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ABSTRACT: Accurate diagnosis of chronic obstructive pulmonary
disease (COPD) and exacerbations by metabolic biomarkers enables
individualized treatment. Advanced metabolic detection platforms rely
on designed materials. Here, we design mesoporous PdPt alloys to
characterize metabolic fingerprints for diagnosing COPD and
exacerbations. As a result, the optimized PdPt alloys enable the
acquisition of metabolic fingerprints within seconds, requiring only 0.5
μL of native plasma by laser desorption/ionization mass spectrometry
owing to the enhanced electric field, photothermal conversion, and
photocurrent response. Machine learning decodes metabolic profiles
acquired from 431 individuals, achieving a precise diagnosis of COPD
with an area under the curve (AUC) of 0.904 and an accurate
distinction between stable COPD and acute exacerbations of COPD
(AECOPD) with an AUC of 0.951. Notably, eight metabolic biomarkers identified accurately discriminate AECOPD from stable
COPD while providing valuable information on disease progress. Our platform will offer an advanced nanoplatform for the
management of COPD, complementing standard clinical techniques.

■ INTRODUCTION
Chronic obstructive pulmonary disease (COPD) is a prevalent
condition characterized by persistent respiratory symptoms
and airflow limitation and impacts approximately 300 million
people globally.1,2 It is a major cause of morbidity and
mortality worldwide, resulting in a global public health
problem with mortality of about 3.2 million individuals
annually.2−4 Advanced diagnostic methods could facilitate
the development of subsequent treatment plans in time,
improving the health outcomes of patients.5,6 However, COPD
is a systemic condition, and spirometry, which is a commonly
used clinical method for COPD diagnosis through the
assessment of lung function alone, is still limited by its poor
accuracy, accessibility, and patient compliance.7,8 Moreover,
this method fails to provide information on the disease’s
progress. In particular, there are no objective clinical tools
available for the diagnosis of COPD exacerbations, which are
the main factors of hospitalizations and mortality in
COPD.1,8,9 Therefore, a reliable and noninvasive method,
realized through robust analytical platforms for the diagnosis of
COPD and exacerbations, is highly required.
Biomarkers allow the characterization of disease progression

at the molecular level through noninvasive techniques,10,11

holding promise for the diagnosis of COPD and exacer-
bations.9,12,13 Recently, various gene (e.g., circulating

miRNA)14,15 and protein biomarkers (e.g., C-reactive
protein)16,17 have been reported for the diagnosis or evaluation
of COPD, but their performance is suboptimal for clinical use
due to their poor accuracy.13 Compared with genes and
proteins, metabolites function as immediate indicators of
biochemical activity and exhibit a close correlation with the
COPD phenotype.6,13 Mass spectrometry (MS), specifically
laser desorption/ionization (LDI) MS, has emerged as a robust
analytical instrument for the high-throughput and sensitive
detection of various metabolites.18−24 However, metabolic
analysis is often impeded by the inherent challenges of
concentration and purification, given the low concentration of
metabolites and high complexity of samples in clinical
specimens.10,25−27

Matrix materials play crucial roles in analyte detection,
deciding the performance of LDI MS.28−31 In particular, noble
metals are superior candidates for enhancing LDI efficiency,
concerning the surface plasmon resonance and hot carriers
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generated under laser irradiation.32,33 However, most of the
current matrixes focus on monometallic nanoparticles (e.g., Au,
Ag, Pt, and Pd)34,35 or their composites with other
materials,36−38 exhibiting insufficient sensitivity in LDI MS
for clinical application. Additionally, there are very few studies
investigating the relationship between particle size and
selective LDI. Furthermore, nanoparticles with porous
structures enable the enrichment of small metabolites and
the exclusion of proteins, achieving selective ionization of
metabolites.22,39 Therefore, bimetallic alloys with synergistic
effects and mesoporous structure promise to alleviate the
constraints of monometallic/metal-composite and nonporous
matrixes and advance metabolite analysis toward precise
diagnosis.
In this study, we constructed mesoporous PdPt-assisted LDI

MS for metabolite profiling from plasma (Figure 1a), following
the diagnosis of COPD and exacerbations and biomarker
discovery via machine learning (Figure 1b). The excellent LDI
performance of PdPt alloys was attributed to the enhanced
electric field, photothermal conversion, photocurrent response,
and mesoporous structure with size exclusion effect. The
optimized PdPt alloys facilitated rapid metabolite profiling
within seconds, requiring only 0.5 μL of native plasma without
tedious pretreatment. By integration with machine learning, we
achieved a precise diagnosis of COPD with an area under the
curve (AUC) of 0.904 in the discovery cohort and an AUC of
0.955 in the validation cohort. Notably, our platform enables
an accurate distinction between stable COPD (SCOPD) and
acute exacerbations of COPD (AECOPD), with an AUC of

0.951 in the discovery cohort and an AUC of 0.976 in the
validation cohort. Furthermore, eight identified metabolic
biomarkers revealed a distinct signature for the discrimination
of SCOPD and AECOPD. Our work provides an advanced
nanoplatform for the precise diagnosis of COPD and
exacerbations and valuable information on disease progress.

■ RESULTS AND DISCUSSION
Synthesis and Characterization of Mesoporous PdPt

Alloys. We successfully synthesized mesoporous PdPt spheres
through a facile and modified surfactant-directing method.22

Briefly, the bimetallic alloys were obtained by the ascorbic
acid-triggered reduction of Na2PdCl4 and H2PtCl6 in an
aqueous solution, followed by the removal of F127 serving as
pore-directing agents. Scanning electron microscopy (SEM)
and transmission electron microscopy (TEM) images (Figure
2a,b) showed that the alloys were fairly uniform and possessed
well-defined mesoporous structures with a pore size of
approximately 20 nm. This was further characterized by low-
angle X-ray diffraction (XRD) (Figure 2c) that showed a clear,
sharp peak at 2θ = 0.46° (d = 19.0 nm), demonstrating the
formation of a periodic mesoporous structure. The nitrogen
adsorption−desorption isotherm of PdPt alloys exhibited a
typical type-IV curve (Figure S1a) with a pronounced capillary
condensation phenomenon at the relative pressure (P/P0) of
0.7−0.9, further evidencing the existence of a mesoporous
structure.40,41 The specific surface area was ∼23.29 m2 g−1 as
counted by the Brunauer−Emmett−Teller (BET) model. The
pore size was ∼19.6 nm as calculated by the pore-size

Figure 1. Schematics for extraction of plasma metabolic fingerprints toward the diagnosis of chronic obstructive pulmonary disease (COPD) and
exacerbations. (a) Experimental procedure for the extraction of plasma metabolic fingerprints via laser desorption/ionization mass spectrometry
(LDI MS) assisted by PdPt alloys. Mesoporous PdPt alloys were synthesized by utilizing F127 surfactant as a pore-directing template. One
microliter of plasma extract (0.5 μL of native plasma) was used to obtain signals of metabolites with cation adducts (Na+/K+). (b) Schematic
diagram for machine learning of metabolic fingerprints for diagnosis of COPD and exacerbations.
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distribution curve (Figure S1b) based on the Barret−Joyner−
Halenda (BJH) mode, which is almost consistent with the low-
angle X-ray diffraction analysis. In particular, the mesopores on
the alloy surface exhibited concavity toward the center of the
particles, which was crucial to trapping small molecules while
excluding larger nucleic acids and proteins in complex
biofluids.22,42

Furthermore, elemental mapping and line scan profiles were
investigated to reveal the distributions of Pd and Pt in the
particles. As shown in Figure 2d, elemental mapping showed a
pronounced concentration of Pd within the core region of the
particles, while Pt was found to be uniformly distributed across
the entirety of the spherical structure. This was further revealed
by the line scan profiles (Figure 2e). The selected-area electron
diffraction (SAED) pattern (Figure 2f) and high-resolution
TEM (Figure 2g) with clear lattice fringes demonstrated the
high degree of crystallization of the bimetallic alloys.22,43 The
crystal structure was evidenced by the wide-angle XRD (Figure
2h), yielding (111), (200), (220), and (311) diffraction peaks
of face-centered-cubic (fcc) crystal structure assignable to Pd
(JCPDS: 46-1043) and Pt (JCPDS: 04-0802).43,44 X-ray
photoelectron spectroscopy (XPS) (Figure S2) showed
doublet peaks of Pt0 4f7/2 and Pt0 4f5/2 as well as peaks of
Pd 3f5/2 and Pd 3f3/2, respectively, evidencing the presence of
metallic state Pt and Pd on the surface of the alloys.43,45 The
surface Pt/Pd mole ratio of porous PdPt was calculated to be
6.3, demonstrating that the surface of PdPt is abundant in Pt,
consistent with the elemental mapping result (Figure 2d,e).

Notably, the PdPt alloys demonstrated an fcc crystal structure
with an elevated density of surface atoms with low
coordination, possessing high surface energy.46,47 In particular,
the unsaturated Pt atomic structures (with some atomic edge
and kink sites as shown in Figure 2g) on the surface can
provide sufficient active sites and enhance analyte adsorption
and charge transfer to analytes,43,48 which will be beneficial for
the following LDI process enhancement.

Optimization of Mesoporous PdPt Alloys. LDI
enhancement of nanomaterials was proven to be closely
correlated with their elemental compositions and surface
structures by numerous studies.22,49 However, rarely have
reports demonstrated the effects of nanomaterial size on the
LDI process. Therefore, we synthesized mesoporous PdPt
nanoparticles with controlled particle size by changing the
concentration of HCl (3 M (250 μL)/6 M (250 μL)/12 M
(250 μL)/12 M (500 μL) in HCl aqueous solution, denoted as
PdPt-1/2/3/4). As the HCl concentration increased, we
observed increased particle size with an average size of
approximately 90/150/200/240 nm for PdPt-1/2/3/4 alloys
(Figure 3a−d and Figure S3). Energy-dispersive X-ray (EDX)
analysis revealed similar Pd and Pt contents for PdPt-1/2/3/4
alloys (Figure S4 and Table S1), which was helpful in
investigating the effect of particle size on the LDI process
without the influence of elemental composition. The zeta
potential demonstrated that the surface of PdPt-1/2/3/4 was
negatively charged and the charge increased from −44.07 ±
0.65 mV to −22.77 ± 0.60 mV as the particle size increased

Figure 2. Characterization of PdPt alloys. Electron micrograph images of PdPt alloys, including (a) scanning electron microscopy (SEM) and (b)
transmission electron microscopy (TEM). (c) Low-angle X-ray diffraction (XRD) pattern of PdPt with a sharp peak at 2θ = 0.46°. (d) Elemental
mapping analysis and (e) line-scan energy-dispersive X-ray (EDX) results of PdPt alloys, with Pd in green and Pt in yellow, respectively. (f)
Selected-area electron diffraction (SAED) pattern and (g) high-resolution TEM (HRTEM) of PdPt alloys. The arrows in (g) show the unsaturated
Pt atoms. (h) Wide-angle XRD pattern of PdPt alloys, standard Pd (JCPDS: 46-1043) and Pt (JCPDS: 04-0802). Scale bar: (a, b, d, e) 100 nm for
SEM, TEM, and mapping results, (f) 5/nm, and (g) 2 nm for HRTEM.
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(Figure S5 and Table S2), which is helpful for cation adduction
and matrix use in LDI MS.22,49,50 All PdPt nanospheres
exhibited strong absorption in the ultraviolet (UV) range
(Figure S6). Considering the wavelength (355 nm) of the
Nd:YAG laser used for LDI MS, mesoporous PdPt alloys may
allow efficient laser energy transfer to analytes.22,51

To select the optimized materials for the following biofluids
detection, a thorough LDI MS performance evaluation of the
PdPt nanoparticles was conducted for glucose (Glc), phenyl-
alanine (Phe), arginine (Arg), and proline (Pro) analysis. As a

result, PdPt-2 presented significantly elevated signal intensities
(p < 0.05) for different small molecules, superior to PdPt-1/3/
4 alloys (Figure 3e). In particular, PdPt-2 alloys still exhibited
higher signal intensity (p < 0.05) of glucose compared with
that of other materials for plasma detection (Figure S7),
indicating PdPt-2 alloys to be the matrix for the ideal detection
of metabolites in clinical samples. Furthermore, various kinds
of metabolites (30 small molecules) including nonpolar amino
acids, polar amino acids, carbohydrates, alkaloids, nucleotides,
fatty acids, and organic acids were used to comprehensively

Figure 3. Optimization of PdPt alloys for metabolite detection. SEM images of (a) PdPt-1, (b) PdPt-2, (c) PdPt-3, and (d) PdPt-4 alloys with
different particle sizes. (e) Intensities of sodium- and potassium-adducted signals of glucose (Glc), phenylalanine (Phe), arginine (Arg), and proline
(Pro) detected by PdPt-1/2/3/4 alloy-assisted LDI MS. The error bars were determined as the standard deviation (s.d.) of nine measurements.
Contour plots of (f) electric field amplitudes and (g) thermal field distribution shown on the color scale for (i) PdPt-1, (ii) PdPt-2, (iii) PdPt-3,
and (iv) PdPt-4 alloys, for a 355 nm laser beam with polarization along the Y axis. Laser light was introduced along the Z-axis. The electric field
amplitudes and thermal field distribution were counted by the finite element method. (h) Typical mass spectrometry of different metabolites (Pro,
asparagine (Asn), Phe, Arg, Glc and sucrose (Suc)) in water solution, detected by PdPt-2 alloys assisted LDI MS. (i) Coefficient of variance (CV)
distribution of different metabolites (Pro, Asn, Phe, Arg, Glc and Suc) analyzed by PdPt-2 alloys assisted LDI MS. The results come from nine
independent experiments. (j) Typical mass spectrometry of different metabolites (Pro, Asn, Phe, Arg, Glc, and Suc) in a mixture solution of 0.5 M
NaCl (salt tolerance detection) and 5 mg mL−1 bovine serum albumin (protein endurance detection), detected by PdPt-2 alloy-assisted LDI MS.
Scale bar: (a, b, c, d) 100 nm.
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evaluate the LDI performance of PdPt-2 alloys. Consequently,
PdPt alloys showed preferred performance for polar amino
acids and carbohydrates (Figure S8) because metabolites with
hydrophilic chemical groups (such as hydroxyl groups) can be
desorbed and ionized on the surface of PdPt alloys with
homogeneous cocrystallization.52,53 The superior LDI per-
formance of PdPt-2 alloys was assigned to the enhancement of
the electric field for desorption/ionization induced by light,
photothermal conversion for desorption triggered by heat, and
a photocurrent response for the inhibition of electron−hole
recombination.
To demonstrate the electric field enhancement, a three-

dimensional finite element simulation was conducted to model
the electric/thermal field distribution when exposed to a 355
nm wavelength laser matched with the laser source of LDI MS.
As a result, PdPt-2 offered the greatest electric field (shown as
E2) of 1.62 × 108 (Figure 3f), a maximum ∼2.1-fold higher
over PdPt-1/3/4 due to its unique particle size. Notably,
porous bimetallic alloys displayed a superior electric field
enhancement of 1.3−2.4-fold compared to that of porous/
nonporous monometallic particles (Figure S9a), attributed to
the facile charge transfer among multiple elements and porous
structure.22,54 Specifically, a PdPt alloy with noble metal
characteristics may generate hot carriers and strong optical
near-field effects under UV (355 nm) illumination.32,55 Even
though the resonance wavelengths of both Pd and Pt solid
nanoparticles are not 355 nm, the PdPt alloy can generate a
strong plasmonic effect under UV illumination due to the
special alloy properties and porous structure. The alloy
structure may lead to interactions between Pd and Pt, creating
surface-isolated exciton coupling effects and altering the
electromagnetic response of the single material.56,57 Further-
more, the nanopores act as resonators, concentrating the
incoming electromagnetic field and generating high-density
hotspots, despite the fact that the plasmons are not in
resonance under short-wavelength irradiation.54,58 Thus, the
surface adsorbates on the alloys are expected to generate an
enhanced MS signal due to effective desorption/ionization
induced by hot carriers that are triggered by near-field
enhancement.22,59

For the photothermal conversion, a three-dimensional finite
element simulation was first carried out to study the
temperature of PdPt alloys under a 355 nm wavelength. The
highest temperature reached 878 K for PdPt-2, higher than for
PdPt-1/3/4 bimetallic alloys and monometallic particles
(Figure 3g and Figure S9b), owing to its distinct particle size
and lower thermal conductivity compared to that of
monometals.60 The bimetallic alloys with lower thermal
conductivity could minimize the diffusion of thermal energy
and thus were heated to a higher temperature under the same
laser irradiation fluence,60,61 leading to higher photothermal
efficiency and the efficient desorption of nearby analytes
compared to monometallic particles. The rapid relaxation
processes of hot carriers produced by metals can cause local
heating, resulting from the plasmon resonances, to boost light
absorption in the surface area of the metal, consequently
enhancing the conversion of absorbed light energy.62,63 In
addition, the light absorption of a nonplanar (like porous)
metal surface is more efficient than that of planar structures
that reflect most of the incident light.62 Notably, the high
temperature facilitating the partial melting of materials induced
surface structural changes at high fluence areas (Figure S10),
improving the thermal desorption and phase transition

processes while facilitating the desorption/ionization of
analytes.22,55,64 Although there are no significant differences
in the pore diameter between PdPt-2 and PdPt-1/3 alloys,
significant differences exist between PdPt-2 and PdPt-4 alloys
(Figure S11a). We further compared the electric field and
photothermal conversion of PdPt-2 and PdPt-4 alloys without
significant differences in pore size. The PdPt-4 alloy model
with a 20 nm pore size was built for COMSOL simulation, still
exhibiting a lower maximum electric field (shown as E2) of
0.85 × 108 and a temperature of 513 K compared to those of
PdPt-2 alloys (Figure S11b,c). For the photocurrent response,
the PdPt-2 alloy displayed the strongest photocurrent intensity
compared to PdPt-1/3/4 alloys (Figure S12), indicating a
reduced rate of electron−hole recombination.51 Considering
the distinctive optical, electric, and thermal characteristics, the
PdPt-2 alloys offer notable advantages in the highly sensitive
detection of metabolites.
To further demonstrate the advantage of the PdPt-2 matrix

over traditional organic matrixes (α-cyano-4-hydroxycinnamic
acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB)), we
compared the detection reproducibility in a mixture of six
metabolites, including Pro, asparagine (Asn), Phe, Arg, Glc,
and sucrose (Suc). Typical mass spectrometry of different
metabolites is shown in Figure 3h. The intensity coefficients of
variation (CVs) for six molecules were 7.6%, 6.4%, 12.3%,
8.2%, 13.0%, and 9.9%, respectively (Figure 3i), superior to
CHCA and DHB with CV values of over 25.0% (Figure
S13a,b). The excellent reproducibility of the PdPt-2 alloy
benefited from the more homogeneous nanoparticle−analyte
cocrystals, compared to the random sample crystallization with
organic matrixes (Figure S13c−e).18,33 The limits of detection
(LOD) for metabolites by PdPt alloys and organic matrixes
were further studied by changing the molecule concentration
from 100 to 0.1 μg mL−1. The regression equation exhibited
excellent linear correlation results with R2 > 0.980 for each
metabolite by PdPt alloy-assisted LDI MS analysis (Figure
S14). The nanoplatform demonstrated high sensitivity
detection for metabolites, with a LOD of as low as 0.3 pmol
(Table S3). In contrast, organic CHCA and DHB matrixes
showed poor linear correlation results with R2 = 0.697−0.975
(Figure S15). In particular, CHCA cannot detect the signals of
Glc and Suc, and DHB cannot obtain the signals of Pro, Phe,
Glc, and Suc, even at a high concentration of 100 μg mL−1

(Figure S15 and Table S3). Therefore, PdPt alloys outperform
the organic matrix and exhibit lower limits of detection for
small metabolite detection.
In light of metabolic abundance and sample complexity

influencing the MS analysis, tedious pretreatment is essential
for concentrating and segregating metabolites from complex
biofluids.65 Nanoparticle with porous/crevices structure can
concentrate metabolites in the nanopores for in situ macro-
molecule exclusion in biofluids, attaining a targeted LDI
process of small metabolites.22,66 Consequently, the PdPt alloy
with a porous structure realized the targeted and sensitive
detection of metabolites (Figure 3j) in the presence of a high
salt concentration (0.5 M NaCl) and protein content (5 mg
mL−1 bovine serum albumin (BSA)). To further prove the
size-selective effect in porous PdPt, glucose and BSA were used
as model molecules for metabolites and protein, respectively,
to observe the carbon element distribution in the alloy-analytes
hybrids. The element mapping analysis revealed that the
metabolites were captured by pores in alloy-metabolite
hybrids, whereas such enrichment was not observed in the
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alloy-protein composites (Figure S16). Notably, we can
observe a large number of small-molecule signal peaks in the
detection of plasma, serum, and urine by PdPt-2 alloy-assisted
LDI MS, outperforming CHCA and DHB as the matrix
(Figure S17). Therefore, PdPt-2 alloys with optimized
structure enabled the sensitive and selective detection of
metabolites in complex biofluids toward clinical sample
analysis.

Enhanced Metabolic Fingerprints for COPD Diag-
nosis. To uncover the specific metabolic signatures of COPD,
we collected 431 plasma samples (Figure 4a) including 185
healthy controls and 246 COPD patients (122 SCOPD and
124 AECOPD individuals) for PdPt-2 alloy-assisted LDI MS
analysis. The healthy controls were verified by spirometry with
normal lung function (FEV1/FVC > 70%), and all patients
were diagnosed with persistent airflow limitation based on the
clinic criteria for the diagnosis of COPD.67,68 In this research,

Figure 4.Machine learning of metabolic fingerprints for COPD diagnosis. (a) Demographic characteristics of 431 clinical specimens, including age
and gender information on 185 healthy controls (HC) and 246 COPD patients (122 stable COPD (SCOPD) patients and 124 acute exacerbations
of COPD (AECOPD) patients). (b) Typical mass spectra of plasma extracts from HC, SCOPD, and AECOPD samples with m/z ranging from 100
to 400, using 0.5 μL of native plasma. (c) The frequency distribution of similarity scores was computed for HC, SCOPD, and AECOPD groups.
(d) Metabolic fingerprints were extracted from raw mass spectra of 185 healthy controls and 246 COPD patients, each containing 933 m/z
features. (e) The unsupervised principal component analysis (PCA) showed a certain degree of discrimination between 185 healthy controls and
246 COPD patients. (f) Workflow for the diagnosis of COPD by machine learning. The discovery cohort comprised 309 samples (143/166, HC/
COPD) used for parameter tuning and model construction. The optimized model was evaluated using an independent validation cohort with 122
subjects (42/80, HC/COPD). No statistically significant differences in age and gender between HC and COPD in the discovery cohort (p > 0.05).
(g) The receiver operator characteristic (ROC) curve differentiates HC from COPD for the discovery (blue) and validation (red) cohorts. (h)
Scatter diagram for HC and COPD from the discovery cohort. A probability of close to 1 implied a high level of certainty in the model that the
sample belonged to class 1 (patient). In contrast, a probability close to 0 indicated a model inclination toward classifying the sample as class 0
(healthy control).22,92 ROC curves differentiate (i) HC from SCOPD and (j) HC from AECOPD for the discovery (blue) and validation (red)
cohorts.
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the test sample and the PdPt alloy suspension were prepared
layer-by-layer (see details of Experimental Procedures in the
Supporting Information) due to the high ionization
efficiency.22,69 In contrast, the LDI performance showed a
significant decrease (p < 0.05, Figure S18) if the alloy
suspension was positioned ahead of the plasma sample or if the
alloys and plasma were premixed. The metabolic fingerprints of
plasma (Figure 4b) were successfully recorded in seconds in
the low mass range (100−400 Da), with simple sample
pretreatment and minimal sample consumption (0.5 μL of
native plasma). Traditionally, liquid chromatography (LC) MS
and nuclear magnetic resonance (NMR) are common methods
for metabolite analysis, requiring tedious sample pretreatment
(∼hours) and large sample consumption (∼milliliters).65,70 In
contrast, PdPt-2 alloy-assisted LDI MS exhibited simple
sample pretreatment (only protein precipitation required),
improved detection speed, and minimized sample usage due to
the enhanced sensitivity through optical/electrical/photo-
thermal characteristics and in situ enrichment by the porous
structure. In particular, over 95% of samples exhibited high
similar scores over 0.85 for mass spectra in both the control
and patient groups (Figure 4c), demonstrating the reliability of
plasma metabolic fingerprints for further diagnostic applica-
tions. As a result, we obtained 933 m/z signals from the plasma
via data processing (refer to the Experimental Procedures) and
built the heat map composed of the metabolic data matrix of
controls and patients (Figure 4d). However, we cannot see a
significant difference between groups from the heat map.
Furthermore, unsupervised analysis of the principle component
analysis (PCA) showed a certain degree of separation without
enough clarity between healthy controls and COPD patients
(Figure 4e), indicating the imperative for developing a cutting-
edge machine-learning method to find the distinct metabolic
phenotype of COPD.
To further reveal the unique metabolic signature of COPD,

sparse learning was performed for metabolic data analysis.
Initially, we grouped the 431 plasma samples into a discovery
cohort (143 healthy controls and 166 COPD patients) for
parameter tuning and model optimization and an independent
validation cohort (42 healthy controls and 80 COPD patients)
for model evaluation and prediction (Figure 4f). No
statistically significant differences in age and gender were
observed between the two groups in the discovery cohort (p >
0.05, Table S4). Subsequently, we carried out the power
analysis on a preliminary study of 12 samples (6/6, healthy
control/COPD patient) to count the minimum required
sample size for detecting a statistically significant difference
(Figure S19). As a result, a predicted power of 0.92 was
obtained at a false discovery rate (FDR) of 0.1 with a sample
number of 48 (24/24, healthy control/COPD patient),
evidencing the statistics of machine learning at a confidence
level. A receiver operating characteristic (ROC) curve was
graphed to illustrate the performance of sparse learning for
discriminating COPD from healthy controls, producing an
averaged area under the curve (AUC) of 0.904 with a 95%
confidence interval (CI) of 0.869−0.939 (with a sensitivity of
0.801, specificity of 0.853, and accuracy of 0.825) for the
discovery cohort (Figure 4g). Furthermore, we confirmed that
there was no overfitting for the sparse learning model via a
permutation test (Figure S20a, 1000 times and p < 0.001).
Similarly, a consistent performance generated by the optimized
model for the independent validation cohort was obtained,
showing an AUC of 0.955 with 95% CI of 0.923−0.988 (with a

sensitivity of 0.838, specificity of 0.833, and accuracy of 0.836).
Notably, the possibility of each subject (in the discovery
cohort) being diagnosed as a patient by the classification
model was plotted as the scatter diagram that exhibited a clear
separation of these two groups, indicating metabolic alteration
accompanied by disease occurrence (Figure 4h). These results
evidenced the advanced diagnostic power toward COPD by
metabolic fingerprints through the PdPt alloy-assisted LDI MS
analysis.
To search for significant metabolic biomarkers for COPD

diagnosis, we screened top-ranking 4 m/z features based on the
frequency, p value, abundance, and AUC of a feature produced
by the sparse learning for discovery cohort analysis (Figure
S21a). The features were glucose, lactic acid, uric acid, and
malondialdehyde (Table S5), confirmed by the human
metabolome database (HMDB) (http://www.hmdb.ca/),
accurate MS measurement on Fourier transform ion-cyclotron
resonance mass spectrometry (FT-ICR-MS), and identification
by ultraperformance liquid chromatography-MS (UHPLC-
MS) analysis (<5 ppm). In particular, glucose was down-
regulated, and lactic acid, uric acid, and malondialdehyde were
up-regulated in COPD patients (Figure S21b−e), constructing
a classification model with an AUC of 0.779 (CI: 0.727−
0.831) for COPD diagnosis in the discovery cohort (Figure
S21f). Globally, the prevalence of COPD in males was about
double that in females mainly due to common tobacco
smoking among men,1,71 a similar phenomenon found in this
work (Table S4). However, in the discovery cohort, the p value
of gender was 0.43, indicating no significant difference in
gender between healthy controls and the COPD patients.
Therefore, differences in the number of males and females did
not affect diagnostic modeling and biomarker discovery for
COPD. Additionally, we compared the metabolic differences
between males and females. However, there were no significant
metabolic differences (p > 0.05) between males and females
(Figure S22) for the four top-ranking significant metabolic
biomarkers (including glucose, lactic acid, uric acid, and
malondialdehyde) in COPD diagnosis, further demonstrating
that the diagnostic model was not affected by gender.
To comprehensively evaluate the performance of our

platform in COPD diagnosis, for both stable and acute
exacerbations, sparse learning was conducted for the
discrimination of healthy controls and SCOPD as well as
healthy controls and AECOPD, respectively. No significant
differences existed in age and gender for both discovery
cohorts (p > 0.05, Tables S6 and Table S7). Consequently, we
obtained an AUC of 0.870 (with 95% CI of 0.823−0.971) in
the discovery cohort (105 healthy controls and 103 SCOPD
patients) and an AUC of 0.856 (with 95% CI of 0.760−0.952)
in the validation cohort (46 healthy controls and 19 SCOPD
patients; Table S6) for the discrimination of healthy controls
and SCOPD (Figure 4i). Meanwhile, we got an AUC of 0.961
(with 95% CI of 0.932−0.991) in the discovery cohort (105
healthy controls and 102 AECOPD patients) and an AUC of
0.999 (with 95% CI of 0.995−1) in the validation cohort (46
healthy controls and 22 AECOPD patients; Table S7) for the
distinction between healthy controls and AECOPD (Figure
4j). These results further demonstrated that the constructed
PdPt alloy-assisted LDI MS platform was capable of achieving
a precise diagnosis of COPD.
Clinically, the diagnosis of COPD is confirmed by the

existence of consistent airflow limitation, as evaluated by
postbronchodilator spirometry.1,67 However, this method
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generally underestimates the prevalence of COPD in younger
patients and overestimates it in older patients.72 In particular,
this method presents poor patient compliance for people with
underlying diseases and acute exacerbations. Currently, there is
a deficiency in reliable genes or protein biomarkers to assess
the diagnosis of COPD.15,17,73 In contrast, metabolite
biomarkers function as direct indicators of biochemistry
activity, closely correlating the phenotype of disease.74 Here,
we developed PdPt alloy-assisted LDI MS for the effective
extraction of metabolic fingerprints in plasma due to the
unique physiochemical property and porous structure.
Notably, the AUC for the discrimination of healthy controls
and COPD patients is beyond 0.90, demonstrating the
dependability and application potential of metabolic finger-
prints for COPD diagnosis.

Biomarker Discovery for AECOPD Diagnosis. AE-
COPD features acute worsening of respiratory symptoms
and is the primary cause of mortality from COPD,68,75

indicating that early diagnosis is important for patient survival
and prognosis. To construct powerful tools for the diagnosis
and assessment of AECOPD, we randomly grouped the 246
(122 SCOPD and 124 AECOPD patients) plasma samples
into a discovery cohort (103 SCOPD and 102 AECOPD

patients) for parameter tuning and model optimization and an
independent validation cohort (19 SCOPD and 22 AECOPD
patients) for model evaluation and prediction (Figure 5a). No
statistically significant differences in age and gender were
observed between the two groups in the discovery cohort (p >
0.05, Table S8). After obtaining the metabolic fingerprints of
all plasma samples by PdPt alloy-assisted LDI MS, we extracted
912 m/z metabolic signals in plasma via data processing.
Unsupervised PCA based on all of these signals was plotted to
demonstrate the difference between SCOPD and AECOPD,
yielding an unclear separation between the two groups (Figure
S23a). We further performed sparse learning for the metabolic
data analysis, achieving a precise diagnosis of AECOPD with
an AUC of 0.951 (with 95% CI of 0.920−0.982, sensitivity of
0.852, specificity of 0.942, and accuracy of 0.898) in the
discovery cohort (Figure 5b). Furthermore, we confirmed that
there was no overfitting for the sparse learning model via a
permutation test (Figure S20b, 1000 times and p < 0.001).
Additionally, based on the optimized model, a comparable
AUC of 0.976 (with 95% CI of 0.939-1, a sensitivity of 1, a
specificity of 0.789, and an accuracy of 0.902) was obtained in
the independent validation cohort (Figure 5b). The above
results prove that our platform can realize the precise diagnosis

Figure 5.Machine learning of metabolic fingerprints for AECOPD diagnosis and biomarker discovery. (a) Workflow for the diagnosis of AECOPD
by machine learning. The discovery cohort included 205 samples (103/102, SCOPD/AECOPD) for parameter tuning and model construction.
The optimized model was tested in an independent validation cohort with 41 individuals (19/22, COPD/AECOPD). No statistically significant
differences in age and gender between SCOPD and AECOPD in the discovery cohort (p > 0.05). (b) ROC curves differentiate SCOPD from
AECOPD for the discovery (blue) and validation (red) cohorts. (c) Venn diagram of 8 m/z features screened as the metabolic signature panel with
frequency ≥90%, p < 0.05, abundance >500, and AUC of single feature >0.7. Scatter diagram of three key differential features for SCOPD and
AECOPD, including (d) lactic acid (Laa), (e) uric acid (Ura), and (f) malondialdehyde (Mal). **** is represented by p < 0.0001. (g) Fold change
of four up-regulated metabolites (Laa, Ura, Mal, and 3-hydroxybutyric acid (Hya) with magenta color) and four down-regulated metabolites
(creatine (Cre), dimethylglycine (Dim), threonine (Thr), and fucose (Fuc) with cyan color) in AECOPD patients compared with SCOPD. (h)
The heat map of the discovery cohort, including SCOPD and AECOPD patients, is constructed by eight metabolic biomarkers as potential
signatures for AECOPD diagnosis. (i) PCA analysis showed a clear discrimination between SCOPD and AECOD patients based on eight metabolic
biomarkers.
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of AECOPD, showing great potential in the management of
AECOPD. SCOPD and AECOPD represent different stages of
COPD’s disease course with different clinical features and
treatment needs.68,76 In particular, AECOPD is a progressive
stage of stable COPD (SCOPD), with a high rate of
hospitalization and mortality. Distinguishing between them
helps to tailor individualized treatment regimens more
precisely, improving survival and prognosis.77 Furthermore,
the onset of AECOPD accompanies the changes in biomarkers
in the blood, and discriminating SCOPD and AECOPD will
help to develop significant metabolic biomarkers for the early
diagnosis and assessment of AECOPD progression.1,78

In clinical situations, there are no reliable biomarkers with
enough sensitivity and specificity to predict AECOPD onset.
To search for the distinct metabolic biomarkers between
SCOPD and AECOPD, we screened top-ranking 8 m/z
features based on the frequency, p value, abundance, and AUC
of a single feature produced by the sparse learning for
discovery cohort analysis (Figure 5c). These features were
confirmed for eight metabolites according to the HMDB
(http://www.hmdb.ca/), accurate MS measurement on FT-
ICR-MS, and identification by UHPLC-MS analysis (<5 ppm).
These biomarkers included creatine (Cre), lactic acid (Laa),
dimethylglycine (Dim), 3-hydroxybutyric acid (Hya), uric acid
(Ura), threonine (Thr), malondialdehyde (Mal), and fucose
(Fuc). The scatter diagram demonstrated that four metabolites
(Laa, Hya, Ura, and Mal) were up-regulated and four
metabolites (Cre, Dim, Thr, and Fuc) were down-regulated
in AECOPD compared with COPD (Figure 5d−f and Figure
S24). This was further validated by the fold-change map, in
which Laa, Hya, Ura, and Mal showed relatively high fold
changes (Figure 5g). The heat map established with the eight-
biomarker panel presented a noticeable distinction between
SCOPD and AECOPD, offering proof of the promising
metabolic assessment of AECOPD (Figure 5h). PCA of these
eight metabolites (Figure 5i) displayed enhanced separation of
SCOPD and AECOPD, compared with that of all 912 m/z
features (Figure S23a). Notably, the diagnostic performance of
the combination of eight biomarkers outperformed any single
biomarker (Table S9), affording an enhanced AUC of 0.904
(95% CI of 0.859−0.950) for the discovery cohort and an
AUC of 0.955 (95% CI of 0.874−1) for the validation cohort
(Figure S23b). These results demonstrate that the eight
screening metabolic biomarkers can accurately distinguish
SCOPD from AECOPD, providing promising biomarkers for
the diagnosis of COPD exacerbations and the assessment of
COPD progress.
AECOPD often requires emergency department care and is

also the primary cause of death from COPD.1,67 Ideal
biomarkers facilitate the evaluation of the risk of exacerbation
for individuals with stable COPD. Generally, C-reactive
protein (CRP) is used for the diagnosis of AECOPD or the
prediction of the frequency and severity of exacerbations.9,79

However, CRP is neither sufficiently sensitive nor specific,
showing an AUC of 0.73 for the AECOPD diagnosis.80 In
addition, fibrinogen and the leukocyte count are frequently
used for the evaluation of risk in exacerbations, exhibiting
poorer diagnostic results than the CRP biomarker.79,80 In
contrast, the AUCs of the eight metabolic biomarkers
identified for the discrimination SCOPD and AECOPD in
this work, except for fucose, exceeded the AUC of the CRP
biomarker (Table S9). Notably, the AUC of the eight
metabolic biomarker panel is greater than 0.9, much better

than for the CRP biomarker. Besides, the clinical diagnostic
methods for discriminating SCOPD from AECOPD are time-
consuming (the detection of multiple indicators, including
respiratory rate, heart rate, oxygen saturation level, C-CRP
levels, etc., will take several hours to days).77 In contrast, our
nanoplatform offers a fast (within 1 h after getting the blood)
tool for the diagnosis of AECOPD, facilitating the early
diagnosis of AECOPD.
Biomarkers can not only be used for the construction of

diagnostic models but also provide available information on
the disease’s progress. For example, lactic acid is produced in
large amounts in AECOPD patients due to their poor ability to
breathe, which leads to the limitation of oxygen and
enhancement of glycolysis.81,82 A serum uric acid level that
increases significantly during hypoxia is associated with a
higher risk of AECOPD and hospitalizations.83 Malondialde-
hyde concentrations are also elevated in AECOPD, requiring
hospitalizations compared with stable COPD.84 Creatine and
dimethylglycine commonly showed a decrease in blood due to
the oxidation of creatine oxidation for AECOPD patients.85,86

3-Hydroxybutyric acid was increased, which may be attributed
to the energy metabolism shift from carbohydrates to lipid
utilization and amino acid metabolism in AECOPD.87

Threonine was found to be a potential biomarker for
AECOPD diagnosis.88,89 Fucose may be the degradation
product of the fucosylation glycoprotein, which was a
biomarker of COPD.90 These metabolic biomarkers will
provide powerful tools for the assessment and management
of COPD. Furthermore, eight metabolic biomarkers were used
with pathway enrichment analysis to explore biological
relevance. The results demonstrated that the glycine, serine,
and threonine metabolism were the most significantly altered
metabolic pathways associated with COPD exacerbation
(Figure S25, Table S10). The reason for amino acid
metabolism dysfunction may arise from systemic inflammation
and impaired energy metabolism in skeletal muscles.86,91

■ CONCLUSIONS
We constructed mesoporous PdPt alloys to reveal unique
metabolic signatures for the diagnosis of COPD and
exacerbations. The optimized PdPt alloys exhibited superior
performance in metabolite detection, attributed to the
enhanced electric field, robust photothermal conversion, and
strengthened photocurrent response. The platform achieved
precise diagnosis of COPD and exacerbations, with simple
sample pretreatment, minimal sample consumption, and high
speed. It is noteworthy that we screened distinct metabolic
biomarkers for the diagnosis of COPD exacerbations, revealing
the metabolic signatures in COPD progress. Although there
are still limitations in the study, such as the fact that more
samples should be collected from the multicenter to further
validate the reliability of our platform and further study needs
to be conducted to explore the mechanism of how metabolic
biomarkers contribute to the AECOPD onset and progression,
we believe that our platform would provide a noninvasive and
robust tool to advance metabolic analysis for disease diagnosis
and prognosis.
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