mTOR/HIF-1α pathway

Finally, we explored the mechanism of UCP2 in NSCLC ad-
vancement. Previous research shows that UCP2 promotes 
tumorigenesis via enhancing the Akt/mTOR pathway in 
melanoma.10 Besides, HIF-1α activation plays a pivotal 
part in in regulating tumor progression. And agents that 
suppress the activation of mTOR could also negatively af-
fect the expression of HIF-1α.11 However, the impacts of 
UCP2 on mTOR/HIF-1α signaling have not yet been ex-
plored in NSCLC. Thus, we investigated whether silencing 
UCP2 suppressed the mTOR/HIF-1α signaling. Western 
blotting showed UCP2 inhibition notably suppressed the 
phosphorylation of mTOR, whereas the overall expres-
sion of mTOR remained unaffected (Figure 4). Moreover, 
Inhibition of UCP2 suppressed the phosphorylation of 

ribosomal S6 kinase (S6K) and 4E-binding protein (4E-
BP), which represented the critical downstream targets 
of the mTOR signaling (Figure  4). The phosphorylation 
of S6K and 4E-BP could modulate cell proliferation and 
protein synthesis, including the HIF-1α proteins. And 
UCP2 suppression notably decreased HIF-1α expression 
in NSCLC cell lines, which represented the downstream 
component of the mTOR/S6K/4E-BP signaling (Figure 4). 
To summarize, the above findings revealed that UCP2 
promoted NSCLC tumorigenesis partly via the mTOR/
S6K/4E-BP/HIF-1α pathway.

4   |   DISCUSSION

NSCLC accounts for the most cases of lung cancers. The 
past decade has witnessed the significant advances in 

F I G U R E  1   The upregulation of uncoupling protein 2 (UCP2) in lung cancer and correlated with a poor prognosis. (A) UCP2 expression 
profiles in lung tissue, including tumors and normal tissues from the TCGA database. (B) The overall survival (OS) curves of patients with 
lung cancer in different UCP2 expression levels from the Kaplan–Meier plotter website. (C) The progression free survival (PFS) curves of 
patients with lung cancer in different UCP2 expression levels from the Kaplan–Meier Plotter website. (D) UCP2 expression in 40 non-small 
cell lung cancer (NSCLC) and paired normal tissues. (E) The UCP2 expression in NSCLC cell lines **p < 0.01.

F I G U R E  2   Non-small cell lung cancer (NSCLC) proliferation were suppressed by uncoupling protein 2 (UCP2) inhibition. (A) qRT-PCR 
was used to confirm the effect of si-RNAs in PC9, H1975, and A549 cell lines. (B) CCK-8 assay showed the effect of downregulation of UCP2 
on cell growth. (C) Colony formation analysis show the role of downregulation of UCP2 on cell proliferation. (D) Statistic graph of colonies 
**p < 0.01.
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NSCLC management, which have increased patient out-
come and quality of life. However, recurrence and metas-
tasis importantly drawback the outcome of some NSCLC 
patients.12,13 The OS rate for late-stage NSCLC remains 
poor. Further investigation is required regarding the spe-
cific treatment targets and proper combinations of these 
targeted drugs.14,15

In NSCLC, the genotype polymorphism of UCP2 is 
correlated with risk for NSCLC susceptibility.16 Here, 
using data from the TCGA database, in lung cancer sam-
ples, we observed the UCP2 expression was increased. 
Besides, in both NSCLC tissues and cell lines, we also 

confirmed that UCP2 was upregulated. Moreover, up-
regulation of UCP2 was associated with unfavorable 
outcome in lung cancer patients (Figure  1), indicating 
that UCP2 could act as potential diagnostic biomarker 
for NSCLC.

Studies showed that overexpression of UCP2 sig-
nificantly increases cell viability, proliferation and mi-
tochondrial respiration, and is correlated with reduced 
OS.17 Here, we found that inhibition of UCP2 suppressed 
NSCLC cell proliferation (Figure  2), and NSCLC cell 
glycolysis (Figure  3). However, the underlying mecha-
nism of how UCP2 functions in the tumor growth and 

F I G U R E  3   Uncoupling protein 2 (UCP2) inhibition suppressed cell glycolysis in non-small cell lung cancer (NSCLC). (A) Glucose 
consumption levels were detected to reflect the glycolytic metabolism in NSCLC cells. (B) Lactate production levels were detected to reflect 
the glycolytic metabolism in NSCLC cells. (C) ATP/ADP ratio were detected to reflect the glycolytic metabolism in NSCLC cells **p < 0.01.
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metabolic reprogramming process in NSCLC remains 
largely unknown.

Metabolic disturbance is a hallmark of cancers. Cancer 
cells sustain increased energetic demands via metabolic 
reprogramming to promote cancer progression and treat-
ment resistance has been reported.18 In NSCLC, inhibition 
of tumor glycolysis could suppress cell survival and pro-
liferation.19 Thus, targeting key metabolic pathways and 
metabolism-related molecular could be a potential thera-
peutic approach.20

UCP2 is increased in NSCLC and is positively associ-
ated with hypoxia markers' expression, such as HIF-1α, 
acting as a vital player in NSCLC hypoxia response net-
work.21 UCP2 plays a vital role in cancer aggressiveness 
and drug resistance from its capacity to suppress ROS pro-
duction and inhibit cell apoptosis. UCP2 inhibitor genipin 
can suppress growth of pancreatic adenocarcinoma cells 
and trigger cell apoptosis via promoting GAPDH nuclear 
translocation.22 Inhibiting the function of UCP2 by geni-
pin results in enhanced ROS production and reduced cell 
survival in NSCLC cells.23 Therefore, the mechanism of 
UCP2 in regulating NSCLC cell growth and metabolism is 
worth further investigation.

The mTOR pathway is heavily involved in tumorigene-
sis and progression in various cancers.24,25 Inhibiting mTOR 
signaling pathway could suppress EMT in NSCLC cells, sup-
porting mTOR as a promising treatment focus for NSCLC.26 
Recently, a variety of targeted inhibitors against mTOR are 
under a series of clinical trials in NSCLC.27 It is reported that 
through the AKT/mTOR signaling, UCP2 could associate 
with DDX5 to regulate the metabolic plasticity in NSCLC.28 
Moreover, the administration of genipin, inhibiting UCP2, 
could considerably downregulated the expression of Akt and 
mTOR.29 In pancreatic adenocarcinoma, the combination 
of UCP2 inhibitor genipin and mTOR inhibitor everolimus 
results in synergistic suppression of cancer cell growth and 
induction of cell apoptosis.22 P-mTOR is a direct indicator 
of mTOR signaling pathway activity. The level of p-mTOR 
reflects the activity level of the mTOR signaling pathway. 
mTOR complex 1 (mTORC1) is one of the functional com-
plexes of mTOR, which is involved in cell proliferation, me-
tabolism and protein synthesis regulation. After activation, 
mTORC1 could phosphorylate downstream proteins, such 
as S6K and 4E-BP, which represented the critical down-
stream targets of the mTOR signaling. Here, we found that 
inhibition of UCP2 notably suppressed the phosphorylation 

F I G U R E  4   UCP2 promoted NSCLC progression through the mTOR/HIF-1α pathway. (A) Western blotting assay underwent conduct 
after PC9, H1975, and A549 cell lines were transfected. (B) ImageJ software was used to quantify the protein expression. **p < 0.01.
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of mTOR, S6K and 4E-BP, whereas the overall expression of 
mTOR, S6K and 4E-BP remains unaffected (Figure 4).

Studies show that mTOR signaling has a critical impact 
on regulating the transcription and translation of HIF-1α.30 
The phosphorylation of S6K and 4E-BP could modulate 
the protein synthesis of HIF-1α. Hypoxia and HIF-1α could 
lead to intrinsic or acquired resistance towards anticancer 
drugs.31 Via inducing glycolysis to increase energy pro-
duction in cancer cells, HIF-1α could prevent cancer cells 
from senescence and promote cancer cells proliferation. 
Inhibiting the HIF-1α pathway could suppress NSCLC 
progression via enhancing cell cycle arrest and accelerat-
ing cellular senescence.32 Therefore, suppressing HIF-1α 
is a potential option for NSCLC therapies. In this study, 
we revealed that knockdown of UCP2 notably suppressed 
HIF-1α expression in NSCLC cells, which represented the 
downstream component of the mTOR/S6K/4E-BP signal-
ing (Figure 4). Taken together, these finding revealed that 
UCP2 promoted NSCLC tumorigenesis partly through the 
mTOR/S6K/4E-BP/HIF-1α pathway.

5   |   CONCLUSION

Altogether, the above results indicated the underlying 
mechanisms of UCP2 promoting NSCLC cell prolifera-
tion and glucose metabolism partly via the mTOR/HIF-1α 
signaling. The exploration of targeted therapeutics aimed 
at inhibiting glycolytic metabolism, either as standalone 
treatments or in conjunction with existing therapies, 
holds significant promise as a therapeutic strategy for 
NSCLC. Additional investigations are necessary to as-
sess the impacts of combination inhibition of UCP2 and 
mTOR/HIF-1α by targeted drugs, which may provide a 
novel treatment strategy for NSCLC.
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