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CircRNAs as New Therapeutic Entities and Tools for
Target Identification in Acute Myeloid Leukemia
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Abstract. Acute myeloid leukemia (AML) is a genetically
extremely heterogeneous disease. Drug resistance after
induction therapy is a very frequent event resulting in poor
medium survival times. Therefore, the identification of new
targets and treatment modalities is a medical high priority
issue. We addressed our attention to circular RNAs
(circRNAs), which can act as oncogenes or tumor suppressors
in AML. We searched the literature (PubMed) and identified
eight up-regulated and two down-regulated circ-RNAs with
activity in preclinical in vivo models. In addition, we identified
twenty-two up-regulated and four down-regulated circRNAs
with activity in preclinical in vitro systems, but pending in vivo
activity. Up-regulated RNAs are potential targets for si- or
shRNA-based approaches, and down-regulated circRNAs can
be reconstituted by replacement therapy to achieve a
therapeutic benefit in preclinical systems. The up-regulated
targets can be tackled with small molecules, antibody-based
entities, or other modes of intervention. For down-regulated
targets, up-regulators must be identified. The ranking of the
identified circRNAs with respect to therapy of AML will
depend on further target validation experiments.

Acute myeloid leukemia (AML) is a clinically heterogeneous
disease with clonal proliferation of undifferentiated myeloid
progenitors (1). Presently the annual incidence is 20,000 cases
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in the US and 12,000 in Europe (2). Over the years Cytarabine
plus Daunorubicine has remained the standard therapy of AML
(3, 4). Chemotherapy plus hematopoietic stem cell
transplantation enables a five-year overall survival of 40% of
patients younger than 60 years and 10-20% of patients older
than 60 years (3, 4). The exception is acute promyelocytic
leukemia (APL), which is caused by a fusion protein derived
from the retinoic acid receptor and can be cured by treatment
with all-trans retinoic acid (ATRA) and arsenic trioxide (5).
Recently, several agents, such as Daunorubicin, Cytarabine,
inhibitors of mutant FLT3 (mutFLT3), such as Midostaurin,
Giltertinib and Quizartinib, as well as inhibitors of mutant IDH
(mutIDH), such as Ivosidenib, Enasidenib and Olutasidenib,
BCL2 (Venetoclax), Smoothened (Glasdegib) and CD33
(Gemtuzumab-ozogamicin) are approved for treatment of AML
(Figure 1) (3-10). Agents such as Revumenib, which targets
mutant nucleophosmin 1 (mutNPM1) and rearranged histone-
lysine-N-methyltransferase 2A (KMT2A) (11) are in Phase II
and E-selectin antagonist Uproleselan (12, 13) is undergoing
Phase III clinical studies (Figure 1).

In addition to mutNPM1 and mutFLT3, several driver
mutations have been identified which reveal defined molecular
subgroups of AML. These mutations affect signaling
pathways, DNA methylation enzymes, chromatin-modifying
enzymes, transcription factors, components of the spliceosome
complex and tumor suppressor genes. Mutations in
transcription factor CCAAT/enhancer binding protein o
(CEBPA), mixed lineage leukemia or myeloid lymphoid
leukemia (MLL), neuroblastoma ras oncogene homolog
(NRAS) and runt-related transcription factor 1 (RUNX1) have
been identified (6, 10). It remains to be seen whether some of
these targets can be validated for treatment of AML especially
in the context of combination therapy. Taken together, the
identification of additional validated targets and the design of
new treatment entities for AML is an important medical issue.

In the past few years, unprecedented clinical results have
been achieved by treatment of lymphomas and leukemias
with chimeric antigen receptor (CAR)-based T-cell therapy
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(14). However, treatment of AML with CAR-based therapy
targeting cluster of differentiation 33 (CD33) and CD123 has
been hampered by toxicities due to expression of these
antigens on endothelial cells, hematopoietic stem, and
progenitor cells, resulting in a critical toxicity profile (15).
Recently, colony-stimulating factor 1 receptor (CSF-1R) and
CD86 have been identified as antigens, which are over-
expressed in AML and show limited expression in normal
tissues (15). CARs directed against these antigens mediated
activity in AML-based in vivo models. It remains to be seen
whether these approaches will be game-changers in the field.

Circular RNAs and Their Role in Oncology

CircRNAs are transcribed by RNA Pol II and can be generated
by RNA binding protein induced circularization, intron pairing
and spliceosome-dependent lariat-driven circularization,
creating new backsplicing junctions (16, 17). circRNAs are
preferentially located in the cytosol and are expressed in a
cell-, tissue- and developmental stage-specific manner (16,
17). CircRNAs were described first in viroids (18) and later
in mammalian cells (19). A crucial finding was the co-
localization of circRNA ciRS-7 and micro RNA-7 (miR-7) in
neocortical and hippocampal neurons suggesting interactions
and the identification of more than seventy conserved binding
sites for miR-7 on ciRS-7 involved in sponging of miR-7 (20,
21). Subsequently it was shown that circRNA Cdrl is involved
in brain function in the mouse through interaction with miR-
671 by mediating synaptic transmission (22).

circRNAs are dysregulated in cancer and their landscape
has been investigated in 40 types of cancer (23). They can
exert tumor-suppressive as well as oncogenic functions (23).
In addition to sponging of miRs, circRNAs can mediate
transcriptional regulation by recruiting transcription factors
to promoter regions of DNA methylating as well as histone
methylating and acetylating enzymes (24). circRNAs are
involved in tethering or sequestering proteins, translocation,
and redistribution of proteins and in modulating translation
(24). Some circRNAs can encode internal peptides or
proteins, which can be translated via internal ribosome entry
sites (IRES) or m6A-induced ribosome engagement sites
(MIRES) (25). These proteins can regulate yes-associated
protein (YAP)-Hippo and WNT/B-catenin signaling pathways
and malignant progression by phosphorylation and
ubiquitinylation of specific proteins (25). circRNAs can
affect all aspects of cancer from dormancy to proliferation,
invasion, and metastasis (26).

Knowledge on circRNA in AML with respect to their role
as diagnostic and therapeutic biomarkers and from the point
of view of mechanistic insights has been summarized in (2,
27,28). In our review, we focus on their role as possible new
therapeutic entities and as tools for target identification.

Up-regulated circRNAs With Irn Vivo
Activity in Preclinical Models

Circ MYB proto-oncogene like 2 (circMYBL2) up-regulates
fms-like tyrosine kinase 3-internal duplication domain
(FLT3-ITD). circMYBL2 (Figure 2A) is over-expressed in
FLT3-ITD+ AML (29). Its knockdown in MOLM13 cells
(FLT3-ITD+ AML) impaired proliferation (29). After tail
vein injection, circMYBL2 promoted infiltration of
MOLM13 cells into the bone marrow, spleen and liver and
its knockdown extended survival of immuno-deficient mice
(29). circMYBL2 targeted mutFLT3 kinase and the
corresponding pathway for myeloid differentiation and
progression. It has been shown that circMYBL2 recruited
polypyrimidine tract binding proteinl (PTBP1) resulting in
improved translation of FLT3-ITD (1). PTBP1 has been
shown to enhance proliferation of FLT3-ITD AML cells and
has been identified as a potential target for AML therapy
(30). It should be emphasized that FLT3 mutations are
present in 30% of AML cases with internal domain
duplication (ITD) representing the most common mutation
(31). Identification and clinical evaluation of mutant FLT3
inhibitors are ongoing approaches (32, 33).

Circ PlexinB2 (circPLXNB2) up-regulates PlexinB2
(PLXNB?2). Circ PLXNB2 (Figure 2A) correlated with worse
prognosis in AML patients (34). Over-expression of circ
PLXNB2 promoted proliferation and inhibited apoptosis in
OCI-AMLS3 cells. circPLXNB?2 increased leukemic burden of
transfected HL60 AML cells after subcutaneous implantation
into immuno-compromised mice (34). It up-regulated the
expression of PLXNB2, B-cell lymphoma 2 (BCL2) and
cyclin D1 by a yet unresolved mechanism. Plexins bind to
semaphorins and are involved in axon guidance and signal
transduction, such as activation of GTPase RHOA, mitogen-
activated protein kinase A (MAPK) and phosphatidyl-inositol-
3-kinase (PI3K) signaling (35, 36). PLXNB2 acts as a
receptor for angiogenin and regulates angiogenesis in tumors
including AML (37). PLXNB2 has been shown to be
involved in growth and invasion of ovarian carcinoma (38).

circ0044907 up-regulates transmembrane tyrosine kinase
KIT. High expression of KIT in the bone marrow of AML
patients correlated with poor prognosis (39). In AML cell
lines HL60 and TIB-202, loss of circ0044907 (Figure 2A)
reduced proliferation and induced apoptosis. This was due to
sponging of miR-186-5p and subsequent up-regulation of
KIT. Silencing of ¢irc0044907 in HL60 AML cells reduced
their growth after subcutaneous implantation into nude mice.
KIT contributes to signal transduction in hematopoietic stem
cells, mast cells and Cajal cells of the gastrointestinal tract
by interaction with stem cell factor (SCF) as a ligand and
stimulating MAPK-janus kinase — signal transducer and
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Figure 1. Drugs and targets for treatment of AML. A) Approved drugs and targets. B) Selected ongoing clinical trials. BCL2: B-cell lymphoma 2;
CD33, CD47: cluster of differentiation 33 and 47; FLT3 mut: mutant fms-like tyrosine kinase; IDHI1 mut: mutant isocitrate dehydrogenase 1; NPM
mut: mutant nucleophosmin 1; KMT2A: lysine-specific methyltransferase 2A.

activators of transcription (JAK-STAT) and PI3K-signaling
(40, 41). KIT mutations are associated with a poor prognosis
in AML patients (42, 43). Inhibition of KIT has emerged as
an important strategy for treatment of AML (44).

Circ deleted in lymphocytic leukemia 2 (circDLEU2) up-
regulates cAMP-dependent protein kinase A catalytic subunit 3
(PRKACB). circDLEU2 (Figure 2A) was up-regulated in AML,
promoted proliferation of MOLM-13 and MV-4-11 AML cells
and inhibited autophagy (45). After subcutaneous injection of
circDLEU2-transfected cells, it promoted tumor formation in
nude mice. circDLEU2 sponged miR-496 and up-regulated
PRKACB, a cyclic AMP-dependent ser/thr kinase (46).
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However, its function seems to be context-dependent, because
it inhibits proliferation of non-small cell lung carcinoma cells
(47). Furthermore, in cholangiocarcinoma, a fusion protein
involving PRKACB plays an oncogenic role (48, 49).

circ0035381 up-regulates tyrosine 3-monooxygenase/tryptophan
5-monooxygenase  activation protein zeta (YWHAZ).
circ0035381 (Figure 2A) was up-regulated in AML bone
marrow samples and AML cells (50). Knockdown of
¢irc0035381 repressed proliferation of AML cells and induced
apoptosis and mitochondrial damage in vitro. circ0035381
sponged miR-582-3p and up-regulated YWHAZ. The latter
belongs to the family of 14-3-3 proteins, which are over-
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Figure 2. Circular RNAs with efficacy in AML-related preclinical in vivo systems. A) Up-regulated circular RNAs. B) Down-regulated circular RNAs.
circDLEU2: circ deleted in lymphocytic leukemia 2; circMYBL2: circMYB proto-oncogene like 2; circZBTB46: circ zinc finger and BTB domain containing
46; circTAPI: circ threonine-aspartase 1; FLT3: fins-like tyrosine kinase 3; FLT-ITD: fms-like tyrosine kinase internal duplication domain; KIT: receptor
tyrosine kinase KIT; HMGA2: high-mobility group A2; miR: microRNA; NR: not resolved; PLXNB2: plexin B2; PTBPI: polypyrimidine tract binding
proteinl; PTEN: phosphatase and tensin homolog; PRKACB: cAMP-dependent protein kinase A catalytic subunit 3; RUNX3: runt-related transcription
factor 3; SCD: stearoyl-CoA-desaturase; TG: tumor growth; YWHAZ: tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta.

expressed in a wide range of cancers and are involved in cell
growth, cell-cycle, apoptosis, migration, and invasion (51).
Down-regulation of circ0035381 also decreased growth of
AML cells in nude mice. It has been shown that targeting
YWHAZ by siRNA, shRNA or miRs can suppress malignant
properties of cancer cells (51). YWHAZ can interact with a
diverse range of signaling proteins by binding to an amphipathic
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helix and activating it by phosphorylation (52). It has been
shown that YWHAZ is increased in AML and that its
knockdown by siRNA reduced cell growth and proliferation of
AML cells (53, 54).

Circ zinc finger and BTB domain containing 46 (circZBTB46)
up-regulates stearoyl-CoA desaturase (SCD). circZBTB46
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(Figure 2A) was up-regulated in AML patients and expression
correlated with disease progression (55). circZBTB46 promoted
cell proliferation and cell progression in HL-60 and K562 AML
cells in vitro. Its knockdown impaired tumorigenesis of HL-60
AML cells in nude mice. It up-regulated SCD probably by a
miR-sponge mechanism, but this issue needs to be resolved in
further detail. SCD is an endoplasmic reticulum localized
enzyme involved in the biosynthesis of mono-unsaturated fatty
acids. It has been shown that inhibition of SCD induces lipid
oxidation and cell death by ferroptosis (56). The latter
represents a reactive-oxygen species-dependent form of cell
death with the characteristics of iron accumulation and lipid
peroxidation (57, 58). In AML, it has been shown that a
ferroptosis-related gene signature together with an immune
infiltration pattern predicts the overall survival of patients (59).
Induction of ferroptosis in hematological diseases including
AML is an actively pursued approach (60).

circ0009910 up-regulates runt-related transcription factor 3
(RUNX3). circ0009910 (Figure 2A) was up-regulated in
AML patients and predicted risk of poor outcome (61). It
promoted proliferation and inhibited apoptosis in AML cell
lines in vitro and in xenografts by sponging miR-200-5p
(61). It has been shown by other groups that miR-200-5p
targets RUNX3, a promoter of AML progression (62, 63).

Circ threonine aspartase 1 (circTAP1) up-regulates high
mobility group AT-hook fold 2 (HMGA2). circTAP1(Figure
2A) was found up-regulated in AML patients and cells (64).
Its knockdown in HL-60 and THP-1 AML cells inhibited
proliferation and induced apoptosis in vitro. It sponged miR-
515-5p and up-regulated HMGAZ2. Knockdown of circTAP1
inhibited growth of HL-60 AML xenografts after subcutaneous
implantation into nude mice. HMGA?2 is a member of the high
mobility group proteins, which are critical regulators in cancer
development. HMGA2 binds to AT-rich regions of DNA,
increases proliferation by promoting cell-cycle entry and
inhibits apoptosis. HMGA?2 mediates epithelial mesenchymal
transition (EMT), MAPK/extracellularly regulated kinase
(ERK), TGFf/SMAD, PI3K/AKT, nuclear factor kB (NFkB)
and STAT signaling (65). It has been shown that high
expression of HMGA?2 in AML patients correlates with poor
outcome (66). Amplified HMGA2 can promote growth of
AML cells by regulating the AKT pathway (67). Furthermore,
it has been shown that HMGA2 can promote AML
progression by activating WNT/[-catenin signaling (68).

Down-regulated circRNAs With In Vivo
Efficacy in Preclinical Models

circ0040823 up-regulates phosphatase and tensin homolog
(PTEN). circ0040823 (Figure 2B) was down-regulated in
AML patient leukemic cells, inhibited AML cell proliferation
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and induced apoptosis and cell-cycle arrest (69). It sponged
miR-516 resulting in up-regulation of PTEN. circ0040823
suppressed the growth of AML-xenograft tumors in nude
mice. PTEN acts as a tumor suppressor with phosphatase-
dependent and -independent (scaffold) activities affecting
survival, migration, proliferation, and metabolism of tumor
cells (70). PTEN can be down-regulated in AML (71) and
PTEN deletion drives AML resistance to mitogen-activated
protein kinase kinase (MEK) inhibitors (72).

circ0059707 up-regulates miR-1287-5p. Down-regulation of
¢circ0059707 (Figure 2B) predicted a poor prognosis in AML
patients (73). circ0059707 inhibited growth of K562 and
THP1 AML cells by up-regulating miR-1287-5p in vitro and
growth of K562 xenografts in nude mice after subcutaneous
implantation. The mode of action was not resolved in further
detail.

Up-regulated Circular RNAs With In Vitro
Efficacy in AML-related Cellular Systems.
Circular RNAs Targeting Transmembrane Proteins

circ0003602 up-regulates insulin-like growth factor 1
receptor (IGF-1R). circ0003602 (Figure 3A) was up-
regulated in AML patients and predicted poor prognosis (74).
Knockdown of ¢irc0003602 induced inhibition of
proliferation, migration, invasion and caused apoptosis.
¢circ0003602 sequestered miR-502-5p resulting in up-
regulation of IGF-1R. It was shown that sumoylation of the
IGF-1R promoted proliferation of AML cells (75). An IGF-
IR inhibitor has been shown to suppress cell survival and
resistance to chemotherapy in AML cells (76). Targeting
IGF-IR has yielded disappointing results in Phase III studies
in several types of cancer (77, 78).

Circ plasmacytoma variant translocation 1 (circPVTI) up-
regulates CXC motif chemokine receptor 4 (CXCR4). circPVT1
(Figure 3A) was up-regulated in AML patients and correlated
with poor prognosis (79). In THP-1 AML cells, knockdown of
circPVT1 inhibited cell viability, migration, and induced
apoptosis. circPVT1 stabilized MYC protein by decreasing
phosphorylation of Thr 58 to prevent its degradation and up-
regulated its downstream effector CXCR4 (79). The latter and
its ligand chemokine ligand 12 (CXCL12) play a key role in
survival and migration of normal and malignant stem cells in
the bone marrow (80). CXCR4 is a driver of pathogenesis of
AML and high expression of AML predicts a poor prognosis
(81, 82). Small molecules, peptides, monoclonal antibodies
(mAbs) and mAb-drug conjugates have been developed to
target CXCR4 expressing malignant cells (83).

circ004136 up-regulates tetraspanin 3 (TSPAN3). circ004136
(Figure 3A) knockdown hampered cell viability, cell-cycle
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progression, migration, invasion and promoted cell apoptosis
(84). It up-regulated TSPAN3 by sponging miR-570-3p.
TSPAN3 is required for development and progression of
AML (85). TSPAN3 deficiency disables responses to
CXCL12/stromal cell derived factor 1 (SDF1) and leads to
defects of AML localization within the bone marrow niche
(85). TSPAN3 is a target of the RNA binding protein
Musashi2, which is a predictor of poor outcome in AML
patients and plays an important role in the pathogenesis of
AML (86-88).

circ0094100 up-regulates Na, K-ATPase [ subunitl
(ATPIBI). circ0094100 (Figure 3A) was elevated in AML
tissues and cells (89). circ0094100 knockdown inhibited
AML cell viability and cell-cycle progression and promoted
apoptosis. It sponged miR-217 and up-regulated ATP1B1.
Over-expression of transmembrane protein ATP1B1 predicts
an adverse prognosis in cytogenetically normal AML patients
(90). ATP1BI1 encodes the Na, K ATPase [} subunit, a key
regulator of Na+ and K+ electrochemical gradients across
the plasma membrane and an essential regulator of cellular
activity. Its impairment causes apoptosis (91, 92).

Circ Kell blood group locus (circKEL) up-regulates leucine-
rich-alpha2-glycoprotein 1 (LRGI). circKEL (Figure 3A)
was elevated in patients with AML compared to healthy
controls and correlated with worse overall survival (93). It
sponged miR-335-5p and up-regulated LRG1. The latter is a
secreted glycoprotein which inhibits apoptosis in Kasumi
leukemia cells (94). Down-regulation of LRG1 inhibits cell-
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Figure 3. Continued

cycle related proteins and JAK/STAT signaling in Kasumi
cells (94). LRG1 promotes angiogenesis by binding to
accessory receptor endoglin and mediates signaling through
the anaplastic lymphoma kinase 1 (ALK1)/Smad 1,5,8
pathway by modulating transforming growth factor f3
(TFGP) (95). LRG1 also functions as a mediator of vascular
niche formation in metastasis (96). An antibody-drug
conjugate directed against LRG1 has been constructed and
is presently evaluated as an anticancer agent (97).

Up-regulated Circular RNA Regulating
Signaling-related Targets in AML-related
Cellular Systems In Vitro

Circ E3 ubiquitin-protein ligase RADI8 (circRADIS) up-
regulates cyclic AMP-dependent protein kinase catalytic
subunit B (PRKACB). circRAD18 (Figure 3B) was over-
expressed in AML patients and AML cell lines (98). In THP1
and HL60 AML cells knockdown of circ RAD18 inhibited
cell-cycle progression, migration and invasion and facilitated
apoptosis. circRAD18 sponged miR-206 resulting in up-
regulation of PRKACB. Over-expression of miR-206
repressed cell-cycle repression of AML cells by binding to
PRKACB.

circ0003256 up-regulates cyclic AMP-dependent protein
kinase catalytic subunit 3 (PRKACB). circ0003256 (Figure
3B) was highly expressed in pediatric AML patients and
cells (99). Suppression of circ0003256 hindered proliferation
and induced apoptosis in THP1 and MV4-11 AML cells.
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Figure 3. Up-regulated circRNAs with in vitro efficacy in preclinical AML-related cellular systems. A) Circular
RNAs targeting transmembrane receptors and secreted proteins. B) Circular RNAs involved in signaling and
up-regulating transcription factors. ALG3: a-1,3 mannosyltransferase; AMPK: AMP-activated protein kinase;
circATPIBI: circ Na, K ATPase [3 subunitl; circDLEU2: circ deleted in lymphocytic leukemia 2; circKCNQS5:
circ potassium voltage-gated KQT member; circKEL: Circ KELL blood group locus; circPAN3: circ pan domain
3; circNFIX: circ nuclear factor IX; circPTK2: circ protein tyrosine kinase 2; circPVTI: circ plasmacytoma
variant translocation 1; circRADIS: circ E3 ubiquitin-protein ligase 18; circRNF220: circ ring finger 220;
COX2: cyclooxygenase 2; CXCR4: CXC motif chemokine receptor 4; EIF5A2: eukaryotic translation initiation
factor 5A2; FOXM1: forkhead box M1; GRBI10: growth factor receptor bound protein 10; IGF-IR: insulin
growth factor 1 receptor; IRES2: immediate early response 2; LRGI: leucine rich a2-glycoprotein; miR:
microRNA; mTOR: mammalian target of rapamycin; NR: not resolved; MYSMI: deubiquitinase MYSMI;
RABI0: ras-related protein 10; PRKACB: cAMP-dependent protein kinase A catalytic subunit 3; SI00A7A:
S100 protein S1I00A7; SOX4 and SOX12: sex-determining region 4 or 12 related high mobility group; TSPAN3:
tetraspanin 3; ULKI: unc 51-like kinase; TRIM31: tripartite motif 31; XIAP: X-linked inhibitor of apoptosis.
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circ0003256 sponged miR-582-3p resulting in up-regulation
of PRKACB.

circRNF220 up-regulates deubiquitinase MYSMI and
immediate early response 2 (IRE2). circRNF200 (Figure 3B)
was highly expressed in pediatric AML patients and was an
independent and reliable predictor of relapse in these patients
(100). In THP1 and HL60 AML cells, circRNF220 enhanced
proliferation and impaired apoptosis. It sponged miR-30a
and up-regulated MYSMI and IRE2. MY SMI functions as a
regulator of hematopoietic stem cell function, blood cell
production, immune response and plays an important role in
myeloid cell development (101). IRE2 promotes tumor cell
motility and metastasis and predicts poor survival in CRC
patients (102). In HCC, IRE2 regulates cell adhesion and
motility via integrin f1-mediated signaling pathway (103)
and the activity of RHO GTPases (104).

Circ nuclear factor IX (circNFIX) up-regulates tripartite
motif 31 (TRIM31). circNFIX (Figure 3B) was found up-
regulated in AML tissues and cell lines (105). Knockdown
of circNFIX in HL60 and MOLM13 AML cells restrained
proliferation and induced apoptosis in vitro. circNFIX
sponged miR-876-3p and up-regulated TRIM31. Silencing
of miR-876-3p attenuated the effect of NFIX depletion on
the progression of AML cells. Ectopic expression of TRIM31
rescued the effect of circNFIX silencing on AML cell
proliferation. TRIM31 plays a dual role in progression and
suppression of cancer (106). It acts as an E3-ubiquitin ligase
which can regulate p53, PI3K-AKT, NFkB and WNT/f
catenin pathways (106). The TRIM family contributes to
tumorigenesis, cancer development and drug resistance
(107). It has been shown that TRIM31 promotes AML
progression through WNT/( catenin signaling (108). In
breast cancer, TRIM31 mediates tumor progression through
regulation of ubiquitinylation of p53 (109).

circ100290 up-regulates ras-related protein 10 (RABI0).
circ100290 (Figure 3B) was found increased in AML
samples and cell lines (110). Its down-regulation suppressed
proliferation and induced cell-cycle arrest and apoptosis of
AML cells. circ100290 sponged miR-203 resulting in up-
regulation of RAB10 (111). A miR-203 inhibitor could
reverse the effect of circ100290 knockdown on proliferation
and apoptosis in AML cells.

Circ potassium voltage-gated subfamily KQT member 5
(circKCNQS5) up-regulates ras-related protein 10 (RABIO0).
circKCNQS5 (Figure 3B) was increased in bone marrow
samples of childhood AML and AML cell lines (112). Its
knockdown suppressed AML cell proliferation and promoted
apoptosis. circKCNQS5 sponged miR-622 and up-regulated
RAB10. RAB GTPases act as coordinators of vesicle traffic

(111, 113). RAB10 can be found in the endoplasmic reticulum,
Golgi apparatus, and endosomes/phagosomes. It is involved in
endosomal sorting, exocytosis, axonal growth in neurons and
phagocytosis in macrophages (114). In gastric cancer, RAB10
has been shown to regulate apoptosis and autophagy (115).

circ0009910 up-regulates growth factor receptor bound
protein 10 (GRBI10). circ0009910 (Figure 3B) was up-
regulated in AML bone marrow and AML cell lines (116). In
HL-60 and MOLM-13 AML cells, blocking of circ0009910
with siRNA suppressed proliferation, cell-cycle progression
and facilitated apoptosis. It sponged miR-5195-3p and up-
regulated GRB10. The latter is an adapter protein containing
a pleckstrin homology domain as well as a src-homology 2
(SH2) domain. It plays a role in insulin-growth factor 1
mediated signaling and ligand-induced ubiquitination,
internalization, and stability of IGR-1R (117-119). GRB10
is involved in autocrine proliferation of AML cells via the
insulin-growth factor (IGF)/IGF-1R pathway (120).

circ0000370 up-regulates S100 protein A7A (S100A7A).
¢circ0000370 (Figure 3B) was found increased in FLT3-ITD+
AML patients (121). Its knockdown decreased viability of
MV4-11 and MOLM-14 AML cells. circ0000370 over-
expression inhibited apoptosis in U937 and H60 AML cells. It
sponged miR-1299 and increased S1I00A7A expression (121).
At least twenty-four S100 proteins are known. They have two
calcium binding sites and contain a helix-loop-helix. They exert
intracellular functions and act as secreted proteins. In cancer,
they are involved in proliferation, cytoskeleton dynamics,
invasion, migration, calcium homeostasis, energy metabolism
and inflammation (122). In breast cancer, SIO0OA7A promotes
epidermal growth factor (EGF) signaling (123) and increases
mammary tumorigenesis through up-regulation of inflammatory
pathways (124). SIO0A7A is markedly increased in epidermal
hyperproliferation disorders, acts as a cytokine, and is involved
in autoimmune conditions such as psoriasis (125).

circ0005774 up-regulates unc-51 like kinase (ULKI).
circ0005774 (Figure 3B) was highly expressed in pediatric
AML and AML cells (126). In HL-60 and NB4 AML cells,
blocking of circ000574 enhanced apoptosis, suppressed cell
viability and cell-cycle entry, and inhibited proliferation
markers, such as proliferation nuclear antigen (PCNA). It
sponged miR-192-5p and up-regulated ULK1. The latter acts
as a ser/thr kinase that participates in the initiation of
autophagy (127). Autophagy represents an essential
degradation process in the cellular response to stress and its
inhibition is evaluated as a therapy for AML and FLT3-ITD
AML (128-130).

Circ pan domain protein 3 (circPAN3) up-regulates

mammalian target of rapamycin (mTOR) signaling.
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circPAN3 (Figure 3B) was increased in Adriamycin (ADM)-
resistant AML cell lines and bone marrow samples from
relapsed patients (131). Down-regulation of circPAN3
restored ADM sensitivity in ADM-resistant cell lines K562
and THP-1, whereas lentivirus-mediated over-expression of
circPAN3 had the opposite effect. circPAN3 facilitates drug
resistance through autophagy and influences regulation of
apoptosis-related proteins via the AMPK/mTOR pathway.
Down-regulation of adenosine-monophosphate (AMP)-
activated protein kinase (AMPK) stimulated mTOR (131,
132). The mechanistic underpinnings were not resolved in
further detail. It has been shown that AMPK enhances
chemotherapy effects in AML (133). The PI3K/AKT/mTOR
pathway is constitutively activated in AML patients and
drugs which inhibit mTOR and activate AMPK promote
differentiation and block blast proliferation in AML (134,
135). Disappointing clinical results with inhibitors of this
pathway have been obtained with monotherapy and in
combination with induction therapy. Combination with other
agents will be an important issue for future studies.

Circ pan domain protein 3 (circPAN3) up-regulates X-linked
inhibitor of apoptosis (XIAP). circPAN3 (Figure 3B)
conferred ADM-resistance of THP-1 AML cells by sponging
miR-183-5p and subsequent up-regulation of XIAP (136).
The latter belongs to the family of inhibitor of apoptosis
proteins (IAPs), binds and inhibits caspases 3, 7 and 9 (137,
138). It has been shown that XIAP inhibitors induce
differentiation and impair clonogenic capacity of AML stem
cells (139). AML patients with over-expression of both
survivin and XIAP showed unfavorable response to induction
therapy in 100% of the patients and short survival (30 days)
(140). Combined inhibition of XIAP and BCL2 gave rise to
maximal therapeutic efficacy in AML patients (141).

Circ protein tyrosine kinase 2 (PTK2) up-regulates a(1-3)-
mannosyltransferase (ALG3). circPTK?2 (Figure 3B) was found
over-expressed in AML peripheral blood samples and cell lines
(142). Its knockdown restrained proliferation and glycolysis of
AML cells. circPTK2 sponged miR-582-3p, resulting in up-
regulation of ALG3. Glycosyltransferases have an impact on
malignancy in diverse experimental models and are potential
prognostic biomarkers (143). ALG3 is involved in the first steps
of N-glycosylation and contributes to the malignancy of
NSCLC (144) and oral squamous cell carcinoma by regulating
the CDK-cyclin pathway (145). In AML, the function of ALG3
remains to be explored in further detail.

Circ deleted in lymphocytic leukemia 2 (circDLEU2) up-
regulates cyclo-oxygenase 2 (COX2). circDLEU2 (Figure 3B)
was up-regulated in AML marrow samples and cells (146). In
HL-60 and THP1 AML cells, knockdown of circDLEU2
repressed proliferation, whereas it induced apoptosis and cell
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arrest in GO/G1 phase. circDLEU2 acted as a sponge for
miR-582-5p and up-regulated COX2. In cancer, COX2 can
induce cancer stem cell-like activity, apoptosis resistance,
angiogenesis, inflammation, and metastasis through its
metabolite prostaglandin E2 (147). COX2 inhibitor celecoxib
exerted antitumor effects in HL60 AML cells and inhibited
autophagy by affecting lysosome function (148, 149).
Combination of celecoxib and doxorubicin increased growth
inhibition and apoptosis in AML cells (149). Furthermore, a
celecoxib derivative inhibited focal adhesion and induces
caspase-dependent apoptosis in AML cells (150). Vascular
endothelial growth factor (VEGF) has been shown to
modulate proliferation and chemoresistance of AML cells
through endothelin-1 dependent induction of COX2 (151).

Circ ring finger 200 (circRNF200) up-regulates sex-
determining region (SRY)-related high mobility group box4
(SOX4). circRNF200 (Figure 3B) was found to be highly
expressed in AML patients (152). In HL-60 and THP-1 AML
cells, knockdown of circRNF200 inhibited cell growth, cell-
cycle progression, invasion, and glycolytic metabolism in
vitro. circRNF200 sponged miR-330-5p resulting in up-
regulation of SOX4. Knockdown of circRNF200 down-
regulated SOX4 expression by increasing miR-330-5p.
Inhibition of miR-330-5p neutralized the impairment of
circRNF200 in AML cell development. SOX proteins are a
family of transcription factors with more than twenty
members with functions in development, cell-fate decision,
differentiation, tumor formation and metastasis (153). Over-
expression of SOX4 correlated with poor prognosis in AML
patients (154). It has been shown that SOX4 induces
proliferation of AML cells (155). In AML, SOX4 is a direct
target and crucial mediator of transcription factor C/EBP
(156). SOX4 also promotes progression of AML by inducing
RHO GTPase activating protein 9 (ARHGAPY) (157).

circ0012152 up-regulates sex-determining region Y-related
high mobility group box 12 (SOX12). circ0012152 (Figure
3B) was found increased in AML tissues and cells (158). Its
knockdown suppressed proliferation and promoted cell death
in AML cells. circ0012152 inhibited miR-625-5p expression
and up-regulated SOX12. The latter was preferentially
expressed in CD34 cells in AML and promoted expression
of B-catenin and WNT signaling (159). In K61 and MO7e
AML cells, knockdown of SOX12 decreased transcription
factor TWIST1 and P-catenin (160). SOX12 has been
identified as a promoter of AML progression (161).

circPTK2 up-regulates forkhead box protein M1 (FOXM1).
circPTK2 (Figure 3B) was highly expressed in AML patients
(162). Interference with circPTK?2 suppressed proliferation
and induced apoptosis in AML cells. circPTK2 sponged
miR-330-5p and up-regulated FOXMI1. Si-circPTK2
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mediated inhibition of malignant behavior of AML cells and
was partly counteracted by addition of anti-miR-330-5p.
FOXM1 is a proliferation-associated transcription factor
expressed during the cell-cycle and involved in self-renewal
and tumorigenesis (163, 164). FOXMI1 promotes
proliferation of AML cells through modulation of cell-cycle
progression (165). Over-expression of FOXM1 is associated
with adverse prognosis in FLT3-ITD AML (166). Blast cell
survivors after induction therapy correlated with a signature
of FOXMI activity (167). Furthermore, it has been shown
that nuclear FOXM1 drives chemo-resistance of AML (168).
NPMI1 binds to FOXM1, and this interaction is required for
the level and nuclear localization of FOXM1 (169, 170).

circ0058058 up-regulates eucaryotic translation initiation
factor 5A2 (EIF5A2). circ0058058 (Figure 3B) was up-
regulated in AML patients and its knockdown inhibited
proliferation, migration, and invasion, but accelerated
apoptosis (171). It sponged miR-4319 and up-regulated
EIF5A2. The latter acts as a translation initiation factor and
is also involved in promoting translation of reiterated proline
sequences (172). It plays an important role in tumor growth,
invasion, metastasis and in the tumor microenvironment
(173). EIF5A emerges as two isoforms, EIFSA1 and
EIF5A2. EIF5A1 is constitutively expressed, EIF5A2 is
found in a few tissues, highly expressed in several types of
cancer, and is considered as a possible oncogene. Its function
depends on post-translational modification of one of the two
lysine residues of EIF5A2, creating amino acid hypusine,
making it susceptible to the modification pathway (173). In
AML, it has been shown that miR-9 and miR-33b increase
sensitivity to Daunorubicin by targeting EIFSA2 (174).

Down-regulated Circular RNAs With In Vitro
Efficacy in AML-related Cellular Systems

circCKRL up-regulates protein p27. circCKRL (Figure 4) was
found down-regulated in AML samples and cell lines (175).
circCRKL suppressed cell proliferation in THP-1 and
MOLM13 ALM cells. It sponged miR-196-5a and miR-196-
5b resulting in up-regulation of p27. The latter is a member of
the kinase inhibitory family (KIP) and acts as a CDK inhibitor
that mediates cell-cycle inhibition (176). It has been shown
that AML patients with high level of p27 had a significantly
increased disease-free survival (177). It has been observed that
the KIP cell cycle pathway can be inactivated epigenetically
in AML patients (178). FLT3 and FLT3-ITD can inhibit p27
by phosphorylation in AML patients (179).

circ0003420 suppresses expression of insulin-like growth
factor mRNA binding protein 1 (IGF2BP1). Expression of
circ0003420 (Figure 4) correlated with poor clinical results
and impaired therapeutic effects in AML (180). Its down-

regulation leads to up-regulation of IGF2BP1. Restoration of
IGF2BP1 diminished the effects of circ 0003420 on
replication, apoptosis, and the leukemic stem cell phenotype
of KG-la AML cells. IGF2BP1 has six canonical RNA
binding sites and acts as a fine tuner of expression of genes
involved in proliferation, growth and chemoresistance (181).
It is regarded as an oncogene, which can orchestrate stem
cell properties. However, tumor-suppressive roles of this
protein have also been observed (181). IGF2BP1 maintains
leukemia cell properties by regulating genes, such as
homeobox B4 (HOXB4), proto-oncogene myeloblastosis
(MYB) and alcohol dehydrogenase 1A1 (ALDH1A1) (182).
IGF2BP1 also has been shown to mediate the tumorigenic
functions of LIN288 in AML cells (183).

circ0004277 down-regulates single-stranded DNA binding
protein 2 (SSBP2). circ0004277 (Figure 4) was found to be
reduced in AML patients (184). It inhibited viability,
migration, and invasion of U937 and KG-1la AML cells.
circ0004237 absorbs miR-134-5p and up-regulates SSBP2.
The latter interacts with single-stranded DNA, mediating
DNA damage response and maintenance of genomic stability
and acts as a tumor suppressor gene in AML (184).
circ0004277 is frequently deleted in AML and its restoration
leads to cell-cycle arrest in AML cell lines (184). Loss of
nuclear expression of SSBP2 is associated with poor
prognostic factors in colorectal cancer (185). It has been
observed that the SSBP2 gene is frequently deleted in
prostate cancer (186).

circ0121582 inhibits glycogen synthase kinase 3 (GSK3[3).
circ0121582 (Figure 4) was down-regulated in AML (187). It
sponged miR-224 resulting in up-regulation of GSK3[3. It also
bound to the GSK promoter in the nucleus where it recruited
the DNA methylase TET1 to inhibit its transcription. GSKf31
inhibits WNT/( catenin signaling by phosphorylation of
GSK3p, which is subsequently ubiquitinated by 3TrCP and
targeted for proteosomal degradation (188). WNT signaling is
required for the development of leukemic stem cells in AML
(189-191). In addition, it has been shown that WNT
antagonists can be epigenetically inactivated in AML (192).
Inhibition of WNT signaling is pursued as a strategy to
eliminate AML cells (193).

Technical issues. Identification of up- and down-regulated
circRNAs allows identification of potential targets and new
ways of therapeutic intervention in patients with AML by
manipulating the expression levels of the corresponding
circRNA. The first step of drug development is the evaluation
of the identified targets and circRNA in standard preclinical
in vitro and in vivo models. Up-regulated circRNAs reveal
targets, which can be inhibited by small molecules, antibody-
derived entities, or other types of intervention. circRNA by
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Figure 4. Down-regulated circular RNA with activity in preclinical AML-related cellular systems. circCRKL: circ CRK-like protein; GSK-3f3:
glycogen synthase kinase 33; IGF2BP1: insulin-like growth factor mRNA binding protein 1; miR: microRNA; p27: protein p27; PTEN: phosphatase
and tensin homolog; SSBP2: single-stranded DNA binding protein 2; WNT: WNT signaling.

itself can be inhibited with siRNA or shRNA or antisense
oligos (194, 195). Down-regulated circRNAs reveal targets,
which functionally can be reconstituted with small molecules.
This approach is hampered by druggability issues and the
specificity of the identified compounds. The other option is
reconstitution of circRNA expression by transduction of
plasmid- or retrovirus-based expression vectors into
corresponding recipient cells (196, 197).

Regarding manipulation of up-regulated circRNAs with
siRNA or shRNA, specificity issues, immunogenicity, and
optimization of pharmacokinetic and pharmacodynamic
properties are critical parameters. These issues will not be
discussed in further detail in this review. In case of
hematological malignancies, delivery of siRNA or shRNA is
facilitated by easier accessibility in comparison to solid
tumors. Several lipid-based delivery systems for these agents
have been developed in the past few years (198-200). Also,
the targeting of lipid nanoparticles (LNP) to specific cells is
a critical issue (200). The first clinically approved product
(siRNA-LNP) in this field was Onpattro for the treatment of
transerythrin amyloidosis (201).

Regarding identified targets, such as transcription factors,
druggability issues might arise (202). The new compound class
of proteolysis targeting chimeras (PROTACS) might lead to
unprecedented breakthroughs. PROTACS are divalent
compounds composed of a targeting moiety, a linker and an E3
ligase binding entity leading to proteosomal degradation of the
corresponding target (203-205). In addition to undruggable
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targets, resistance mutations, protein aggregates, protein
isoforms, protein scaffolds and over-expressed proteins in
general are targets for PROTACS (205). At least twenty clinical
degraders have been approved for clinical investigation, and
fourteen are intended for oral administration (205).

Conclusion

The vast majority of the identified circRNAs act by sponging
miRs. In four cases, the MOA is not resolved. In addition,
circtMYBL2 acts by recruiting PTBP1 (Figure 2A) and
circ0121582 sponges miR-224 and binds to the promoter of
GSK3p (Figure 4). Three different circRNAs have PRKCAB
as a target (Figure 2A and Figure 3B), RAB10 was up-
regulated by two different circRNAs (Figure 3B).
Furthermore, we observed that circPAN3 targets mTOR as
well as XIAP (Figure 3A). CircDLEU2 up-regulates
PRKCAB as well as COX2. Inhibition of miR-330-5p by
two different circRNAs up-regulates SOX4 as well as
FoxM1 (Figure 3B), whereas miR-582-3p inhibits expression
of YWHAZ and ALG3 (Figure 2A and Figure 3B).
mutFLT3 was revealed as a clinically validated target of
up-regulated cirRNA MYBL2 with efficacy in preclinical in
vivo models (Figure 2A). In addition, transmembrane
proteins KIT and PLXNB2, enzymes PRKCAB and SCD,
adapter protein YHWA, transcription factor RUNX31 and
multiple function protein HMGA?2 were identified as targets
of up-regulated circRNAs showing efficacy in preclinical in
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vivo models (Figure 2A). PTEN has emerged as a target for
reconstitution therapy (Figure 2B).

Transmembrane proteins IGFR1, CXCR4, TSPAN3,
ATPI1BI1 and secreted protein LRG1 (Figure 3A) have been
identified as targets of up-regulated circRNA with in vitro, but
pending in vivo activity in preclinical systems. Furthermore,
fifteen up-regulated targets have been identified (Figure 3B).
In addition to miR-4961 (Figure 2A), miR-206 and -582-3p
target PRKACB (Figure 3B). RAB10 was identified as a
target of two circRNAs (Figure 3B). Enzymes, such as ULK1,
mTOR, ALG3 and COX2 as well as transcription factors
SOX4, SOX12 and FOXM1 have been identified as potential
targets for treatment of AML. As targets for replacement
therapy, p27, SSBP2 and IGF2BP1 and their corresponding
down-regulated circRNAs have been revealed (Figure 4).

Ranking of the identified circRNAs and their corresponding
targets with respect to treatment of AML will depend on the
outcome of further target validation experiments.
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