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Abstract

In this review, we explore the growing role of artificial intelligence (AI) in advancing

the biomedical applications of human pluripotent stem cell (hPSC)-derived organoids.

Stem cell-derived organoids, these miniature organ replicas, have become essential

tools for disease modeling, drug discovery, and regenerative medicine. However, ana-

lyzing the vast and intricate datasets generated from these organoids can be ineffi-

cient and error-prone. AI techniques offer a promising solution to efficiently extract

insights and make predictions from diverse data types generated from microscopy

images, transcriptomics, metabolomics, and proteomics. This review offers a brief

overview of organoid characterization and fundamental concepts in AI while focusing

on a comprehensive exploration of AI applications in organoid-based disease model-

ing and drug evaluation. It provides insights into the future possibilities of AI in

enhancing the quality control of organoid fabrication, label-free organoid recognition,

and three-dimensional image reconstruction of complex organoid structures. This

review presents the challenges and potential solutions in AI-organoid integration,

focusing on the establishment of reliable AI model decision-making processes and

the standardization of organoid research.
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Translational Impact Statement

The hPSC-derived organoids have been widely applied in disease modeling, drug evaluation, and

regenerative medicine. The differentiation, structure, and function of organoids are character-

ized by microscopic imaging, transcriptomics, metabolomics, and proteomics by generating large

and complex datasets. Currently, most post-experimental data analysis is inefficient and prone

to being human-biased. To address this issue, AI is found to be an effective approach to learning

from substantial amounts of complex data and subsequently deriving the biomedical meaning

Sudhiksha Maramraju and Andrew Kowalczewski contributed equally to this study.

Received: 29 June 2023 Revised: 7 December 2023 Accepted: 13 December 2023

DOI: 10.1002/btm2.10641

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2024 The Authors. Bioengineering & Translational Medicine published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers.

Bioeng Transl Med. 2024;9:e10641. wileyonlinelibrary.com/journal/btm2 1 of 18

https://doi.org/10.1002/btm2.10641

https://orcid.org/0000-0001-9335-8201
mailto:zma112@syr.edu
mailto:yanghuaxiao@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/btm2
https://doi.org/10.1002/btm2.10641


and applications of hPSC-derived organoids. Here, we comprehensively reviewed AI-assisted

biomedical and translational research in hPSC-derived organoids.

1 | INTRODUCTION

Organoids are three-dimensional (3D) cell constructs that can be

directly derived from human pluripotent stem cells (hPSCs). An orga-

noid contains a complex multicellular cluster of organ-specific cells

that closely resemble the structure and function of an organ.1,2 Due

to their striking similarity to organs, organoids have been proven to be

beneficial for the study of organ development and human diseases.3

Researchers are actively developing various organoids by creating an

optimal environment with developmental-relevant biochemical and

biophysical cues for stem cells to differentiate and resemble engi-

neered tissues or organs with multiple cell types and intercellular

crosstalk, thus increasing the predictive validity related to organ and

tissue pathophysiology and function.4 The hPSC-derived organoids

have been widely used in drug evaluation, regenerative medicine, and

disease modeling in the past decade. The physiological replication of

human organs by the hPSC-derived organoids allows for testing drug

responses and efficacies more ethically by replacing animal models in

preclinical studies in drug discovery and development.5 In regenera-

tive medicine, organoids can also be used to develop new methods to

regrow, repair, or replace damaged or diseased tissues.6 Moreover,

organoid-based disease models have been applied to study genetic

disorders using genetically engineered hPSCs.

In general, hPSC-organoids are extensively characterized using a

broad range of experimental approaches, including transcriptomics,

metabolomics, proteomics, single-cell analysis, and microscopic imag-

ing, which generate large and multimodal datasets that require fur-

ther analysis and summarization.2,7 However, current data analysis

methods are highly inefficient because they require researchers to

handle large volumes of data with varying levels of complexity manu-

ally or semi-manually. More importantly, as the volume and complex-

ity of the data grow, the conclusions concerning the data become

more difficult to obtain,8 and human bias and intuition can lead to

incorrect or contradictory conclusions in biomedical research and

discovery. To address these challenges, several automatic

approaches using artificial intelligence (AI) have been enabled due to

recent advancements in computer and data science and engineering.

AI is capable of augmenting, and in limited cases replacing, human

intelligence, improving efficiency, and increasing accuracy with less

human bias and subjectivity9. Computer vision-based AI can examine

and analyze data from the organoids and be more systematically

evaluated than human judgment, resulting in more accurate results

that can be utilized in future (pre)clinical trials, diagnoses, and

treatments.10

This review provides a brief overview and introduction for bio-

medical researchers with limited AI background on the recent pro-

gress in AI-assisted research of hPSC-derived organoids. We highlight

how the integration of AI and related technologies can accelerate the

biomedical research of hPSC-derived organoids. We begin by intro-

ducing the typical methods for characterizing hPSC-derived organoids,

then further introducing the basic knowledge of AI in biomedical stud-

ies, and then how AI-assisted analysis of the complex and large data-

sets generated from organoid-specific characterizations further

enhances the hPSC-derived organoid systems. Finally, we discuss the

future directions and limitations of AI-hPSC-derived organoids inte-

grated system.

2 | DATA COLLECTION FROM ORGANOID
CHARACTERIZATION

The hPSC-derived organoids are typically characterized by multiomics

of transcriptomics, metabolomics, proteomics, and microscopic imag-

ing for organoid functions and morphology/structure (Figure 1). Dif-

ferent types of datasets (e.g., text and image) generated by various

characterization methods are further analyzed by AI.

2.1 | Multiomics analysis

The use of next-generation RNA sequencing (RNA-seq) technologies

allows researchers to profile transcriptomes11 and analyze the result-

ing datasets to decipher the transcriptional activity of both coding and

non-coding RNAs and target key genes and transcripts.12 RNA-seq

analysis is particularly valuable in comparing the differential transcrip-

tome of hPSC-derived organoids under various conditions, such as

different developmental stages, pathological conditions, and treat-

ments at a molecular level.13,14 For example, time-course bulk RNA-

seq has been applied to examine the retinal organoid differentiation

from hPSCs, to elucidate the temporal expression of retinal differenti-

ation markers and mRNA alternative splicing occurring during in vivo

retinogenesis.15 Meanwhile, scRNA-seq shows great potential in

delineating the heterogeneity and specificity of multicellular organoids

composed of tens of thousands of individual cells. scRNA-seq has

been used to determine organoid-to-organoid variability.16 This tech-

nology also allows researchers to uncover disease mechanisms that

are related to multiple rare cell populations, which are not visible

when investigating a large group of cells together.17 scRNA-seq is also

used to quantify organoid cell resemblance to primary tissue equiva-

lents in the brain, gut, liver, heart, and kidney and to detect cell-

specific responses to environmental factors and disease

situations.18–20 Additionally, cellular and molecular heterogeneity in

brain organoids has been dissected using single-cell transcriptomics or

epigenomics to reveal the complex organization of brain organoids.21

Overall, transcriptome profiling and analysis help researchers discover

genes that are differentially expressed under diverse contexts, leading
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to a better understanding of the genes and processes that are linked

to developmental and pathophysiological conditions.

Proteomics is the study of these proteins to determine their

identity, abundance, and function associated with cells, tissues, or

organisms.22 Meanwhile, metabolomics analyzes the metabolites

are products and intermediates of cellular metabolism that play

essential roles in energy conversion, signaling, epigenetic influence,

and cofactor activity.23 For example, mass spectrometry-based pro-

teomics was used to study hPSC-derived small intestine organoids

to distinguish between crypt-like and villus-like formations. This

approach successfully separated the organoids with a crypt-like

proliferative phenotype and the ones with a villus-like phenotype

enriched for enterocytes and goblet cells. By displaying the proteins

expressed by the organoids, this study provided a framework for

further investigation of the underlying mechanisms of intestinal

ischemia–reperfusion injury and promoting the regeneration of

specific pathways in crypt-like organoids.24 In a recent study, pro-

teomics discovered several dysregulated proteins from neural pro-

genitor cells from schizophrenic patients-derived cerebral

organoids that can alter and disturb normal neuronal develop-

ment.25 Metabolomics was applied to the kidney organoid derived

from human induced pluripotent stem cells (hiPSCs) from healthy

patients to investigate the metabolic dynamics and function during

kidney organoid differentiation.26 It was validated that the domi-

nant metabolic alteration was from glycolysis to oxidative phos-

phorylation in the hiPSC differentiation process. Additionally,

glycine, serine, and threonine metabolism had a regulatory role dur-

ing hiPSC-derived kidney organoid formation and lineage matura-

tion. Metabolomics was also applied to human endometrial

epithelial organoids to distinguish the donor differences in endome-

trial epithelial cells with a greater resolution.27 Accordingly, we

summarized some representative examples of multiomics analysis

on hPSC-derived organoids (Table 1).

2.2 | Microscopic image analysis

In the context of hPSC-derived organoids, phase contrast, and fluo-

rescence microscopy are commonly used for both fixed immunos-

taining and live-cell imaging. Fluorescence microscopy has

contributed significantly to the characterization of the cellular com-

position of organoids and their phenotypic resemblance to their

F IGURE 1 Integration of AI-organoid system. Step 1: dataset construction from organoid imaging, function measurement, and multiomics;
Step 2: data preprocessing based on data type; and Step 3: machine/deep learning model creation with a closed-loop optimization by parameter/
hyperparameter tuning, validation, and data visualization.
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original tissues, by labeling specific targets with fluorescent dyes to

visualize their distribution within the organoid under a fluorescent

microscope.28,29 Recent advancements in imaging techniques have

made it possible to visualize 3D organoid structures using confocal/

two-photon microscopy and tissue clearance techniques at high-

penetration depths without requiring tissue sectioning.30 For

instance, tissue clearing has been applied to hiPSC-derived ureteric

bud organoids using the Clear, Unobstructed Brain/Body Imaging

Cocktails and Computational Analysis (CUBIC),31,32 allowing

researchers to visualize epithelial polarity and tubular lumen and

repeat branching morphogenesis.33 Additionally, the passive clearing

technique (PACT) has been optimized for 3D imaging of intact

hiPSC-derived retinal organoids, enabling researchers to visualize the

fine morphology and structural organization of photoreceptor cells

and bipolar cell layers.34

Recently, live-cell imaging of hPSC-derived organoids has been

increasingly utilized to track organoid formation and functional mea-

surement. For instance, phase-contrast microscopy has been used to

track the morphology formation of hPSC-derived cerebral organoids

for over 58 days, revealing neuroepithelial buds with limited areas of

disorganized migratory cells.35 Similarly, live-cell imaging has been

used to measure the contractility, calcium transient, and action poten-

tial of cardiac organoids.18,36 Similarly, researchers have utilized cal-

cium imaging to study sophisticated, self-organized human brain

network activity in cerebral organoids, including both synchronized

and non-synchronized patterns.37 Fluorescent gene reporters are also

encoded in hPSC lines for in situ tracking gene/protein-specific cell

differentiation and localization in hPSC-derived organoids.38 To fur-

ther investigate the differentiation and development of cardiovascular

cells, green fluorescence protein (GFP)-TNNT2 and mOrange fluores-

cence protein (mOrange)-VE-Cadherin are used along with long-term

live-cell imaging.18 Reporter gene systems have been used to trace

the cell ontogeny of a brain organoid based on somatic mutations at a

molecular level.39

3 | INTEGRATION OF AI WORKFLOW
WITH ORGANOID SYSTEMS

Manual or semi-manual methods for the hPSC-derived organoid

characterization and analysis are becoming increasingly inefficient as

the amount and complexity of the data continue to grow. Advance-

ments in computer and data science have led to the development of

numerical automatic methods for interrogating and analyzing orga-

noids using AI algorithms that can observe patterns in datasets and

then make predictions.40 While the fundamentals of AI are rooted in

statistics and complex mathematics, individuals interested in AI

applications can take advantage of free, online libraries, such as Ten-

sorFlow, Scikit-Learn, Keras, PyTorch, and Theano, which do not

require a deep understanding of AI principles. These accessible AI

libraries enable dataset unraveling, pattern identification, and

predictive insights in organoid research.41 Moreover, they automate

labor-intensive tasks like image analysis, cell tracking, and organoid

classification, reducing human errors and optimizing efficiency.42

Herein, we provide a general workflow of how to implement AI tech-

niques in organoid studies with three steps as shown in Figure 1,

including data preprocessing, dataset construction, model selection

of hyperparameter tuning, and data analysis and validation methods.

We also provide corresponding illustrations to summarize the ML

and DL algorithms that are commonly used in hPSC-derived organoid

research (Figure 2).

3.1 | Dataset construction and preprocessing

Raw data, such as organoid images and relevant text files, are com-

bined to create a comprehensive dataset for AI models to produce

conclusive results. Input data, known as features, represent measur-

able properties of the samples in a dataset. Selecting the right features

is crucial before training a machine learning (ML) model.43 While not

TABLE 1 Summary of multiomics analysis for hPSC-derived organoids.

Methods Purposes Study objectives References

Transcriptomics • Profiling transcriptomes

• Deciphering transcriptional activities and pathways

• Explicating the expression of hPSC retinal organoid

differentiation markers and mRNA alternative

splicing

• Determining organoid-to-organoid variability

• Quantifying organoid cell resemblance to primary

tissue equivalents

[15,16,21]

Proteomics • Examining proteins to determine their identity,

abundance, and function

• Investigating their identity, quantity, and role in

relation to cells, tissues, or organisms

• Differentiating between crypt-like and villus-like

formations in hPSC-derived small intestine

organoids

• Discovering dysregulated proteins in hiPSC-derived

Schizophrenic-sourced cerebral organoids

[24,25]

Metabolomics • Analyzing metabolites to provide insights into

metabolic processes

• Investigating metabolic dynamics and function in

hiPSC-derived kidney organoid differentiation

• Distinguishing the donors for human endometrial

epithelial organoids

[26,27]
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always necessary, output labels indicate what the model predicts with

input data. The dataset is divided into training and testing sets for

model instruction and performance evaluation. Features generally fall

into two categories: numeric and categorical variables. Most algo-

rithms require data to be presented numerically to be processed

effectively. If the data is non-numeric, categorical labels need to be

preprocessed for AI implementation using common techniques, such

as one-hot encoding and ordinal encoding. One-hot encoding repre-

sents categorical variables using binary arrays. For example, in a study

predicting cell types within an organoid image, if there are three dis-

tinct cell types, each value in a 3-length array signifies a category (pre-

sent or not present). For instance, if cell type one is present, the array

is [1, 0, 0]. If both cell types one and three are present, the array

becomes [1, 0, 1].44 In contrast, ordinal encoding is employed when

there is a relationship among distinct input types. It assigns integers

to each data category instead of binary values, establishing a ranking

that the model can utilize for predictions.

3.2 | Supervised machine learning models

Processed datasets are employed to train and validate AI models,

ensuring their suitability for testing environments. The choice of AI

models depends on the problem and data structure, primarily utilizing

supervised or unsupervised learning depending on the availability of

target data for prediction.45 Supervised learning is applied when data-

sets include input and target output pairs. During training, adjust-

ments are made to align the model's predictions with true target

F IGURE 2 Overview of AI algorithms used in hPSC-derived organoid research. (a) Linear regression for linear fitting. (b) Logistic regression
for binary classification. (c) Support vector machine (SVM) showing maximized margins to determine an optimal hyperplane for classification
purposes. (d) kNN with different k-values for classification purposes. (e) Simple 2-layerdecision tree hierarchy, (f) which can be further expanded
into a random forest for classification purposes. (g) Artificial Neural Network (ANN) comprised of 10 neurons in three hidden layers with bias
factors for classification purposes. (h) Convoluted Neural Network (CNN) with a 18-layer ResNet architecture for image classification.
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values. For example, a trained ML model can categorize input and

classify if an image of a brain organoid contains a tumor or not.40

Model accuracy, determined by the percentage of correct classifica-

tions over total classifications made during training, is a common eval-

uation metric, though various additional metrics are valuable,

especially for multiclass classification problems.

Selecting the appropriate ML model is crucial for the success of

organoid analysis. There is a wide array of ML algorithms to consider,

each tailored to different problem types. Linear regression, a funda-

mental supervised learning method, excels in modeling complex rela-

tionships and conducting feature selection via regularization

techniques like Lasso and Ridge regression. However, it is constrained

by its linearity and dependence on well-defined hypothesis functions.

In contrast, logistic regression handles classification tasks by con-

straining outputs between 0 and 1, making it versatile for multi-class

scenarios.46 Naive Bayes, akin to logistic regression, predicts class

labels based on joint probability calculations using Bayes Theorem,

assuming feature independence, though this assumption may limit its

effectiveness in complex or correlated datasets. Support-Vector

Machines (SVM) aim to maximize class separation by identifying opti-

mal hyperplanes, with the capacity to employ non-linear kernels, but

they may overfit and demand significant computation, limiting suit-

ability for large, intricate datasets. k-Nearest Neighbors (k-NN) relies

on geometric proximity for classification, featuring tunable parameters

for neighbor count and distance metric. However, it is computation-

ally intensive, best suited for smaller datasets, and susceptible to over-

fitting in high dimensions. Decision trees, in contrast to traditional

linear classifiers, can capture non-linear decision boundaries through

recursive branching into conjectures. They split based on data labels,

with depth determining decision granularity. To enhance accuracy,

random forests were introduced, introducing randomness via feature

dimension exclusion, and their decisions are averaged for a more gen-

eralizable model. However, the recursive nature of tree structures can

lead to overfitting, especially with an excessive number of trees.

In an early study that applied ML models to hPSC-based cardiac

research, different ML models were tested to distinguish between

normal and abnormal Ca2+ signals collected from hiPSC-derived cardi-

omyocytes (hiPSC-CMs). Compared with discriminant analysis, naive

Bayes, decision trees, and the k-NN model achieved up to 80% accu-

racy in classifying the signals.47 A more recent study also evaluated

different ML models, including decision trees, quadratic discriminant

analysis, SVM, k-NN, and naive Bayes, to differentiate the contractile

profiles of hiPSC-CMs from either healthy wild-type controls or a

patient with Timothy Syndrome. In this study, decision trees and qua-

dratic discriminant analysis achieved the highest accuracy at 92%, sur-

passing SVM and k-NN at 91%.48 These studies demonstrate the

importance of testing multiple ML models for better performance, due

to the differences in classification purposes or size and structure of

the original dataset. These approaches can be readily applied to the

field of hiPSC-CMs for enhancing evidence-based decision-making in

drug development and disease modeling, by analyzing complex data-

sets in an objective, sensitive, automated, and user-independent

fashion.

3.3 | Unsupervised learning

Unsupervised learning is instrumental in drawing insights from

input data and identifying correlations or patterns that experts can

later analyze and leverage for their objectives. Utilizing unlabeled

data is generally more cost-effective and less time-consuming, as

data annotation by experts is unnecessary.49 Common unsuper-

vised ML approaches, such as dimensionality reduction and cluster-

ing, are commonly used together in a data analytics workflow.

Dimensionality reduction techniques reduce the number of dimen-

sions or features in a dataset by embedding the higher dimensional

data structures into a lower dimensional space while maintaining

the data's structure in the new projected space called the latent

manifold. Meanwhile, data clustering helps reveal similarities and

differences in the features from different samples. Given that ML

algorithms typically require more samples than features for predic-

tion tasks, unsupervised dimensionality reduction can create opti-

mal data representations for subsequent data clustering or

supervised learning.50

Principle component analysis (PCA), as a tractional dimension-

ality reduction technique, only focuses on the linear relationship

within the data structure and projects the variation into a reduced

feature space,51 while newer developments, such as multidimen-

sional scaling,52 isomaps,53 locally linear embedding,54 and t-dis-

tributed stochastic neighbor embedding (t-SNE),55 utilize

nonlinear transforms to preserve the pairwise distance between

points projected into lower dimensional space. Currently, the most

used technique, uniform manifold approximation (UMAP), is built

upon t-SNE by introducing repulsive forces between points into

their latent manifolds to better preserve global data structure.56

After data dimensionality reduction, clustering algorithms are

required to identify clusters within the feature space. Hierarchal

clustering algorithms are built by recursively splitting pairs of data

by similarity to their closest neighbor until all pairs have been

split.57 k-means clustering separates available data into a

k-number of clusters by overall similarity based upon relative

averages, making it very useful when the number of presumed

clusters is known.58 Similar to hierarchal clustering, density-based

spatial clustering of applications with noise (DBSCAN), or its adap-

tive application (ADBSCAN), does not require a researcher to

specify the number of clusters. DBSCAN can be adapted to data-

sets that do not have clear clusters by locally focusing on the rela-

tive density of points and automatically ignoring the outliers

within the feature space.59

Both dimensionality reduction and data clustering have been

extensively utilized in single-cell transcriptomics analysis. Recently,

these data-driven analytical techniques have been explored for

analyzing the phenotypic properties of hiPSC-CMs. For example, a

non-linear dimensionality reduction technique, uniform manifold

approximation and projection (UMAP), was employed to project the

contractility waveforms generated from beating hiPSC-CMs into a

two-dimensional (2D) space for visualizing and clustering the cells

with different contractile behaviors. In addition, fast Fourier transform

6 of 18 MARAMRAJU ET AL.



(FFT)-based data preprocessing could enhance the performance of an

SVM model in classifying a contractility waveform between normal

and abnormal ones.60 In a hiPSC-CM cardiotoxicity study, three ML

models, SVM, random forest, and neural network, were used to clas-

sify three different drugs (verapamil, isoproterenol, or cisapride).

Results showed that the neural network outperformed the other two

models with an initial accuracy of 71.4% in drug classification, which

was boosted to 80% accuracy with the addition of data preprocessing

steps. In addition, t-SNE, a dimensionality reduction technique, was

used to visualize how data preprocessing can help the separation of

drug effects and allow ML algorithms to detect subtle variations

among different drugs.61 In another study, the t-SNE algorithm was

used to investigate the structure–function relationships of cardiac

organoids generated from different micropattern sizes. This data visu-

alization technique allowed us to identify the correlation between pat-

tern size and parametric functional parameters of cardiac organoids,

revealing important associations.62

3.4 | Deep learning neural networks

Artificial neural networks (ANNs) have evolved since the late 1950s

into sophisticated frameworks today.63,64 ANNs consist of intercon-

nected layers of neurons that process inputs, like images, through hid-

den layers with randomized weights before reaching the output layer.

Neurons compute outputs using activation functions, and weights

control information flow. Backpropagation with gradient descent aids

weight updates, though challenges like vanishing and exploding gradi-

ents can occur. Deep learning (DL), a subset of artificial neural net-

works (ANNs), employs layered neural networks that process data in

sequential stages, akin to the human brain, transforming input from

low-level to high-level features for predictive tasks.65 Although DL

demands substantial computational power, large datasets, and length-

ier training periods compared with standard ML models, it automati-

cally extracts features, eliminating the need for manual feature

identification—particularly advantageous for processing unstructured

data like images and audio, where manual labeling can be impractical

and yield inaccurate results.66

Particularly, convolutional neural networks (CNNs) have gained

much attention in the fields of hPSCs and organoids for their capabil-

ity of extracting image features through convolutional layers, ensuring

accurate classification. For example, a CNN-based image analysis sys-

tem integrated classification, segmentation, and statistical modeling to

measure morphological dynamics during hiPSC reprogramming and

guide colony selection in a label-free non-invasive manner. The time-

lapse bright-field images were processed using a sliding window, and

each window image was then classified by a CNNs model to detect

the earliest cellular texture changes after the induction of reprogram-

ming in human somatic cells. Verified by an OCT4-GFP reporter cell

line, this trained CNNs model was able to predict distinct phases of

colony formation during hiPSC reprogramming and identify the opti-

mal phase for colony selection, as a practical solution for analyzing

large datasets where fluorescence reporting is inefficient and

susceptible to human error.67–70 In a study of brain organoids, a deep

CNN was trained to classify immunofluorescent images of wild-type

(WT) and Huntington's Disease (HD) neuruloids generated using

micropatterning techniques.71 The CNN's image classification prow-

ess enabled precise phenotypic categorization despite biological noise,

allowing near-perfect discrimination between WT and HD at the indi-

vidual neuruloid level and per-well average score. Statistical assess-

ment, including Z0 factor comparison with other ML methods,

affirmed model effectiveness in discrimination.

3.5 | Hyperparameter tuning and model validation

Hyperparameters wield significant influence over the accuracy and

efficiency of ML outcomes.72 In some cases, tinkering with hyperpara-

meters can yield effects comparable to redesigning the entire ML

model.73 For instance, when fitting the data points using regression

approaches, the degree of polynomials (a linear, quadratic, or cubic

function) is a hyperparameter to be considered. Hyperparameters

serve as a blueprint for the model's architecture, dictating crucial

aspects such as the number of branches in a decision tree, clusters in

a clustering algorithm, or the number of neurons and layers in a deep

neural network. Unlike model parameters, which evolve autono-

mously throughout the training process to fit the input–output rela-

tionships, hyperparameters are typically set manually or optimized via

validation processes before training commences.74,75

Hyperparameters directly influence model complexity, which is

critical since some datasets are prone to overfitting or underfitting.

Optimizing hyperparameters aims to attain the model's best perfor-

mance. This can be accomplished manually through trial and error,

while automated methods like grid search and random search provide

systematic ways to discover optimal hyperparameter combinations for

ML models.76 For instance, in a methodology combining computa-

tional analysis and cardiac organoids to replicate heart development in

both healthy and pathological conditions, hyperparameters played a

critical role in classification functions for cell type, anatomical zone,

and laterality.77 In essence, hyperparameter optimization becomes an

indispensable step in harnessing the full potential of AI models, allow-

ing researchers to tailor their ML algorithms to intricately match the

complexity and nuances of their datasets and research objectives.

Validation methods play a pivotal role in the training process, as

they assess ML model performance on unseen data through various

metrics (accuracy, precision, and mean root square error), indicating

the model's ability to generalize with new data.78 Among these met-

rics, the error rate stands out as a critical indicator for model predictiv-

ity. Commonly used in supervised learning, two prevalent validation

techniques are k-fold cross-validation and leave-one-out cross-

validation (LOOCV). In k-fold cross-validation, the dataset is divided

into k groups, with one group serving as the testing set and the other

k � 1 groups as the training set. This process is repeated k times, with

each group serving as the testing set once, and the results are aver-

aged to evaluate model adaptability to new data.79 LOOCV, a variant

of k-fold cross-validation, assigns each data point in the dataset of size
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k as the testing set, while the rest of the data is the training set. This

process repeats k times, so every single data point serves as the test-

ing set once, allowing for a comprehensive assessment of the model's

performance.80 However, LOOCV becomes impractical with large

datasets, owing to its high computational demands and time-consum-

ing nature.81

4 | AI-ENABLED ANALYSIS FOR hPSC-
DERIVED ORGANOIDS

The abundance of multidimensional data from high-content and

high-resolution imaging, multiomics, and functional assays presents

challenges in correlation and analysis. AI has emerged as a promis-

ing solution, meeting the demands, and assisting in overcoming

these challenges in the field of hPSC-derived organoids. With

advancements in computer processing capacities and more sophis-

ticated algorithms, ML/DL can provide more efficient and nuanced

analytical approaches,82–84 which can help unravel the complex

interplay of biological factors and gain mechanistic insights in orga-

noid research.63 Here, AI applications in hPSC-derived organoid

models for various biomedical applications are summarized in

Table 2.

4.1 | Enhancing comparative omics analysis

AI serves as a potent tool that greatly enhances the analysis, interpre-

tation, and practical utilization of multidimensional omics data within

the realm of biomedical science and engineering. One innovative

application involves the utilization of synthetic data generated

through generative ML models.100–102 This synthetic data can be

instrumental in benchmarking various stages of the analytical pipeline,

including sample processing, multidimensional separation, and data

acquisition, regardless of whether the sample has been previously

processed. By doing so, it effectively replaces guesswork in determin-

ing optimal acquisition parameters, particularly when dealing with

single-cell analysis or other valuable biological and clinical specimens.

Taking the field of proteomics as an example,103 platforms like Pro-

teomicsML.org have emerged as a valuable online proteomics data

repository with companion tutorials designed to facilitate the training

of ML models. It is noteworthy that similar resources are continually

evolving in various omics domains and building synergy with the ML

community, thus fostering an environment where ML experts can

readily experiment with omics data, while omics specialists

can explore and harness the capabilities of ML applications. Although

there are still a limited number of reported studies on AI-based analy-

sis for multiomics datasets collected from hPSC-derived organoids,

TABLE 2 AI-enabled data analysis for hPSC-derived organoids.

Data type Organoid type Study objectives References

Omics data • hiPSC-derived cardiac organoids

• hiPSC-derived brain organoids

• hiPSC-derived hypothalamic organoids

• hiPSC-derived neural organoids

• RF for analyzing single-cell RNA-seq datasets of cell

(sub)types in the heart

• kNN for comparatively analyzing single-cell RNA-

seq datasets from brain tissue and hiPSC-derived

organoids

• Seurat transfer learning workflow for identifying

activity-regulated cytoskeleton-associated proteins

in hiPSC-derived hypothalamic organoids

• SVM for identifying neurotoxicity of chemicals

within the hiPSC-derived neural organoids

[77,85–87]

Time-series function data • hiPSC-cardiomyocytes • SVM, kNN, and RF classifiers for automatic cardiac

function assessment of Ca2+ transient abnormality

• CNN for detecting and quantifying arrhythmic

waveforms of cardiac action potential

[88–92]

Image data • Intestinal organoids

• hiPSC-derived brain organoids

• hiPSC-derived retinal organoids

• hiPSC-derived kidney organoids

• CNN for automated detection of cell nuclei from

single microscopy image slices

• CNN for automated quantification size and

localization of organoids from bright-field images

• RF for automated classification of control and

6-OHDA treated organoids from fluorescence

image of neuronal network

• Logistic regression or multi-layer perceptron models

for morphology quantification of bright field and

fluorescence images of organoids

• CNN for organoid subcategory classification from

bright-field and fluorescence images

• CNN for predicting the differentiation of kidney

organoids on bright-field images

[44,93–99]

Abbreviations: 6-OHDA, 6-hydroxydopamine; CNN, convolutional neural network; kNN, k-nearest neighbors algorithm; RF, random forest.
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this collaborative effort can be easily expanded to drive forward our

understanding of complex biological systems and expedite break-

throughs in the technological integration of omics, AI, and hPSC-

derived organoids.

ML approaches have been used to evaluate the transcriptomic

proximity of organoids for modeling human organ development. To

investigate heart development in both healthy and diseased condi-

tions, a workflow was established by combining heart organoids,

single-cell RNA sequencing, and ML. Atrial-lineage and ventricular-

lineage heart organoids were generated with and without retinoic acid

respectively. By employing single-cell RNA sequencing and sample

multiplexing, different cardiac cell types were characterized in these

chamber-specific organoids. Meanwhile, an ML model based on ran-

dom forest (RF) was implemented to leverage the information about

cell types, heart chamber (atria vs. ventricle), and laterality (left

vs. right) available in the cell atlas of primary human fetal hearts and

transfer cell annotation into this organoid system. This method can

perform anomaly detection to filter out cell types that were not pre-

sent in the training data, allowing to focus on cardiac cells from the

organoids in the comparison between a genetic variation in NKX2-5

associated with Ebstein's abnormality and its isogenic control.77

Various studies have highlighted the potential of using organoids

to model brain development, yet the fidelity of these models has

sparked debate due to a lack of computational tools for comprehen-

sive gene expression analysis across developmental stages in both

human brains and organoids, particularly for single-cell datasets.

In response, A manifold-learning framework, Brain and Organoid Man-

ifold Alignment (BOMA),85 was designed to bridge this gap by aligning

transcriptomic data between brains and organoids. Using a

kNN-based ML technique, BOMA maps the manifolds cross multiple

datasets from primary brain tissues and brain organoids and projects

them into a common latent space to uncover developmental trajecto-

ries either conserved from aligned data or distinctive from unaligned

data. Using this method, different brain organoids were found closer

to certain brain regions at specific time points. In addition, by aligning

the scRNA-seq data from human and chimpanzee organoids, a

delayed development of human organoids was determined in compar-

ison to chimpanzee organoids. Although this study only focused on

RNA-seq datasets between brains and organoids, this framework can

be easily applied to compare any sample pairs, such as different

modalities or different organ-organoid systems.

4.2 | Feature engineering from time-series data

In various real-world applications, data collected over time often

forms time-series datasets with inherent temporal dependencies, add-

ing complexity to their analysis. Historically, addressing this challenge

relied on crafting features manually, which was resource-intensive

and required domain expertise. For example, an electrocardiogram

(EKG) is one of the classic time-series data, offering valuable insights

into the heart's electrical activity over time. This time-dependent

nature of EKG data lends itself to advanced ML and data analysis

techniques, allowing for the detection of anomalies, arrhythmia classi-

fication, event prediction, and overall cardiac health assessment mak-

ing it indispensable in healthcare and clinical applications. Similarly, in

the field of cardiac organoids, functional outputs of beating hiPSC-

CMs can be quantified as time-series datasets to represent their phys-

iological behaviors.88,90,91 The measurement of contractile motions,

action potentials, and intracellular calcium transient produces time-

series datasets, which can be analyzed using traditional peak detection

methods, while more recently, ML approaches have been applied for

better assessment of cardiac physiology for these hiPSC-based

in vitro models.

For instance, a new analytical pipeline for automatic assessment

of Ca2+ transient abnormality was developed by employing ML

methods together with an analytical algorithm. Ca2+ transient data

from 200 hiPSC-CMs with 1893 peaks was used to train a peak-based

SVM model, which was then integrated with 15 peak-related features

extracted from an analytical algorithm to further develop a cell-based

SVM model. This trained cell-based SVM classifier was tested on an

additional 54 cells and obtained a testing accuracy of 87% for detect-

ing abnormality. This algorithm has the potential to automate the Ca2

+ transient analysis and assist the decision-making of signal abnormal-

ity, regardless of its origin and experimental procedures employed.104

Based on the abnormality of Ca2+ transient signals, it is possible to

distinguish the healthy and diseased hiPSC-CMs with different

genetic deficiencies. In a study with six iPSC lines carrying

different mutations causing catecholaminergic polymorphic ventricu-

lar tachycardia (CPVT), hiPSC-CMs were treated with adrenaline and

dantrolene to test anti-arrhythmic effects.105 Twelve peak features

from Ca2+ transient signals were computed, z-normalized, and input

for SVM, k-Nearest Neighbors Algorithm (kNN), and RF classifiers.

The RF classifier achieved an overall accuracy of 65.6% in classifying

drug responses into responding, semi-responding, and non-

responding. In the following study with 1635 peaks of long QT syn-

drome (LQT1), 1344 peaks of hypertrophic cardiomyopathy (HCM),

2311 peaks of CPVT, and 1216 peaks of healthy controls (WT), differ-

ent ML models, including k-NN, RF, and SVM, were used to classify

the Ca2+ transient signals in respect to the disease types. The overall

accuracy achieved by these algorithms in distinguishing different dis-

eased lines was over 80%, with the random forest classifier perform-

ing the best at 87.6% accuracy.89 These proof-of-concept studies

demonstrated that analyzing time-series data from Ca2+ transient

using ML techniques can accurately categorize hiPSC-CMs based on

their drug responses and genotypes for future applications in drug

screening, disease modeling, diagnostic practice, and personalized

medicine.

Previous approaches to utilizing time-series cardiac physiological

data for ML involved feature extraction, which demanded expertise in

signal processing techniques and risked losing subtle but valuable

information. Alternatively, unsupervised ML has emerged as a power-

ful method to automatically learn feature representations from unla-

beled data, eliminating the need for labor-intensive hand-crafted data

processing. These learned feature representations can be stacked to

construct deep neural networks capable of modeling intricate data
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structures. In a recent study, a CNN model was trained using mem-

brane potential data from hiPSC-CMs to extract 65 machine-learned

features, facilitating the classification of voltage traces into non-

arrhythmic, arrhythmic, and asystolic categories.92 This approach

enabled the plotting of dose-dependent proarrhythmic curves for each

drug, yielding EC50 values. Subsequently, the torsadogenic safety mar-

gin for each drug was calculated based on the ratio between the EC50

value and Cmax, the maximum free plasma concentration. This safety

margin served as a predictor in a logistic regression model to distinguish

high-, intermediate-, and low-risk compounds. The CNN-based plat-

form effectively captured time-series voltage trace features from

hiPSC-CMs, enabling the quantification of the transition from normal

to arrhythmic waveforms in response to drug dose—a capability unat-

tainable through traditional binary arrhythmia assessments relying on

human judgment. Moreover, the calculated safety margins demon-

strated enhanced accuracy in discriminating high-, intermediate-, and

low-risk drugs compared with previous methods relying on human-

defined features. While most of the studies are conducted in the hPSC-

derived cells, the similar AI technologies could be potentially applied in

the hPSC-derived organoids, which are able to be characterized with

time-series function measurements.

4.3 | Image analysis using deep learning
techniques

The analysis of image data from hPSC-derived organoids presents sig-

nificant challenges, particularly in the areas of cell segmentation and

phenotypic annotation. Even experienced image analysis professionals

struggle with accurately and efficiently segmenting cells and annotat-

ing phenotypes, especially when dealing with densely packed and

optically opaque cell aggregates that exhibit strong interactions. ML

techniques offer a solution for image-based profiling and analysis, par-

ticularly when combined with advancements in automated micros-

copy106,107 and high-throughput screening (HTS) platforms.108,109 For

example, CNN models have been applied in the automated tracking of

cell nuclei in intestine organoids from single microscopy image slices

of fluorescence nuclei staining.94 This method provides a much faster

speed of image analysis at the equivalent tracking quality to manual

tracking. CNNs are also used in automated quantification size and

localization of a large number of hPSC-derived intestine organoids

based on bright-field images.93 In the hPSC-derived brain organoids,

logistic regression or multilayer perceptron models were able to

achieve morphology quantification from bright-field images and

reporter gene expression quantification from fluorescence images of

hundreds of organoids.44

Moreover, high-throughput and high-content imaging can meet

the requirement of large-scale data volume required by the DL algo-

rithms to identify the subtle patterns and correlations that may be

missed by human observers. AI has been used to optimize compound

screening by facilitating predictive modeling for therapeutic reac-

tions.110,111 For instance, DL was utilized to directly analyze the 3D

image stacks of hiPSC-derived mammary gland organoids without

converting them into 2D projections or specifying individual cell

types.112 DL-Based Senescence Scoring by Morphology (Deep-

SeSMo) is a CNN-based model that uses phase-contrast microscopy

images without molecular labels to generate senescence probability

on iPSCs in large numbers.113,114

DL methods have been utilized in studies focused on cardiotoxi-

city to quantify drug-induced structural changes in hiPSC-CMs. DL

models trained with both brightfield and fluorescent images of hiPSC-

CMs have demonstrated their ability to detect cellular changes result-

ing in the loss of cardiac function. The early success of neural network

models in identifying toxic effects has shown great promise in high-

throughput toxicity screening.115 Additionally, convolutional neural

networks trained with dose-dependent images have been effective in

detecting changes preceding the loss of contractility in hiPSC-CMs,

indicating the potential of image-based DL methods in predicting car-

diotoxic effects.116,117 In a recent study, a high-throughput screening

platform was used to evaluate a library of 1280 bioactive compounds

with potential cardiotoxic liabilities, and a DL model was constructed.

This model exhibited exceptional capability in identifying chemicals

with cardiotoxic effects and effectively classifying the compounds

based on distinct mechanisms of action.116

A brain organoid is a deliberately developed micro-organ in vitro

that aims to replicate the structure and characteristics of the brain.118

Brain organoids are artificial tissues that mimic different cortical areas

and consist of various types of nerve cells. The cortex and choroid

plexus, two layers of neurons, closely resemble cerebral organoids,

while other regions such as the retina, meninges, and hippocampus

can also develop to some extent.119 Researchers have identified opti-

mized techniques and identified the essential parameters necessary to

promote the formation of well-developed organoids. Their optimiza-

tion criteria include overall growth and size of organoids, stratification

and representation of cell types, inter-batch variability, analysis of

neural maturation, and cost-effectiveness of the process. These

experiments and findings provide a reliable approach for genetic or

pharmacological testing (e.g., drug development), which can aid in the

better understanding and treatment of human neurodevelopmental

disorders and lead to the creation of organoids with reduced variabil-

ity.120 Advancements in electrophysiological recording techniques

in vivo, such as Neuropixels,121,122 as well as neuroimaging tech-

niques,123 have paved the way for analyzing highly specific popula-

tions of neurons and brain regions with high spatiotemporal

resolution. AI has been widely employed to further enhance hPSC-

derived brain organoids in various applications, taking advantage of

these characterization techniques and advancements. The evaluation

of neurotoxicity has been significantly improved through the combi-

nation of hPSC-derived midbrain organoids and ML techniques.96 The

dense clustering of cells and neurons within the organoids made it

extremely challenging to manually extract neuronal features through

microscopy-based phenotyping. To address this issue, an ML model

was developed using a random forest classifier to automatically dis-

cern the differences between control and 6-hydroxydopamine

(6-OHDA) treated organoids. To minimize bias in the model's predic-

tions, a 10-fold cross-validation was applied five times. After
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normalization, the model achieved an impressive accuracy of 86% in

classifying the organoids with or without neurotoxin.

Furthermore, a DL algorithm utilizing CNNs was employed for a

classification task involving brain organoids with different morphology

types. The aim was to investigate whether erythromyeloid progenitors

(EMPs) would migrate to brain organoids in the presence of hiPSC-

derived microglia.124 To develop the CNN model, the researchers uti-

lized an AI platform called Aiforia to annotate and distinguish between

different morphology types based on immunological staining. AI was

able to quantify the number of ramified, intermediate, rod-shaped,

and spheric cells in organoid sections on days 35, 66, and 120. The

researchers performed a manual approach using skeletal analysis to

measure the complexity of cell morphology, and the results were com-

parable to those obtained through the AI method. This validation con-

firmed the reliability of the ML model and highlighted the efficiency

of an AI approach in assessing the complexity of structures within

organoids. Furthermore, the detection algorithm successfully identi-

fied a subset of cells that increased from day 66 to 120, despite the

overall decrease in complexity, demonstrating the ability of AI to

detect subtle changes within a dataset. By analyzing microglial and

neuronal diversity patterns through CNNs, researchers can gain a dee-

per understanding of the cellular structure and development within

brain organoids, providing valuable insights into their complexity and

maturation processes.

ML techniques have shown great potential in enhancing the capa-

bilities of brain organoids to predict input factors, optimize data col-

lection and analysis, and decode the functional relationships between

input and output. Through disease stratification, ML-based integration

of multimodal data was utilized to improve Parkinson's disease

(PD) modeling based on hPSC-derived brain organoids.125 This could

potentially comprise in vitro data produced by the organoids from PD

patients, which can be integrated with in vivo data of demographics,

magnetic resonance imaging (MRI), genetics, and other clinical infor-

mation.126 Notably, the integration of Brain–Computer Interface (BCI)

feedback with brain organoid modeling can enable dynamic closed-

loop control by combining ML algorithms and organoid technology.127

Multiple research studies have demonstrated that retinal orga-

noids derived from hPSCs closely resemble the histology, cellular

specificity, sub-specification, functionality, and transcription profiling

of the human retina.128 This highlights the robustness of this technol-

ogy and its potential for clinical applications, such as providing a sig-

nificant source of retinal neurons for transplantation129 or serving as a

platform for testing novel treatments.130 To create a comprehensive

single-cell-resolution map of the human Retinal Pigment Epithelium

(RPE), researchers conducted a study using 17 RPE flatmounts

obtained from the eyes of nine donors without any notable eye condi-

tions at the time of analysis. The edges of RPE cells were stained with

Phalloidin-iFluor 647. Each RPE flatmount, with an approximate radius

of 23 mm, was scanned in 3000 tiled panels at �20 magnification.

The researchers employed REShAPE, an ML-based program based on

a U-net CNN, which analyzes fluorescence images to detect and seg-

ment RPE cell boundaries and performs RPE cell morphometry. The

program successfully distinguished and segmented cell boundaries in

the images. On average, each flatmount contained around 2.8 million

RPE cells, all of which were identified and individually segmented.

Using the resulting binary image of RPE cell boundaries, morphomet-

ric characteristics were calculated for every single cell in the entire

human eye.131 This groundbreaking research has enabled the genera-

tion of a detailed understanding of the cellular characteristics and

organization of the human RPE at the single-cell level. It showcases

the potential of ML-based approaches, such as REShAPE, in analyzing

large-scale imaging datasets to extract valuable insights and contrib-

ute to the advancement of retinal research and clinical applications.

DL-based automated differentiation of retinal organoids was

successfully achieved using CNNs such as VGG19, ResNet50v2, Dense-

Net121, and Xception.132 The CNNs were trained to classify bright-field

and fluorescence images, including those with a GFP reporter, into three

categories: retina, satisfactory, and non-retina. Each data sample was

assigned a probability rating between 0 and 1, indicating the likelihood of

it being a retina image. The CNNs achieved an average accuracy rate of

0.84, surpassing human classifiers who achieved an accuracy of 0.67.

This highlights the superior performance of DL in classification tasks,

enabling the efficient processing of large amounts of data and accurate

prediction of the early stages of organoid development.

Furthermore, by employing image recognition and ML techniques,

heterogeneous retinal organoids can be “normalized” and categorized

based on their sizes, hues, fluorescent protein-tagged markers, or

other properties 98. This normalization process reduces variations dur-

ing drug testing, disease modeling, developmental research, and other

procedures, thereby enhancing the consistency and reliability of orga-

noid studies. Furthermore, DL techniques were utilized to generate

high-quality images of hPSC-derived retinal organoids while minimiz-

ing the number of scans and reducing phototoxicity caused by two-

photon excitation fluorescence.95 The primary approach employed

path-based regression, which involved dividing each input image into

smaller tiles and training a neural network on these tiles. The results

showed a mean structural similarity index measure (SSIM) value of

0.64, indicating the potential of this approach for future applications.

The combination of image recognition and ML algorithms provides a

valuable tool for streamlining and standardizing the analysis of retinal

organoids, leading to improved efficiency and reproducibility in

research and potential applications.

5 | CONCLUSIONS AND FUTURE
PERSPECTIVES

The development of hPSC-derived organoids presents both opportu-

nities and challenges in modeling tissue/organ development and dis-

ease. Increasing sample numbers and complexity in the traditional

approaches, even with automation and scale-up techniques, may not

provide a deeper mechanistic understanding. AI has emerged as a

valuable tool in evaluating organoids in various areas, such as disease

modeling,133 drug evaluation,92,105 and regenerative medicine,134 due

to its ability to extract meaningful insights from organoid traits and

process large volumes of data efficiently. For example, the studies of
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hPSC-derived organoid maturation would be assisted by AI technolo-

gies to generate the optimal organoid maturation protocol based on

multiple physiological features of corresponding organs or tissues, for

feature importance analysis, supervised classification, and unsuper-

vised clustering. Currently, quality control of organoid development

relies on end-point post-differentiation measurements. If ML could

predict the expected results from different samples during the early

stages of organoid differentiation, it could guide experimental plan-

ning and execution, thus greatly improving the quality and

reliability of organoid sources. Moreover, generating an experimen-

tally relevant synthetic ground-truth dataset of organoid differentia-

tion and functionality will allow for benchmarking and identifying

best-performing differentiation approaches and culturing condi-

tions.97,132,135 Recently, we applied the function of feature impor-

tance to rank the features to determine the most effective growth

factors and small molecules for cardiac differentiation and vasculariza-

tion in the hPSC-derived cardiac organoids.136 In this review, we dis-

cuss an AI framework tailored to biomedical research, particularly

focusing on hPSC-derived organoids (Figure 3), aiming to enhance our

comprehension of hPSC-derived organoids with improved efficiency

and precision.

AI-based methods enable unbiased measurement of a wide range

of cellular characteristics and capture subtle variations under different

conditions.137,138 Cell painting and other phenotype-agnostic staining

processes enhance label-free cell-type recognition and enable a non-

invasive analysis of cell populations, which differs from traditional

image-based methods only focusing on predetermined pheno-

types.107,139–141 These “in silico labeling” AI techniques were used to

predict and identify multiple fluorescent markers, such as live/dead

labeling and antibody staining, from transmitted-light microscopy data,

ensuring flexibility and efficiency in image analysis. For example, DL

models were created to recognize unstained hPSC-derived endothelial

cells in phase-contrast images, solely based on their distinctive shape.142

Moreover, these technological breakthroughs in AI can surpass human

perception and analytical capabilities in clinical research. For instance, AI

has demonstrated superior performance to clinical experts in the inter-

pretation of medical images for detecting retinal disorders,143 skin con-

ditions,144 lung abnormalities,145 and breast malignancies.146 These

advancements have significant implications for identifying heteroge-

neous cell populations within hPSC-derived organoids without fluores-

cent labeling processes. It can help determine the differentiation

efficiency at the early stage of organoid formation or identify cell

F IGURE 3 AI applications in hPSC-organoids. AI-enabled hPSC organoid research comprises a sequential workflow of organoid development
and characterization, AI model establishment and optimization, and AI-driven data analytics and predictions on organoid structural morphology,
functional outputs, and drug responses.
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deficiency in organoids under diseased conditions. By leveraging ML

and image-based profiling techniques, researchers can overcome the

challenges associated with complex image data collected from orga-

noids, enabling comprehensive and unbiased characterization of

organoid features at the cellular level.

ML/DL-based techniques for image analysis of 3D imaging data

are rapidly advancing and becoming more accessible,147 which could be

critical for further advancement of organoid imaging analysis due to

their 3D nature. Flexible analytical tools like NiftyNet have taken

advantage of the modularity of modern DL platforms to be applicable

to a wide range of imaging modalities.148 Another example, CDeep3M,

is a cloud-based ML application capable of processing 2D and 3D data

obtained from electron microscopy, x-ray microscopy, and light micros-

copy. CDeep3M can fully segment the neuronal processes and synap-

ses in 3D and accurately identify neurons in brain slices based solely on

their chromatin structure, even without nuclear staining.149 More

advanced techniques are being developed for medical imaging analysis.

Image reconstruction for MRI has been a long-studied topic with entire

datasets dedicated to furthering DL applications within the field.150,151

Computed tomography (CT) has also seen an influx of resolution

enhancement,152 denoising,153 and image reconstruction to fill missing

structure data.154 For 3D reconstruction in microscopy images, Deep-Z

was developed to extend the depth of view from a single focal layer

through a deeper field of view.155 Additionally, DL could enhance 2D

images to full 3D synthetic images through the use of conditional

GANs.156 Despite these advancements, there are still very few applica-

tions of AI-based 3D image analysis to organoid models for resolution

enhancement, denoising, sub-structure identification, or image recon-

struction with synthetically generated 3D images.

While the future of using AI in organoid research holds promise,

several limitations can impede progress. One important consideration

is the reliance of AI algorithms on the quality, reproducibility, and

integrity of the dataset that they are trained on. High experimental

variations and inconsistency in organoid culture and differentiation

can pose challenges for AI algorithms in reaching reliable conclusions.

For example, the noise present in the microscopy image data could

introduce errors and impact the performance of AI algorithms. More-

over, complex biological data obtained from organoids often have sig-

nificant interrelated factors, but some of them may not have any

bearing on the specific task. These AI models have the potential to

inadvertently learn and amplify biases present in the data they are

trained on. This can result in misleadingly high accuracy rates, as the

model may pick up on irrelevant information or subtle correlations

that do not truly contribute to the target application's success. To

overcome these limitations, it becomes essential to delve into the

trustworthy AI model's decision-making process and thoroughly ana-

lyze its outcomes based on the features it relies on. More importantly,

it is crucial to continue building a strong experimental foundation and

establish a more standardized practice in organoid research to pro-

duce well-organized and reliable data, which allows AI to effectively

classify and predict the outcomes from organoid development, drug

responses, and disease modeling.
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