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Abstract 
Cluster assignment is vital to analyzing single-cell RNA sequencing (scRNA-seq) data to understand high-level biological processes. 
Deep learning-based clustering methods have recently been widely used in scRNA-seq data analysis. However, existing deep models 
often overlook the interconnections and interactions among network layers, leading to the loss of structural information within the 
network layers. Herein, we develop a new self-supervised clustering method based on an adaptive multi-scale autoencoder, called 
scAMAC. The self-supervised clustering network utilizes the Multi-Scale Attention mechanism to fuse the feature information from 
the encoder, hidden and decoder layers of the multi-scale autoencoder, which enables the exploration of cellular correlations within the 
same scale and captures deep features across different scales. The self-supervised clustering network calculates the membership matrix 
using the fused latent features and optimizes the clustering network based on the membership matrix. scAMAC employs an adaptive 
feedback mechanism to supervise the parameter updates of the multi-scale autoencoder, obtaining a more effective representation 
of cell features. scAMAC not only enables cell clustering but also performs data reconstruction through the decoding layer. Through 
extensive experiments, we demonstrate that scAMAC is superior to several advanced clustering and imputation methods in both data 
clustering and reconstruction. In addition, scAMAC is beneficial for downstream analysis, such as cell trajectory inference. Our scAMAC 
model codes are freely available at https://github.com/yancy2024/scAMAC. 
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INTRODUCTION 
Single-cell RNA sequencing (scRNA-seq) becomes an essential 
tool for studying cell heterogeneity and developmental processes 
[1]. It enables the measurement of gene expression in individual 
cells, considering the variations in gene activity and cellular char-
acteristics. Compared to bulk RNA sequencing, the scRNA-seq 
technique has higher resolution and sensitivity, which describes 
the cell states of different cell types and subtypes in tissues 
and organs [2]. The rapid development of the technique has 
revolutionized transcriptomic studies and has provided deeper 
insights into biological processes that were previously inacces-
sible. Cluster assignment is an important step in the analysis of 
scRNA-seq data, which is able to identify different cell types and 
subtypes, and facilitate downstream analysis of scRNA-seq data. 
However, the high noise and sparsity of scRNA-seq data lead to 
a large number of zero values in their gene expression profiles 
[3, 4]. Potential technical biases during the amplification stage of 
scRNA-seq also affect the accuracy of gene expression values [5]. 

These erroneous gene expression values directly affect the cell 
clustering process, hindering downstream analysis. 

Several clustering methods, including those that enhance K-
means clustering, hierarchical clustering and graph-based clus-
tering approaches, have been introduced to address challenges in 
scRNA-seq data analysis. K-branches [6] is a clustering method 
similar to K-means, which uses locally fitted half-lines to repre-
sent branches in cell differentiation trajectories and assigns cells 
to the nearest half-lines. Some methods are based on hierarchi-
cal clustering. CIDR [7] interpolates missing values to address 
‘dropout events, and employs hierarchical clustering on the first 
few principal coordinates in scRNA-seq data. Seurat [8] constructs 
a shared nearest neighbor graph and uses a graph-based commu-
nity detection algorithm called Louvain for clustering. However, 
traditional clustering methods often have difficulty detecting rare 
cell communities due to the sparsity and high noise of scRNA-
seq data. Therefore, some methods consider using the idea of 
consensus clustering to overcome these problems. For example,
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SIMLR [9] uses multiple kernel functions to learn similarity mea-
sures between cells and improve clustering performance. SC3 [10] 
learns cell features from different perspectives using Euclidean 
distance, Pearson correlation and Spearman correlation, then 
obtains the final result using a consensus clustering method. 
SAME [11] obtains clustering solutions from multiple methods 
using a mixture model and selects the subset with the highest 
diversity to produce an improved ensemble solution. While these 
ensemble learning-based methods somewhat mitigate the impact 
of data noise on clustering results, they cannot effectively extract 
latent information in scRNA-seq datasets, and the computational 
cost of such algorithms increases dramatically with the size of the 
dataset. 

Deep neural networks have demonstrated excellent perfor-
mance in large-scale deep feature extraction in recent years due 
to their hierarchical structure and non-linear mapping ability. 
Therefore, deep learning-based clustering methods, broadly cate-
gorized into those based on autoencoders, graph neural networks 
and contrastive learning, have been widely applied in scRNA-
seq data analysis. scDeepCluster [12] proposes a deep embed-
ded clustering algorithm based on autoencoders, which com-
bines the ZINB model [13] with deep embedded clustering [14] 
to optimize latent feature learning and clustering simultane-
ously. scGMAI [15] is a Gaussian mixture model based on autoen-
coders and FastICA. It uses autoencoders to reconstruct data, 
employs FastICA to reduce the dimensionality of reconstructed 
data and ultimately employs a Gaussian mixture model for clus-
tering. Although scDeepCluster and scGMAI can latent features, 
they ignore the relationships between cells, which may lead to 
less accurate learned features. GraphSCC [16] establishes cel-
lular structural relationships through graph convolutional net-
works (GCN) [17] and iteratively optimized low-dimensional rep-
resentations and clustering objective functions using a dual self-
supervised module. scGAC [18] designs a graph attention struc-
ture that captures cellular relationship through graph attention 
autoencoders. Attention mechanisms help scGAC assign different 
weights to different neighbors when propagating information in 
the neighborhood. scDSC [19] integrates a ZINB model-based 
autoencoder, a graph neural network module, and a mutual-
supervised strategy to effectively handle noise, high dimension-
ality, and dropout events in scRNA-seq data. Although these 
GCN-based methods can learn cellular relationships, the accu-
racy of the constructed graph affects clustering performance. 
Contrastive-sc [20] proposes a self-supervised contrastive learn-
ing method for scRNA-seq data, which includes the representa-
tion learning stage and the clustering stage. scNAME [21] intro-
duces a unique combination of mask estimation, contrastive 
learning with a global memory bank, contributing to accurate 
and robust clustering. However, these methods don’t fully exploit 
the latent feature information of cells, and their representation 
enhancement methods by masking specific parts of the input and 
contrastive loss may lead to false clustering results. 

Several scholars have developed various data reconstruction 
methods to overcome the negative impact of ‘dropout events 
on downstream analysis of scRNA-seq data. DCA [22] achieves 
zero-value imputation through a redefined reconstruction loss. 
AutoImpute [23] learns the data distribution by training an 
autoencoder network to reconstruct the underlying true gene 
expression matrix. AutoClass [24] effectively filters out noise 
and recovers gene expression by adding a classifier branch to 
the autoencoder. scIGANs [25] uses a generative adversarial 
network to simulate real gene expression values and correct 
erroneous data. scGNN [26] is a method that utilizes a graph 

convolutional neural network (GCN) to construct a graph network 
representing cell relationships. Through training, it acquires low-
dimensional features which are applied for clustering the data. 
The imputation-focused methods are not designed with modules 
specifically for clustering tasks, and there is no consensus 
on their effectiveness regarding data reconstruction quality. 
Furthermore, these deep models based on scRNA-seq data often 
ignore the interconnections and mutual influences between 
network layers. Many autoencoder-based methods do not fully 
utilize the information of the decoding layer and only focus on 
the features of the hidden layer. However, a single hidden layer 
feature cannot fully represent the deep relationships between 
cells. 

Therefore, we propose a new self-supervised clustering method 
(scAMAC) based on an adaptive multi-scale autoencoder. The 
advantage of self-supervised learning lies in its ability to fully 
leverage the inherent structure of the data, achieved through 
cleverly designed tasks that enable the model to learn rich feature 
representations [27–29]. Inspired by the Efficient Paired-Attention 
[30] mechanism and the Efficient Channel Attention [31] mech-
anism, scAMAC utilizes the Multi-Scale Attention (MSA) mecha-
nism to fuse the feature information from the encoder, hidden 
and decoder layers of the multi-scale autoencoder. It enables 
a comprehensive analysis of cellular characteristics at various 
resolutions, unveiling intra-scale cellular correlations and deep 
features that span multiple scales. The self-supervised clustering 
network calculates the membership matrix of the fuzzy k-means 
(FKM) algorithm using the fused latent features and optimizes 
the self-supervised clustering network based on the membership 
matrix. The adaptive feedback mechanism employed in scAMAC 
facilitates self-supervised learning and continuous optimization 
of model parameters, obtaining a more effective representation 
of cell features. During the operation, scAMAC not only achieves 
cell clustering but also data reconstruction through the decoding 
layer of the model. We compare scAMAC with seven advanced 
clustering methods and three deep learning-based imputation 
methods to demonstrate the superiority of scAMAC in scRNA-seq 
data clustering and reconstruction. Furthermore, we demonstrate 
clustering and cell trajectory construction through visualization. 

MATERIALS AND METHODS 
Data preprocessing 
We conduct relevant experimental comparisons using highly 
competitive scRNA-seq datasets to demonstrate the effectiveness 
and potential value of the proposed method. We collect 14 
commonly used public datasets and remove cells with unclear 
cell identities to reduce the impact of unknown labels on the 
fairness of experimental analysis. The details of these datasets 
is shown in Table 1. They are all available for free download at 
(https://hemberg-lab.github.io/scRNA.seq.datasets/). 

We preprocess the real scRNA-seq data using the Scanpy pack-
age [32]. The scRNA-seq data consists of a two-dimensional matrix 
with cells as rows and genes as columns. For these datasets, we 
remove genes with expression values of 0 in more than 95% of 
cells, normalize and logarithmically transform the data, and then 
select the top 3000 highly variable genes as input data. 

The proposed scAMAC model 
This section provides a detailed introduction to the model struc-
ture of scAMAC. The scAMAC model mainly consists of two parts: 
a denoising deep multi-scale autoencoder and a self-supervised 
clustering network. The multi-scale autoencoder can be used
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Table 1: Real scRNA-seq datasets used in the experiment 

No. Dataset Cell source Cell number Gene number Cell types 

1 Camp1 Human 777 19 020 7 
2 Camp2 Human 734 18 927 6 
3 Xin Human 1600 39 851 8 
4 Tasic Mouse 1800 24 058 50 
5 Muraro Human 2122 19 059 9 
6 Klein Mouse 2717 24 175 4 
7 Yan Human 90 20 214 6 
8 Zeisel Mouse 3005 19 972 9 
9 Segerstolpe Human 2166 26 179 12 
10 Biase Mouse 56 25 734 4 
11 Treutlein Mouse 80 23 271 5 
12 Goolam Mouse 124 41 428 5 
13 Chen Mouse 14 437 23 284 47 
14 Bhattacherjee Mouse 24 822 21 000 8 

to obtain the low-dimensional representation and reconstructed 
data of the raw input data. The self-supervised clustering net-
work utilizes the MSA module to fuse the output results of the 
autoencoder’s layers, allowing for the integration of information 
from different layers. This fusion process facilitates the explo-
ration of relationships between cells and mitigates the loss of 
important data features. Consequently, the fused representation 
enhances the performance of cell clustering. 

Moreover, the network incorporates a self-supervised mech-
anism that plays a dual role in the training process. On the 
one hand, it guides the training of the multi-scale autoencoder, 
enabling the extraction of meaningful features from the input 
data. On the other hand, it optimizes the overall model by 
iteratively updating the network parameters based on the self-
supervised learning signal. 

As shown in Figure 1, the model takes the gene expression 
matrix X as input. First, uniform noise is added to the prepro-
cessed data, which is then sent to the autoencoder for training 
to enhance the robustness of the network. The output of each 
network layer is Za, Zb, and  Zc. Za and Zc are transformed into 
Z′

a and Z′
c, respectively, through two fully connected layers. Z′

a 
and Z′

c have the same dimensions as Zb. Then,  Z′
a, Z′

c and Zb 

are passed to the self-supervised clustering module. The self-
supervised clustering module uses the MSA mechanism to cap-
ture the relationship between cells and the contribution of each 
layer of the autoencoder to obtain Z. The membership matrix U is 
calculated based on Z and optimized by U. To implement the self-
supervised process within the network, we use the membership 
matrix U to construct a cell similarity matrix to supervise the 
parameter updates of the autoencoder. 

Denoising deep multi-scale autoencoder 
For a given scRNA-seq data, its gene expression matrix is repre-
sented by X ∈ RV×G, where  V is the number of cells and G is the 
dimensionality of genes for each cell. This autoencoder consists of 
an encoder, a decoder and a hidden layer, which is used to encode 
and decode gene expression data to obtain the latent features of 
the data and output the appropriate reconstructed data through 
the decoder. Specifically, in the encoder, we input the corrupted 
data X0 and obtain the output data Za in the encoding layer, 
calculated as follows: 

Za = φ
(
w1X0 + b1

)
. (1)  

Herein, φ is the LeakyReLU activation function, w1 is the weight 
matrix of the encoding layer and b1 is the bias of the encoding 
layer. X0 = X + N, where  N is uniform distributed noise. Za is 
mapped to Zb via the hidden layer with the following formula: 

Zb = φ
(
w2Za + b2

)
, (2)  

where φ is the LeakyReLU activation function, w2 is the weight 
matrix of the hidden layer and b2 is the bias of the hidden layer. 

Then, the output data Zc and the reconstructed data X′ with the 
same dimension as the encoding layer are obtained through the 
decoding layer, and the formulas are as follows: 

Zc = φ
(
w3Zb + b3

)
, (3)  

X′ = φ
(
w4Zc + b4

)
. (4)  

In Equations (3) and (4), φ is the LeakyReLU activation function, 
w3 and w4 are the weight matrices of the decoder layer, and b3 and 
b4 are the biases of the decoder layer. 

In order to enhance the training of the autoencoder and effec-
tively integrate the information between the encoding and decod-
ing layers, we adopt the following loss function to optimize the 
network: 

LD−N =
∑n 

i=1

(
Xi − X′

i

)2 

n
+

∑n 
i=1

(
Zai − Zci

)2 

n 
, (5)  

where n represents the number of cells, Xi represents the input 
features of cell i, X′

i represents the reconstructed features of cell i, 
Zai represents the features extracted by the encoding layer for cell 
i and Zci represents the features extracted by the decoding layer 
for cell i. 

MSA mechanism 
The MSA mechanism effectively integrates information from mul-
tiple scales and leverages their respective strengths, which con-
sists of two parts: multi-scale synergy (MSS) module and multi-
scale integration (MSI) module. In the MSA mechanism, MSS mod-
ule and MSI module work together to capture spatial information 
and channel interactions in the input feature map. MSS module 
is responsible for capturing spatial information and dependencies 
within channels, while MSI module is responsible for obtaining 
interactions across channels. The combination of MSS module
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Figure 1. Overall architecture diagram of scAMAC. scAMAC consists of two parts: denoising deep multi-scale autoencoder and self-supervised clustering 
network. Firstly, the preprocessed gene expression matrix X is fed into the denoising deep multi-scale autoencoder, obtaining the latent feature 
representation Zb of the hidden layer, as well as the reconstructed data X′. Then, the outputs of the encoding layer and decoding layer are fed into 
two fully connected layers to obtain Z′

a and Z′
c, where the dimensions of Z′

a and Z′
c are the same as Zb. Finally,  Z′

a, Z′
c, and  Zb are concatenated and 

fed into the self-supervised clustering network. The self-supervised clustering network uses the MSA mechanism to capture the relationship between 
cells and the contribution of each layer of the autoencoder to obtain Z. The membership matrix U of the FKM algorithm is calculated based on Z and 
optimized for the self-supervised clustering network. Meanwhile, U is used to construct a cell similarity matrix to supervise the parameter update of 
the autoencoder. 

and MSI module can improve the performance of the model and 
capture richer feature information. 

MSS module consists of spatial attention module and channel 
attention module, as shown in Figure 2. The spatial attention 
module is employed to capture the similarity between cells within 
the same scale, focusing on their spatial relationships. Further-
more, the channel attention module is utilized to explore the 
deep-level features of cells across different scales. These two 
modules work in conjunction, sharing the weights of keys and 
queries, which reduces the parameter count and generates more 
efficient feature representations. 

By incorporating the spatial and channel attention modules, 
the model can effectively capture both local and global depen-
dencies within the data. The spatial attention module enhances 
the model’s ability to recognize spatial patterns and capture local 
correlations between neighboring cells. Meanwhile, the channel 
attention module allows the model to extract and emphasize the 

most informative features across different scales, enabling the 
exploration of deep-level characteristics of cells. 

As illustrated in Figure 3, MSI module performs a non-
dimensional reduction local cross-channel interaction strategy, 
which allows for lightweight capturing of the contributions 
from different layers of the network. Unlike the channel 
attention in MSS module, which calculates self-attention on 
the channel dimension to establish relationships between 
channels, MSI module uses a global contextual information 
calculation method to obtain the weight of each channel, thus 
learning the importance of each network layer in the multi-scale 
autoencoder. 

A regular autoencoder architecture can capture the primary 
features of cells, but it may overlook the rich structural infor-
mation contained in each layer of the autoencoder. We further 
integrate the output results of different network layers within 
the multi-scale autoencoder to address this issue using the MSA
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Figure 2. MSS module structural diagram. MSS module consists of spatial attention module and channel attention module. They share the keys-queries 
weights to generate better and more efficient feature representations. 

Figure 3. MSI module structural diagram. Given input features, scAMAC applies global average pooling to obtain a summary representation. 
Subsequently, it utilizes fast 1D convolution to capture inter-channel interaction information. By applying the sigmoid function, it generates channel 
weights that indicate the importance of each channel. Finally, these weights are used to combine the input feature map in a weighted sum operation. 

mechanism. This approach aims to explore deeper information 
between cells by fusing the features at each scale. 

To facilitate feature fusion, we first reduce the dimensionality 
of the decoded layers and their outputs Za and Zc using fully 
connected layers. The formula is as follows: 

Z′
a = φ

(
w11Za + b11

)
, (6)  

Z′
c = φ

(
w22Zc + b22

)
. (7)  

In Equations (6) and (7), φ represents the LeakyReLU activation 
function. w11, w22, b11 and b22 are the weight matrix and bias of 
the fully connected layer network, respectively. 

We concatenate Z′
a, Z′

c and Zb, and normalize them: 

Z′ = Z′
a + Z′

c + Zb. (8)  

Then, we use MSS module to explore the deep features of cells 
and their interrelationships, with the following formula: 

Ze = SA
(
Qshared , Kshared , Vspatial

)
+CA (Qshared , Kshared , Vchannel ) . 

s. t. Qshared = wqZ′ + bq, Kshared = wkZ′ + bk, 
Vspatial = wvsZ′ + bvs, Vchannel = wvcZ′ + bvc. 

(9) 

here, SA represents the spatial attention module, and CA repre-
sents the channel attention module. Qshared, Kshared, Vspatial and 
Vchannel are matrices representing shared queries, shared keys, 
spatial value and channel value vectors, respectively. wq, wk, wvs 

and wvc denote the weight matrices of the four different initialized 
fully connected layers. bq, bk, bvs and bvc denote the biases of the 
four different initialized fully connected layers. 

Spatial attention module SA is defined as follows: 

Zs = softmax
(

Qshared KT 
proj√

dk

)
· V′

spatial . 

s. t. Kproj = wpKshared + bp, 
V′

spatial = wsVspatial + bs. 

(10) 

The weights for spatial projection are denoted as wp and ws, 
and the biases for spatial projection are denoted as bp and bs. The  
dimension of dk is the same as the dimension of the latent feature 
Z′, which is used to prevent the softmax values from becoming too 
large, leading to the partial derivative of the attention mechanism 
approaching 0. 

The formula for channel attention CA is as follows: 

Zc = Vchannel · softmax

(
QT 

shared Kshared√
dk

)
. (11)
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For the output Ze of MSS module, we normalize it again and 
pass it to MSI module to learn the importance of each network 
layer in the autoencoder and obtain the final low-dimensional 
latent feature Z. 

Self-supervised clustering network 
We use the low-dimensional latent feature Z to compute the 
membership matrix U in the FKM algorithm, and optimize the 
self-supervised clustering network through U. Its loss function is 
as follows: 

LC−N = 
n∑

i=1 

k∑
j=1 

Hijuij
(
Zi − Cj

)2 . (12) 

In Eq. (12), Hij = 
(1+ε)

(√
(Zi−Cj)

2+2ε

)
(√

(Zi−Cj)
2+ε

)2 is weight of the loss optimized 

for self-supervised clustering. Zi represents the latent feature of 
cell i obtained by the model. Cj is the centroid of cluster j. uij is 
the membership of the ith cell in the jth cluster. ε is a balancing 
factor that affects the robustness of the self-supervised clustering 
network. 

The update formula for cluster center Cj is 

Cj =
∑n 

i=1 HijuijZi∑n 
i=1 Hijuij 

. (13) 

The update formula for membership uij is 

uij = 
exp

(− ∥∥Zi − Cj

∥∥
ε

)
∑k 

j=1 exp
(− ∥∥Zi − Cj

∥∥
ε

) , (14) 

where 
∥∥Zi − Cj

∥∥
ε = (1+ε)(Zi−Cj)

2√
(Zi−Cj)

2+ε 
,
∥∥Zi − Cj

∥∥
ε adaptively adjusts. When 

Zi − Cj is much smaller than ε,
∥∥Zi − Cj

∥∥
ε → 1+ε 

ε

(
Zi − Cj

)2 . When  

Zi − Cj is far greater than ε,
∥∥Zi − Cj

∥∥
ε → (1 + ε)

√(
Zi − Cj

)2 . 
To implement self-supervised learning for the multi-scale 

autoencoder and incorporate clustering information into the 
network for improved data reconstruction, we introduce an adap-
tive feedback mechanism. The corresponding self-supervised loss 
function is defined as follows: 

LS =
∑n 

i,j=1

(
IMui � IMuj − IMZi � IMZj

)2 

n 
, (15) 

where � denotes the dot product between vectors. IM denotes the 
unit vector. IMZi � IMZj represents the similarity score between 
different cells. 

Evaluation metrics for clustering 
In order to evaluate the clustering performance of scAMAC, two 
widely used clustering evaluation metrics are used in this paper: 
Normalized Mutual Information (NMI) [33] and Adjusted Rand 
Index (ARI) [34]. The larger the values of these metrics, the higher 
the correspondence between predicted labels and true labels, 
indicating better clustering performance. We set the true cell 
labels of scRNA-seq data as E = E1, E2, . . .  , ER and the predicted 
cell labels as E′ = E′

1, E′
2, . . .  , E′

R. 

Normalized Mutual Information 
NMI is used to measure the similarity between predicted values 
and true results, ranging from 0 to 1. The formula for calculating 
NMI is as follows: 

NMI = 
2MI

(
E′, E

)
H (E′) + H(E) 

. (16) 

MI
(
E′, E

)
is used to calculate the mutual information between 

E′ and E: 

MI
(
E′, E

) = 
R∑

i=1 

R∑
j=1

∣∣E′
i ∩ Ej

∣∣
N 

log 
N

∣∣E′
i ∩ Ej

∣∣
|E′| × ∣∣Ej

∣∣ . (17) 

H
(
E′) = −∑R 

i=1 
E′

i 
N log E′

i 
N and H(E) = −∑R 

j=1 
Ej 
N log Ej 

N represents 
the information entropy of labels L′ and L, respectively. N repre-
sents the total number of cells. 

Adjusted Rand Index 
ARI is used to measure the overlap between predicted clustering 
and actual clustering, and its range is [−1, 1]. The formula for ARI 
is: 

ARI =

∑
i,j

(
nij 

2

)
− 

⎡ 

⎢⎣∑
i 

⎛ 

⎜⎝ 
ai 

2 

⎞ 

⎟⎠ ∑
j 

⎛ 

⎜⎝ 
bj 

2 

⎞ 

⎟⎠ 

⎤ 

⎥⎦ 

⎛ 

⎜⎝ 
n 
2 

⎞ 

⎟⎠ 

1 
2

[∑
i

(
ai 

2

) ∑
j

(
bj 

2

)]
− 

⎡ 

⎢⎣∑
i 

⎛ 

⎜⎝ 
ai 

2 

⎞ 

⎟⎠ ∑
j 

⎛ 

⎜⎝ 
bj 

2 

⎞ 

⎟⎠ 

⎤ 

⎥⎦ 

⎛ 

⎜⎝ 
n 
2 

⎞ 

⎟⎠ 

, (18) 

nij represents the number of overlapping cells between E′
i and Ej. 

ai represents the number of cells of type i in E′, and  bj represents 
the number of cells of type j in E. 

RESULTS 
Comparison with other clustering methods 
In this section, we comprehensively evaluate the clustering 
performance of the scAMAC model by applying it to cluster 
14 real scRNA-seq datasets and obtaining the final predicted 
labels. We compare the clustering results of scAMAC with 
two popular machine learning methods, Seurat and SIMLR, 
as well as five advanced deep learning methods, including 
scDeepCluster, Contrastive-sc, scGMAI, scGAC and GraphSCC, 
all with default parameters. These deep learning methods are 
based on autoencoders, graph neural networks and contrastive 
learning. By including a diverse set of clustering techniques, 
spanning various types of single-cell deep clustering methods, 
we aim to comprehensively demonstrate the effectiveness of 
our approach. We use the same preprocessing method to select 
3000 highly variable genes from the raw data as input for all 
methods. Additionally, we use NMI and ARI, two widely recognized 
clustering metrics, to evaluate the clustering performance of the 
models. All clustering methods are run 10 times, and we take the 
average values. 

Figure 4 shows the comparison results of the eight clustering 
methods on the 14 scRNA-seq datasets. From the figure, we can 
intuitively see that scAMAC outperforms the other seven deep 
clustering methods on most of the datasets. Specifically, for



scAMAC | 7

Figure 4. Comparison of clustering metrics between scAMAC and seven other clustering methods. BHAT is short for the Bhattacherjee dataset. SIMLR 
and scGAC require large memory, so they could not obtain results on the Chen and BHAT datasets. 

the ARI metric, scAMAC achieves the best performance on 11 
datasets and ranks second with a very close value to the top on 
the Biase [ 35] dataset. For the NMI metric, scAMAC achieves the 
best performance on 10 datasets and ranks second on the Biase 
and Chen [36] datasets. All clustering methods perform poorly 
on the Camp2 [37] and Treutlein [38] datasets, which may be due 
to the high noise level and small data size of these datasets. 
Overall, scAMAC still has a significant advantage over other 
methods. 

To obtain a clear biological interpretation of the clustering 
results, we select two datasets, Camp1 [39] (777 cells) and Klein 
[40] (2717 cells), which are representative in terms of cell num-
ber. For each method, we used t-SNE to visualize the cluster-
ing results in 2D space. Figure 5 shows that scAMAC achieves 
good clustering results on both datasets, with clear boundaries 
between predicted clusters, better separating different cell types. 
In contrast, other methods fail to cluster cells with the same 
label together. For example, in Figure 5(A), Seurat, SIMLR, scDeep-
Cluster, Contrastive-sc, scGAC and GraphSCC tend to divide cells 
that belong to the same cluster into multiple sub-clusters, while 
scGMAI mixes multiple cell types together. 

For the Camp1 dataset, there are seven types of cells, includ-
ing ‘definitive endoderm’, ‘immature hepatoblast’, ‘ipsc’, ‘hepatic 
endoderm’, ‘mesenchymal stem cell’, ‘endothelial’ and ‘mature 
hepatocyte’. Our proposed scAMAC achieves high clustering accu-
racy on this dataset. To visually compare the performance of clus-
tering methods, we use a Sankey diagram to show the correspon-
dence between the clustering results of each method and the true 
cell types (Figure 6). It is observed that Seurat and SIMLR methods 
cluster three large categories of cells into one category, resulting 
in significant errors. scGMAI and GraphSCC tend to divide cells 
of the same type into multiple categories, while Contrastive-sc, 
scDeepCluster and scGAC tend to mix some cells of types with 
smaller quantities with other cells. In contrast, our proposed 
method effectively achieves valid division of each type. 

scAMAC is beneficial for recovering gene 
expression 
The recovery of gene expression in cells becomes particularly 
crucial when facing the ‘dropout’ effect in scRNA-seq data. The 

‘dropout’ effect refers to the phenomenon in scRNA-seq data 
where certain genes may have underestimated or entirely missing 
expression values due to technical limitations and the diversity 
of cell states. By restoring the gene expression in cells, we can 
alleviate the dropout effect, enabling a more comprehensive and 
in-depth understanding of cell states and functions. To evalu-
ate the effectiveness of scAMAC in reconstructing scRNA-seq 
data, we conduct experiments on two validated cell annotation 
datasets, Klein and Zeisel [41]. In the experiment, we normalize 
and logarithmically transform scRNA-seq data using the same 
preprocessing method. Then, we randomly replace a certain per-
centage (10, 30 and 50%) of non-zero expression values with 
zero to simulate the dropout phenomenon. Next, the processed 
data is reconstructed using AutoImpute, DCA, AutoClass and 
scAMAC. Finally, we use three evaluation metrics, L1 distance 
median, RMSE and cosine similarity, as indicators of the ability 
to recover gene expression. Higher cosine similarity and lower 
L1 distance median and RMSE indicate better interpolation per-
formance. According to Figure 7, scAMAC is competitive with 
AutoImpute, DCA and AutoClass, either ranking first or second 
in all metrics. In fact, when considering all three metrics together, 
scAMAC performs even better than the other methods. Therefore, 
scAMAC can effectively alleviate the dropout effect, which is 
beneficial for the recovery of gene expression. 

scAMAC is beneficial for cell trajectory inference 
Reconstructing cell trajectories is a common task in scRNA-seq 
analysis, which is important for studying cell differentiation, cell 
cycle changes, and cellular responses to external stimuli. Typ-
ically, cell trajectory analysis starts by reducing the complex-
ity of gene expression data to select important features more 
effectively, then constructing the trajectory path of cell dynamic 
changes, and finally mapping each cell to the corresponding 
position on this trajectory. Monocle3 [42] is a widely used method 
for trajectory analysis of scRNA-seq data, which can generate 
corresponding cell trajectories from the data features of cells. 
Therefore, in the experiment, we input the low-dimensional cell 
features obtained by scAMAC and the original data into Monocle3 
respectively to obtain cell time trajectories. We also used Pseudo-
temporal Ordering Score (POS) and Kendall’s Rank Correlation
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Figure 5. Comparison of two-dimensional visualization of embedded representations. (A) Comparison of two-dimensional visualization for different 
methods on the Camp1 datasets. (B) Comparison of two-dimensional visualization for different methods on the Klein datasets. 

Score to compare the accuracy of the low-dimensional data rep-
resentation obtained by scAMAC and the original data in charac-
terizing cell trajectories to demonstrate the effectiveness of data 
dimensionality reduction by scAMAC. Kendall’s Rank Correlation 
Score assesses consistency in ordering between two sets of obser-
vations, while POS reflects the relationship between predicted 
pseudo-time order and actual time labels, both aiming for higher 
scores when alignments occur. We use the common time-series 
scRNA-seq dataset Petropoulos [ 43], which consists of scRNA-seq 
data from embryonic development from day 3 to day 7. From 
Figure 8, it can be observed that the cell trajectory reconstructed 
by the original data has a gap with the true time label, and the 

trajectory is not continuous. In contrast, the cell pseudo-time 
trajectory inferred by scAMAC has a highly corresponding rela-
tionship with the true time label. Furthermore, scAMAC achieved 
the best POS and Kendall scores, indicating that scAMAC is helpful 
in reconstructing cell trajectories and can perform effective data 
dimensionality reduction. 

Collaboration between MSS and MSI module in 
MSA 
In this experiment, we explore the collaborative relationship 
between MSS module and MSI module in MSA mechanism, 
which are important components of scAMAC, in clustering and
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Figure 6. The Sankey diagram comparing the clustering results of scAMAC and seven other methods on the Camp1 dataset. 

Figure 7. Imputation performance comparison. (A) For the Klein dataset with dropout rates of 10, 3 and 50%, the Median L1 distance, RMSE and cosine 
similarity comparisons were performed between scAMAC and the other three methods. (B) For the Zeisel dataset with dropout rates of 10, 30 and 50%, 
the Median L1 distance, RMSE, and cosine similarity comparisons were performed between scAMAC and the other three methods. 

data reconstruction. Therefore, we evaluate the necessity of 
these two components in the model by forming three different 
models—scAMAC-MSS, scAMAC-MSI and scAMAC-MSA—which 
represent the removal of MSS module, MSI module and both 
mechanisms, respectively. We evaluate the average clustering 
metric values of these models on four datasets: Camp1, Muraro 
[ 44], Zeisel and Goolam [45], and the results are shown in 
Figure 9. We can observe that scAMAC performs the best 
in both NMI and ARI metrics, followed by scAMAC-MSI and 
scAMAC-MSS. The scAMAC-MSA model has the worst clustering 
performance, indicating that both MSS module and MSI module 
are necessary components of scAMAC for effective clustering 
performance. 

In summary, MSS module and MSI module play important 
roles in the scAMAC model, and their collaborative relationship 
further enhances the performance of the model. This indicates 
that the interaction between MSS module and MSI module has a 
significant impact on the final result of the model. 

Ablation study 
scAMAC consists of two main modules: denoising deep multi-
scale autoencoder and self-supervised clustering network. The 
multi-scale autoencoder integrates feature information from 
the encoding and decoding layers, while the self-supervised 
clustering module uncovers deep relationships between cells. 
Both modules are indispensable parts of the model. We conduct
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Figure 8. Cell trajectory and pseudo-time plot of the Petropoulos dataset. (A) Monocle3 uses raw data as input to reconstruct trajectories and estimate 
pseudotime. (B) Monocle3 uses the low-dimensional representation obtained by scAMAC as input to reconstruct trajectories and estimate pseudotime. 

ablation experiments on 14 real datasets to evaluate their impact 
on clustering results using ARI values. In the experiments, we 
first reduce the dimensionality of the original data to the same 
dimensionality as the latent features of the multi-scale autoen-
coder and use it as input data for the self-supervised clustering 
module. Then, we compare the results with those obtained 
using the autoencoder. The comparison results are shown in 
Figure 10(A). When we remove the multi-scale autoencoder, the 
clustering performance of all datasets deteriorates, and the 
ARI values are lower than before. The changes are particularly 
significant in the Chen and Klein datasets. Next, we directly apply 
the low-dimensional latent features obtained by the autoencoder 
to perform common K-means clustering and compare the results 
with those obtained using the self-supervised clustering module. 
The comparison results are shown in Figure 10(B). Removing the 
self-supervised clustering module results in poorer clustering 
performance, especially on the Xin [46], Chen and Treutlein 
datasets. In summary, both the multi-scale autoencoder and the 

self-supervised clustering module play important roles in the 
model. 

CONCLUSION 
This work presents a self-supervised clustering method based 
on an adaptive multi-scale autoencoder, called scAMAC, which 
effectively performs cluster assignment and reconstruction of 
scRNA-seq data. The method utilizes the MSA mechanism to fuse 
the feature information from the encoder, hidden, and decoder 
layers of the multi-scale autoencoder, obtaining a more effective 
representation of latent features of cells. The MSA mechanism 
allows for the exploration of cell-cell correlations within the same 
scale and the deep features of cells across different scales. The 
self-supervised clustering network calculates the membership 
matrix using the fused latent features and optimizes the clus-
tering network based on the membership matrix. Moreover, the
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Figure 9. Clustering performance without different attention compo-
nents in scAMAC. 

introduction of an adaptive feedback mechanism enables self-
supervision of the multi-scale autoencoder through clustering 
results, facilitating model optimization and ensuring the gener-
ation of meaningful reconstructed data. 

In simple terms, scAMAC combines information from different 
layers more effectively, allowing a better understanding of cell 
relationships. It not only helps cluster cells but also reconstructs 
data. Compared with existing models, scAMAC stands out by 
considering these connections more thoroughly, offering a new 
way to use deep learning for scRNA-seq data analysis and pro-
viding fresh insights into understanding cell behaviors. In the 
experimental section, scAMAC demonstrates its excellent clus-
tering performance on scRNA-seq data from various tissues and 
scales. It proves to be effective in gene expression recovery and 
inferring cell trajectories. Overall, scAMAC is a promising method 
for scRNA-seq data clustering. 

Key Points 
• We develop a novel self-supervised clustering method 

based on an adaptive multi-scale autoencoder (scA-
MAC), addressing a crucial oversight in existing deep 

Figure 10. Clustering performance of remove different component in 
scAMAC. (A) Comparison of ARI values with and without using the multi-
scale autoencoder in scAMAC. (B) Comparison of ARI values with and 
without using the self-supervised module in scAMAC. 

models. These models often neglect the interconnec-
tions among network layers, resulting in the loss of vital 
structural information within the layers. 

• scAMAC stands out by incorporating a Multi-Scale 
Attention (MSA) mechanism, effectively fusing feature 
information from the encoder, hidden and decoder lay-
ers. This innovative approach enables the exploration of 
cellular correlations within the same scale while captur-
ing deep features across different scales. 

• scAMAC employs an adaptive feedback mechanism, 
enhancing the representation of cell features. Through 
experiments, we demonstrate scAMAC’s effectiveness 
over advanced clustering and imputation methods in 
both data clustering and reconstruction tasks. 
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CODE AVAILABILITY 
scAMAC is implemented in Python 3 (version 3.6) using PyTorch 
(version 1.10.2+cu113). All experiments are conducted on 
an NVIDIA 3090 GPU with 24 GB of memory. The source 
codes and supplementary materials are available online at 
https://github.com/yancy2024/scAMAC. 
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