Skip to main content
. 2024 Feb 20;2024:gigabyte111. doi: 10.46471/gigabyte.111
Editor’s Assessment One limiting factor in the adoption of spatial omics research are workflow systems for data preprocessing, and to address these authors developed the SAW tool to process Stereo-seq data. The analysis steps of spatial transcriptomics involve obtaining gene expression information from space and cells. Existing tools face issues with large data sets, such as intensive spatial localization, RNA alignment, and excessive memory usage. These issues affect the process's applicability and efficiency. To address this, this paper presents a high-performance open-source workflow called SAW for Stereo-Seq. This includes mRNA position reconstruction, genome alignment, matrix generation, clustering, and result file generation for personalized analysis. During review the authors have added examples of MID correction in the article to make the process easier to understand. And In the future, more accurate algorithms or deep learning models may further improve the accuracy of this pipeline.