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ABSTRACT
Vascular calcification (VC) is highly prevalent in patients undergoing hemodialysis, and is a 
significant contributor to the mortality rate. Therefore, biomarkers that can accurately predict the 
onset of VC are urgently required. Our study aimed to investigate serum miR-15a levels in relation 
to VC and to develop a predictive model for VC in patients undergoing hemodialysis at the Beijing 
Friendship Hospital hemodialysis center between 1 January 2019 and 31 December 2020. The 
patients were categorized into two groups: VC and non-VC. Logistic regression (LR) models were 
used to examine the risk factors associated with VC. Additionally, we developed an miR-15a-based 
nomogram based on the results of the multivariate LR analysis. A total of 138 patients under 
hemodialysis were investigated (age: 58.41 ± 13.22 years; 54 males). VC occurred in 79 (57.2%) 
patients. Multivariate LR analysis indicated that serum miR-15a, age, and WBC count were 
independent risk factors for VC. A miR-15a-based nomogram was developed by incorporating the 
following five predictors: age, dialysis vintage, predialysis nitrogen, WBC count, and miR-15a. The 
receiver operating characteristic (ROC) curve had an area under the curve of 0.921, diagnostic 
threshold of 0.396, sensitivity of 0.722, and specificity of 0.932, indicating that this model had 
good discrimination. This study concluded that serum miR-15a levels, age, and white blood cell 
(WBC) count are independent risk factors for VC. A nomogram constructed by integrating these 
risk factors can be used to predict the risk of VC in patients undergoing hemodialysis.

Introduction

Mortality rates for patients with kidney failure treated with 
dialysis remain unacceptably high, with annual mortality 
rates ranging from 15 to 20% [1]. Cardiovascular disease 
(CVD) is the leading cause of death among patients undergo-
ing hemodialysis [2]. Furthermore, vascular calcification (VC) 
is a powerful independent risk factor for cardiac events and 
mortality in patients undergoing hemodialysis [3,4]. It is 
highly prevalent in patients with chronic kidney disease 
(CKD), particularly those with kidney failure [5]. The incidence 
of VC among patients undergoing hemodialysis ranges from 
67 to 90.7% [4,6,7]. Age and prolonged vintage during 
chronic dialysis are established risk factors for developing VC; 
other features, including diabetes mellitus (DM), deregulated 
divalent ion balance, vitamins K and D deficiencies, and sec-
ondary hyperparathyroidism, have also been implicated in 
increasing the risk of uremic VC [8,9]. However, the risk 

factors for VC vary across studies. VC is currently identified 
using noninvasive imaging modalities, such as chest radiog-
raphy and computed tomography (CT), or invasive tech-
niques, such as intravascular ultrasound of the coronary 
arteries, which are all widely used. However, factors, such as 
cost, availability, and radiation exposure may limit their 
accessibility to some patients [8,10]. Accordingly, the identifi-
cation of circulating biomarkers that can identify the pres-
ence of VC in the blood could offer a more appealing 
alternative [11]. However, there are currently no reliable diag-
nostic or prognostic biomarkers for evaluating VC, especially 
in patients undergoing hemodialysis.

MicroRNAs (miRNAs) are non-coding RNAs with short 
nucleotide sequences that participate in the post-transcriptional 
regulation of biological functions and play key roles in abnor-
mal physical conditions [12]. miRNAs function as negative reg-
ulators of translation and are involved in many cellular 
processes [12]. Many miRNAs exist in the circulation as well as 
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in tissues, blood, and urine [13,14]. Serum miRNAs have good 
stability [15], have been studied as potential biomarkers for 
various diseases, including kidney diseases [16], and have 
become biomarkers for the early diagnosis and chronic pro-
gression of kidney damage [17,18]. VC progression occurs not 
only because of plasma oversaturation and passive calcium 
deposition, but also because of active osteogenesis in the 
tunica media of the arterial wall [19]. Several molecules 
involved in bone and mineral metabolism may also play key 
roles in cardiovascular calcification formation [20–22]. As 
reported by Takaaki et  al. miR-16-5p, miR-17-5p, miR-20a-5p, 
and miR-106b-5p target the VEGFA–VEGFR2 signaling pathway, 
thereby inhibiting VC induced by elevated phosphorus levels 
[23]. According to initial research [24], miRNAs may contribute 
to the development of VC by controlling phenotypic changes 
in vascular smooth muscle cells (VSMCs) and the balance of 
calcium and phosphate. In a subsequent study, we used 
miRNA profiles previously analyzed by our group in an in vitro 
model of human VSMC biomineralization and identified the 
miRNA closely associated with VC as miR-15a [25]. Our subse-
quent study also found that bone marrow mesenchymal stem 
cell-derived exosomes play a role in calcification inhibition by 
transferring miR-15a/15b/16a and inhibiting their common tar-
get gene, NFATc3, which downregulates OCN expression and 
thus inhibits VSMC osteogenic trans-differentiation [26]. We 
selected miR-15a as the target for further investigation. It is 
yet to be determined whether there is a significant difference 
in miR-15a expression in the circulation of patients undergoing 
hemodialysis who have VC compared to those who do not. 
Therefore, a group of patients undergoing hemodialysis was 
recruited to evaluate miR-15a expression.

This cross-sectional study aimed to identify the association 
between miR-15a expression and VC and determine whether 
miR-15a is a novel risk factor for VC, independent of traditional 
risk factors. Nomograms have recently received increasing 
attention and are widely used for predicting disease risk 
because they are intuitive and allow for visualization of data 
[27]. Therefore, these images were used to visualize the data 
analysis results. This study also aimed to develop and validate 

a nomogram model using miRNA biomarkers and conveniently 
measure factors to identify VC, thereby facilitating timely diag-
noses, and treatment in clinical practice.

Patients and methods

Patient selection

This cross-sectional study recruited patients undergoing 
hemodialysis at the Beijing Friendship Hospital Hemodialysis 
Center between 1 January 2019 and 31 December 2020. The 
ethics committee of Beijing Friendship Hospital, which is affil-
iated with Capital Medical University, approved this study 
(ethics committee approval number: 2018-P2-224-01). Written 
informed consent was obtained from all participants or their 
legal proxies. The study was conducted in accordance with 
the principles of the Declaration of Helsinki.

Adult patients on hemodialysis (aged 18 years or older) 
were eligible for study participation if they had been treated 
with hemodialysis for more than 3 months. The exclusion cri-
teria were as follows: (a) vitamin D supplementation (tocot-
rienol, ergocalciferol, cholecalciferol, or calcifediol) within the 
past 3 months; (b) pregnancy; and (c) autoimmune diseases, 
malignant bone tumors, acute infection, and renal transplan-
tation (Figure 1). All patients underwent dialysis three times 
per week. Dialysate A contained sodium chloride, potassium 
chloride, calcium chloride, magnesium chloride, glacial acetic 
acid, and an appropriate amount of dialysis water. Dialysate 
B contained sodium bicarbonate with an appropriate amount 
of dialysis water. The dialysate calcium concentration was 
1.5 mmol/L, the dialysate flow rate was 500 mL/min, the 
blood flow rate was 200–300 mL/min, and the dialysis vin-
tage was 4 h each time.

Demographic, clinical, and biochemical data

Demographic and clinical data, including age, sex, dialysis 
vintage, and comorbidities, were obtained from participant 
interviews and a review of the medical records. Blood 

Figure 1. Flowchart of the cross-sectional study.
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samples were collected before and after the dialysis. The fol-
lowing biochemical variables were measured: hemoglobin, 
white blood cell (WBC) count, potassium, calcium, phosphate, 
ferritin, creatinine, predialysis nitrogen, post-dialysis nitrogen, 
uric acid, intact parathyroid hormone (iPTH), albumin (bro-
mocresol green method), and the urea reduction ratio (URR). 
The URR after dialysis was estimated according to the follow-
ing equation: URR = ([Upre–Upost]/Upre)∗100% [28]. 
Laboratory measurements were performed immediately 
before initiating the Monday or Tuesday hemodialysis ses-
sion, which was scheduled exactly 68 h after the previous 
session (Friday or Saturday). Blood samples were obtained 
from a central venous catheter, arteriovenous fistula, or graft. 
An additional 4 mL of EDTA-anticoagulated blood was col-
lected from each patient prior to dialysis, which was centri-
fuged at 4 °C for 20 min at 3000 rpm. The centrifuged serum 
samples were transferred into sterile Eppendorf (EP) tubes 
using a sterile pipette and stored at −80 °C for subsequent 
quantitative detection of miRNAs.

Imaging examinations

The abdominal aortic calcification score (AACS) was assessed 
by performing abdominal lateral radiography at baseline for 
all patients included in the study. Based on the AACS score, 
participants were divided into three groups: non-calcified 
group (AACS = 0, n = 59), mild calcified group (0 < AACS ≤ 4, 
n = 44), moderate calcified group (4 < AACS ≤ 16, n = 31), and 
severe calcified group (16 < AACS ≤ 24, n = 4). An X-ray 

machine (DIAGNOST, German Philips) was used to perform 
abdominal lateral radiography (Figure 2), and AACS was eval-
uated based on the Kauppila scoring system [29]. The scoring 
criteria included defining the aorta within the corresponding 
vertebral levels of the L1–L4 segments on lateral abdominal 
radiographs. The extent of calcification involving the anterior 
and posterior walls of the aorta in each segment was scored 
as 1 point (calcification range < 1/3), 2 points (calcification 
range 1/3–2/3), or 3 points (calcification range > 2/3). The 
total scores for the anterior and posterior walls of the 
abdominal aorta in each segment were summed to obtain 
an AACS score (0–24 points) for each patient. All selected 
patients were independently evaluated by two radiologists 
who were blinded to their clinical data. If the difference 
between the two scores was > 5 points, a third radiologist 
evaluated the score and the average of the three scores was 
used as the AACS score.

Determination of circulating microRNA levels

Cell-free total RNA, including miRNAs, was extracted from the 
serum using Trizol (Invitrogen Cat. No. 15596018), in accor-
dance with the manufacturer’s instructions. Purified extracts 
were then reverse-transcribed with the All-in-One™ miRNA 
First-Strand cDNA Synthesis Kit version 2.0 (Gene Copoeia, 
Rockville, MD 20850 USA, Cat. No. QP113) and processed to 
quantitative PCR using the Taq Pro Universal SYBR qPCR 
Master Mix (Vazyme, Cat. No. Q712). Internal control samples 
were used in each PCR plate to reduce inter-plate variability, 
and all measurements were performed in triplicate. The prim-
ers used were as follows: forward primer: 
5′-TAGCAGCACATAATGGTTTGTG-3′ for miR- 
15a-5p; forward primer: 5′-TCACCGGGTGTAAATCAGCTTG-3′ 
for cel-miR-39-3p standard RNA (ribobio, Cat. No. miRB 
0000010-3-1). The target gene fragment was identified by 
PCR. With cel-miR-39-3p standard RNA as the external  
reference, the quantitative results were calculated using the 
2−ΔΔCT method.

Statistical analyses

Continuous variables are expressed as mean ± standard devi-
ation (SD). Categorical variables are expressed as percent-
ages. Univariate analyses were performed to compare 
differences between the two groups. The Student’s t-test was 
used to compare normally distributed data, while the Mann–
Whitney U test was used for non-normally distributed data. 
Categorical data were compared using the χ2 test. The 
Kruskal–Wallis rank-sum test was used to compare relative 
miR-15a expression between groups. The Wilcoxon test was 
used to compare other groups with the ‘non-calcification’ group.

Model development
The risk factors selection process for model inclusion con-
sisted of three steps. In the first step, a univariate logistic 
regression (LR) was applied to explore the nine candidate 

Figure 2. Radiological quantification of abdominal aortic calcification 
using abdominal lateral X-ray. arrowhead denotes calcification sites.
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predictors with VC in the patients. In the second step, based 
on the magnitude of the Wald statistic of univariate analysis, 
variables that were statistically significant in the univariate 
analysis (p < 0.05) and applicable to real clinical scenarios 
were selected for inclusion in the multivariate LR analysis. 
Consequently, backward stepwise selection based on the cri-
teria of Akaike Information Criterion (AIC) was applied to 
select final independent predictors from variables in the mul-
tivariate LR analysis to construct the prediction model. We 
developed an miR-15a nomogram based on the results of 
the multivariate LR analysis.

Model evaluation and comparison
The performance of the miR-15a-based model was evaluated 
with respect to discrimination and calibration in the training 
set. The area under the receiver operating characteristic 
(ROC) curve (AUC) was used to evaluate model discrimina-
tion. Calibration was assessed using a calibration curve along 
with the Hosmer–Lemeshow test to evaluate the goodness-of-
fit of the model. Moreover, the clinical utility of the predic-
tion model was evaluated by sensitivity and specificity. To 
prove the excellent performance of the miR-15a-based model, 
we added the comparisons of the miR-15a-based model, only 
the miR-15a model and only the predictors other than 
miR-15a model in discrimination and clinical utility.

All analyses were two-tailed, and p < 0.05 was considered 
to be statistically significant. The R language version 4.2.1 (R 
Foundation for Statistical Computing, Vienna, Austria) was 
used for all statistical analyses.

Results

Characteristics of patients undergoing hemodialysis with 
VC

The mean age of patients was 58.41 ± 13.22 years, and 74 of 
the patients (54%) were male. The overall prevalence of VC 
was 57.2% (79 of 138 patients). Patients were stratified 
according to VC severity upon enrollment (no VC group, 
42.8%; mild calcification group, 31.9%; moderate calcification 
group, 22.5%; and severe calcification group, 2.9%, respec-
tively). Patients undergoing hemodialysis in the calcification 
group were older (p < 0.001), had a longer dialysis vintage 
(p = 0.002), lower predialysis nitrogen levels (p = 0.012), higher 
WBC counts (p = 0.015), higher calcium levels (p = 0.015), and 
lower serum miR-15a levels (p < 0.001) than patients in the 
non-calcification group (Table 1). Serum miR-15a level at 
baseline were significantly higher in patients without VC 
(1.11 ± 0.79) than those in patients with VC (0.40 ± 0.24). The 
difference level of miR-15a between the non-calcification 
group and the groups with each level of calcification was 
statistically significant; however, no difference was observed 
between the mild, moderate, and severe groups: no VC 
group 0.717, mild calcified group, 0.339; moderate calcifica-
tion group, 0.341; and severe calcification group, 0.377 
(Figure 3).

Association of VC with serum miR-15a level and other 
variables in patients undergoing hemodialysis

Nine candidate variables, including age, dialysis vintage, 
predialysis creatinine, uric acid, predialysis nitrogen, WBC 
count, albumin, calcium, and miR-15a (all p < 0.05) were sig-
nificantly associated with VC in univariate LR analyses (Table 
2). Among these, five variables were included in the final 
prediction model. Age (p = 0.035), WBC count (p = 0.028), 
and miR-15a (p < 0.001) were identified as independent risk 
factors for VC in the subsequent multivariate regression 
analysis (Table 2).

miR-15a-based nomogram construction and performance 
assessment

A miR-15a-based nomogram was developed by incorporating 
the following five predictors: age, dialysis vintage, predialysis 
nitrogen, white blood cell count, and miR-15a (Figure 4). The 
calibration curve suggests good agreement between the 
model prediction and actual observations in the dataset 
(Figure 5). The Hosmer–Lemeshow test yielded a nonsignifi-
cant p value of 0.575, indicating good calibration power. The 
ROC curve of the miR-15a-based model (Model 1) had an 
AUC of 0.921, diagnostic threshold of 0.396, sensitivity of 

Table 1. Characteristics of patients undergoing hemodialysis with vascular 
calcification.

Characteristic
Overall, 
N = 138a

non-calcified 
group, 
N = 59a

Calcified 
group, 
N = 79a

p 
Valueb

age, year 58.41 
(13.22)

53.19  
(13.89)

62.31  
(11.28)

<0.001

Sex (male%) 74 (54%) 31 (53%) 43 (54%) 0.8
Dialysis vintage, 

month
110.06 
(76.20)

89.85  
(77.41)

125.15 
(72.14)

0.002

Diabetes, % 18 (13%) 4(6.8%) 14 (17.7%) 0.059
Hypertension, % 97 (70.3%) 39 (66%) 58 (73.4%) 0.4
aaCS 3.40 (5.12) 0.00 (0.00) 5.94 (5.54) <0.001
Predialysis  creatinine, 

mmol/l
895.81 

(247.06)
946.09 

(231.17)
858.25 

(253.24)
0.086

uric acid, umol/l 385.55 
(70.82)

399.44 
(75.68)

375.18 
(65.55)

0.14

Predialysis blood 
urea nitrogen, 
umol/l

23.77 (5.03) 25.02 (5.00) 22.84 (4.89) 0.012

Hemoglobin, g/l 115.09 
(12.77)

115.73 
(14.06)

114.61 
(11.78)

0.7

White blood cell 
count, *109/l

6.46 (2.05) 5.98 (1.82) 6.82 (2.15) 0.015

Ferritin, ng/dl 194.62 
(113.01)

176.33 
(99.16)

208.28 
(121.16)

0.2

albumin, g/l 38.66 (2.85) 39.25 (2.55) 38.22 (3.00) 0.051
Potassium, mmol/l 4.88 (0.65) 4.90 (0.54) 4.87 (0.72) 0.5
Phosphate, mmol/l 1.82 (0.44) 1.83 (0.46) 1.82 (0.43) 0.9
Calcium, mmol/l 2.31 (0.22) 2.26 (0.22) 2.35 (0.22) 0.015
uRR 75.82 

(50.42)
70.08 (9.05) 69.75(10.55) 0.849

iPTH, pg/ml 277.91 
(254.05)

233.32 
(188.16)

311.22 
(290.54)

0.070

miR-15a 0.70 (0.65) 1.11 (0.79) 0.40 (0.24) <0.001
aMean (SD); n (%).
bWilcoxon rank sum test; Pearson’s Chi-squared test.
aaCS: abdominal aortic calcification score; uRR: urea reduction ratio; 

iPTHintact parathyroid hormone
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0.722, and specificity of 0.932, see Supplementary material 
Figure S1. After 1000 bootstrap internal validations, the ROC 
curve showed an AUC of 0.921 (95% confidence interval [CI]: 
0.879–0.963), indicating that the model had good discrimina-
tion (Figure 6, the blue curve).

The comparisons of three predictive models: the miR-15a-
based model (Model 1), only the miR-15a model (Model 2), 
and only predictors other than the miR-15a model (Model 3) 
are shown in Table 3. The AUC of Model 1 is 0.921 (95% CI: 
0.879–0.963), which is better than Model 2 0.872 (95% CI: 
0.816–0.927, p = 0.008) and Model 3 0.782 (95% CI: 0.705–
0.859, p < 0.001) (Figure 6). Moreover, Model 1 has the 

highest accuracy (0.812) and sensitivity (0.932) for predicting 
VC in patients undergoing hemodialysis.

Discussion

VC is a major cause of cardiovascular morbidity and mortality 
in patients with CKD [30,31]. VC is a complex process that 
leads to the pathological accumulation of calcium phosphate 
crystals in the intimal and medial layers of the vessel wall. 
The presence of these mineral-rich plaques leads to the hard-
ening of arteries, which increases the likelihood of fibrosis, 
inflammation, and oxidative stress at the cellular level, 
thereby putting patients at risk [30]. From a clinical stand-
point [31,32], VC has the potential to directly elevate the 
chances of numerous clinical complications, including the 
deterioration of atherosclerosis and an increased risk of vas-
cular incidents, such as heart attack, stroke, and vascular 
occlusive events. Therefore, there is an urgent need to iden-
tify effective biomarkers of VC.

Based on our findings, miR-15a plays a crucial role in 
inhibiting calcification and osteogenic trans-differentiation 
[26]. In view of the results of the in vitro experiments, we per-
formed a cross-sectional study in patients undergoing hemo-
dialysis, in which the collected uremic sera were analyzed for 
miR-15a expression to assess its association with abdominal 
aortic calcification in patients under hemodialysis. We further 
identified some common, well-established risk factors for VC, 
such as age, dialysis vintage, predialysis creatinine, uric acid, 
predialysis nitrogen, WBC count, albumin, calcium, and 
miR-15a. Serum miR-15a levels, age, and WBC count were 
independent risk factors for VC. Serum miR-15a expression is 
a valid biomarker for assessing VC in patients undergoing 
hemodialysis. The prediction model included age, dialysis vin-
tage, WBC count, the expression of miR-15a, and predialysis 

Figure 3. The association between serum miR-15a levels in patients and vascular calcification severity. The Kruskal–Wallis rank-sum test was used to 
compare relative miR-15a expression between groups. The Wilcoxon test was used to compare other groups with the ‘non-calcification’ group. ****p < 0.00001; 
***p < 0.001; **p < 0.01. Comparisons between the other three groups showed no significant differences.

Table 2. univariate and multivariate logistic regression analysis of the 
result of vascular calcification and clinical candidate predictors.

Variables univariate analysis Multivariate analysis

OR (95% Ci) p OR (95% Ci) p
age, year 1.059 

(1.030–1.092)
<0.001 1.048 

(1.005–1.097)
0.035

Dialysis vintage, m 1.007 
(1.002–1.012)

0.008 1.006 
(0.999–1.014)

0.081

Predialysis  creatinine 0.998 
(0.997–1.000)

0.042 – –

uric acid 0.995 
(0.990–1.000)

0.050 – –

Predialysis nitrogen 0.909 
(0.838–0.978)

0.015 0.888 
(0.775–1.002)

0.069

White blood cell count 1.243 
(1.042–1.506)

0.020 1.362 
(1.044–1.821)

0.028

albumin, g/dl 0.876 
(0.769–0.990)

0.038 – –

Calcium, mg/dl 7.314 
(1.474–
41.014)

0.018 – –

miR-15a 0.002 
(0.0001–

0.018)

<0.001 0.0023 
(0.0002–
0.0205)

<0.001

Ci: confidence interval; OR: odds ratio; iPTHintact parathyroid hormone

https://doi.org/10.1080/0886022X.2024.2313175
https://doi.org/10.1080/0886022X.2024.2313175


6 C. FU ET AL.

nitrogen, which successfully predicted the presence of VC in 
patients undergoing hemodialysis. This nomogram provides 
an accurate visual tool for the medical staff for prediction, 
early intervention, and graded management.

In this study, the prevalence of VC was 57.2%. Previous 
studies have reported a wide range of VC incidences among 
hemodialysis patients, ranging from 54.6 to 100% [4,6,7]. This 
higher incidence of calcification in the previous literature 
may be due to the inclusion of not only abdominal aortic 
calcification, but also thoracic aortic, coronary artery, and 
echocardiographic calcifications in the mitral valve, aortic 
valve, or mitral annulus. Furthermore, our study utilized 

abdominal radiography to assess VC, whereas other studies 
employed different imaging modalities, including coronary 
CT [33], plain hand [34], and abdominal [4] radiography. CT 
scans offer higher sensitivity for calcification than plain 
abdominal radiography, potentially contributing to the higher 
incidence of VC in some studies on patients undergoing 
hemodialysis than in our study. An important issue with the 
use of CT to evaluate VC is the exposure to ionizing radiation 
[35]. In our study, abdominal radiographs were used to eval-
uate abdominal aortic calcification because radiography is a 
more convenient bedside assessment tool that results in 
lower radiation exposure for patients. To avoid exposure to 
ionizing radiation, this study aimed to identify a biomarker 
for predicting VC.

miR-15a belongs to the miR-15 family, which is associated 
with the pathogenesis of cancer, neurological illnesses, and 
CVDs [36–38]. Some miRNAs are associated with VC. Panizo 
et  al. [39] reported that miR-29b, miR-133b, and miR-211 play 
direct roles in vascular smooth muscle calcification induced 
by high phosphorus levels. Previous research has shown that 
the overexpression of miR-15a can reduce the osteogenic 
trans-differentiation and calcification of VSMCs [26]. In our 
study, we examined the expression of miR-15a in the serum 
and explored the possibility of using miR-15a as a diagnostic 
biomarker for VC in hemodialysis patients. We observed that 
the serum expression of miR-15a in the calcification group 
was significantly lower than that in the non-calcification 
group, and the mean miR-15a level in the non-calcification 
group was 2.78 times higher than that in the calcification 
group. However, in the calcified group, miR-15a expression 
did not decrease with increasing calcification severity, which 
may be due to the small sample size. A significant difference 
was observed between the mild calcification and 
non-calcification groups, indicating that miR-15a has good 

Figure 4. Discrimination of the miR-15a-based nomogram for determining vascular calcification in the patients.

Figure 5. miR-15a-based nomogram for predicting the probability of vas-
cular calcification in patients. The range of the total points for the nomo-
gram is 0–160. The X-axis represents the predicted risk of VC development 
in patients undergoing hemodialysis. The Y-axis displays the actual CVC 
diagnosis. The dashed diagonal line represents the ideal prediction of an 
ideal model. The solid line represents the performance of the nomogram, 
with closer proximity to the dashed line indicating higher accuracy of the 
predictions of the model.
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discriminatory ability for calcification in the early stages. 
Thus, miR-15a can be considered as an indicator of 
early-stage calcification. Even after adjusting for covariates, 
such as age and WBC count, an independent correlation 
between serum miR-15a and VC remained. These results 
demonstrate the critical role of miR-15a in VC in patients 
undergoing hemodialysis. ROC curve analysis was performed 
to evaluate the diagnostic significance of miR-15a in patients 
undergoing hemodialysis. These results indicate that miR-15a 
can serve as an indicator of VC in patients with kidney fail-
ure undergoing hemodialysis. miR-15a, age, predialysis nitro-
gen, dialysis vintage, and WBC count formed a joint 
prediction factor with an AUC of 0.921, exhibiting high sen-
sitivity and specificity for predicting VC in patients 

undergoing hemodialysis. These results suggest that the 
joint detection of miR-15a with age, predialysis nitrogen 
level, dialysis vintage, and WBC count can serve as a prelim-
inary screening method for predicting VC in patients under-
going hemodialysis, while avoiding additional radiation and 
costs. This may also provide new therapeutic targets for the 
treatment of VC. In addition, Liu et  al. [40] identified 
microRNA-211-5p as a biomarker in the early detection of 
uremic VC among patients with kidney failure. Furthermore, 
Chao et  al. [41,42] found that VC severity correlated with 
decreased serum levels of miR-125b-2-3p and mir 378a-3p 
and the miRNA/mRNA pair miR-378a-30/SULF1 in combina-
tion with traditional clinical features appears to be useful for 
improved diagnosis and classification of the severity of 

Figure 6. Comparison of the three models in discrimination ability. Model 1: miR-15a+age + dialysis vintage + predialysis nitrogen + white blood cell count, 
Model 2: miR-15a, Model 3: age + dialysis vintage + predialysis nitrogen + white blood cell count.

Table 3. evaluation of prediction models.

Model Variable accuracy Sensitivity Specificity auC (95% Ci)
p Value for Delong 

test

Model 1 miR-15a+age + dialysis vintage + predialysis 
nitrogen + white blood cell count

0.812 0.932 0.722 0.921 (0.879–0.963) Reference

Model 2 miR-15a 0.783 0.814 0.760 0.872 (0.816–0.927) 0.008
Model 3 age + dialysis vintage + predialysis 

nitrogen + white blood cell count
0.703 0.780 0.647 0.782 (0.705–0.859) <0.001

auC: area under receiver operator curve; Ci: confidence interval
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uremic VC in patients with kidney failure. However, in these 
studies, the populations studied were not exclusively hemo-
dialysis patients [40], and relevant prediction models were 
not provided [42].

In our study, age was an independent risk factor for calcifi-
cation, which is consistent with previous findings [4, 6, 42]. 
Although existing literature lacks reports on the association 
between the WBC count and uremic calcification, our study 
demonstrated that the WBC count is also an independent risk 
factor for VC in patients undergoing hemodialysis and that 
high WBC counts increase the risk of calcification. Hou et  al. 
[43] reported a borderline or significantly positively association 
of the total WBC and eosinophil counts with the probability of 
coronary artery atherosclerosis 20 years later; furthermore, mul-
tiple studies have shown a correlation between elevated levels 
of WBCs and the presence of arterial stiffness and other ath-
erosclerotic events [44, 45]. Several biological mechanisms 
contribute to the onset and exacerbation of inflammation and 
oxidative stress, including mitochondrial activity, xanthine oxi-
dase, and Nicotinamide Adenine Dinucleotide Phosphate 
(NADPH) oxidase, which exacerbate VC in patients with CKD 
[19]. Because activated WBCs can adhere to the vascular endo-
thelium, penetrate the intima, induce capillary leukostasis, 
increase vascular resistance, and release hydrolytic enzymes, 
cytokines, and growth factors, it is widely accepted that 
chronic low-grade inflammation in the arterial wall may have 
a critical role in both the initiation and progression of CVDs. 
These factors released by activated WBCs have the potential to 
induce further vascular damage [46]. Phosphate metabolism 
disorders are important triggers of CKD mineral bone disease 
[21, 47]. Previous studies have suggested that blood phospho-
rus is a factor that leads to VC progression during hemodialy-
sis [6, 30, 42]. However, in our study, the blood phosphorus 
level was not found to be a risk factor for calcification, which 
may be because this dialysis center adheres to the use of 
phosphate binders, resulting in minimal changes in serum 
phosphate levels during data collection. Other studies arrived 
at similar conclusions [21, 42].

As far as we know, there have been no studies examining 
the usefulness of serum miR-15a in predicting the likelihood 
of VC. This is the first nomogram of miRNA participation con-
structed to predict VC in patients undergoing hemodialysis. 
Although the prognostic nomogram in this study showed a 
good predictive ability, some limitations should be consid-
ered. First, the associations between dialysis vintage and 
albumin levels were not statistically significant, possibly due 
to the small sample size. Second, as our study was retrospec-
tive, certain patient data were inevitably missing. This might 
have decreased the number of eligible cases. The 
cross-sectional study design could not determine causality, 
and biochemical indices were only collected at a single time 
point; thus, we were unable to monitor fluctuations in bio-
chemical indices. Third, we did not measure vitamin D levels 
of the participants. Fourth, our findings will be more reliable 
if the nomogram model is externally validated using another 
independent large-scale dataset to verify whether our results 
are universally applicable.

Future research should include combining multiple miRNAs 
or other biomarkers with miRNAs and clinical data to establish 
superior models for risk prediction. Further investigations into 
the underlying biological mechanisms of miRNA-regulated VC 
may provide new insights into potential therapeutic targets for 
the prevention and treatment of this disease. In addition, studies 
exploring the potential of miRNA-based therapies, particularly 
those targeting miR-15a, may pave the way for the development 
of novel therapeutic interventions.
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