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Abstract
Aims: To investigate the prognostic accuracy of a non-medical generative artificial intelligence model (Chat Generative Pre-Trained Transformer 4 -

ChatGPT-4) as a novel aspect in predicting death and poor neurological outcome at hospital discharge based on real-life data from cardiac arrest

patients.

Methods: This prospective cohort study investigates the prognostic performance of ChatGPT-4 to predict outcomes at hospital discharge of adult

cardiac arrest patients admitted to intensive care at a large Swiss tertiary academic medical center (COMMUNICATE/PROPHETIC cohort study).

We prompted ChatGPT-4 with sixteen prognostic parameters derived from established post-cardiac arrest scores for each patient. We compared the

prognostic performance of ChatGPT-4 regarding the area under the curve (AUC), sensitivity, specificity, positive and negative predictive values, and

likelihood ratios of three cardiac arrest scores (Out-of-Hospital Cardiac Arrest [OHCA], Cardiac Arrest Hospital Prognosis [CAHP], and PROgnos-

tication using LOGistic regression model for Unselected adult cardiac arrest patients in the Early stages [PROLOGUE score]) for in-hospital mortality

and poor neurological outcome.

Results: Mortality at hospital discharge was 43% (n = 309/713), 54% of patients (n = 387/713) had a poor neurological outcome. ChatGPT-4

showed good discrimination regarding in-hospital mortality with an AUC of 0.85, similar to the OHCA, CAHP, and PROLOGUE (AUCs of 0.82,

0.83, and 0.84, respectively) scores. For poor neurological outcome, ChatGPT-4 showed a similar prediction to the post-cardiac arrest scores

(AUC 0.83).

Conclusions: ChatGPT-4 showed a similar performance in predicting mortality and poor neurological outcome compared to validated post-cardiac

arrest scores. However, more research is needed regarding illogical answers for potential incorporation of an LLM in the multimodal outcome prog-

nostication after cardiac arrest.
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Introduction

In patients who survive sudden cardiac arrest until intensive care unit

(ICU) admission, physicians are confronted with the challenging task

of predicting neurological outcomes, as the presence and severity of

hypoxic-ischemic brain injury are difficult to assess within the first

days.1–3 Most deaths in cardiac arrest survivors occur due to the

withdrawal of life-sustaining therapies (WLST) when a poor neuro-

logical outcome is assumed.4,5 Hence, some cardiac arrest patients
with a chance of substantial neurological recovery are at risk for pre-

mature WLST.2,4,5 Consequently, the present post-resuscitation care

guidelines recommend a multimodal approach and delaying prog-

nostication for at least 72 hours to decrease the risk of premature

WLST.6 However, the multimodal approach does not integrate indi-

vidual parameters (such as the time until the return of spontaneous

circulation [ROSC] or lactate levels) as the predictive performance

of individual parameters is limited.7 Therefore, it has been recom-

mended to integrate several parameters into validated post-cardiac

arrest scores, although these scores still have limited prognostic
rg/
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abilities for individual predictions of survival and/or neurological out-

comes after cardiac arrest.8–11 Artificial intelligence (AI) in its wider

form might bring additional prognostic possibilities, as supervised

machine learning algorithms in the form of artificial neural networks

have shown promising prognostic performance in cardiac arrest

patients.12,13 Large generative artificial AI language models have

recently gained worldwide attention with the release of Chat Gener-

ative Pre-trained Transformer 4 (ChatGPT-4),14 which is capable of

deductive reasoning and writing complex texts about a wide range of

topics.15,16 Increasing evidence suggests that generative AI models

like ChatGPT-4 might have the potential to answer complex medical

problems.16–24 Unlike other large language models (LLM),25 the sys-

tem was not developed for healthcare purposes. There are some

recent studies using ChatGPT-4 as a medical decision aid in the

acute care setting, for example, in the triage of patients in the emer-

gency room.26,27 However, the value of ChatGPT-4 for the prognos-

tication of short-term outcomes in cardiac arrest patients remains

unclear. To the best of our knowledge, there are currently no studies

evaluating the value of LLMs for prognostication in patients after car-

diac arrest. However, the potential of LLMs is promising, especially

as LLMs might be provided with unstructured medical data.28 We

thus compared the prognostic accuracy of the LLM ChatGPT-4 to

predict mortality and neurological outcomes based on real-life data

of a large cohort of adult cardiac arrest patients with three validated

post-cardiac scores.9–11

Methods

Study setting & participants

At the University Hospital Basel, a Swiss tertiary teaching hospital

and cardiac arrest center, adult in-hospital cardiac arrest (IHCA)

and out-of-hospital cardiac arrest (OHCA) patients admitted to the

ICU were consecutively included in an ongoing prospective cohort

study to assess prognostication after cardiac arrest and long-term

outcomes. The study procedures have been published previously

in detail.7,29–38 All patients at the University Hospital Basel were trea-

ted in accordance with the corresponding guidelines of the European

Resuscitation Council.39–41 The data analyzed in the present study

was prospectively collected from October 2012 until December

2022. The data collection, analysis, and reporting complied with

the Strengthening the Reporting of Observational Studies in Epi-

demiology (STROBE) guidelines and the Transparent Reporting of

a Multivariable Prediction Model for Individual Prognosis or Diagno-

sis (TRIPOD) statement, respectively.42,43

Ethics

The prospective cohort study has been approved by the local ethics

committee (Ethikkommission Nordwest- und Zentralschweiz EKNZ -

https://www.eknz.ch) and was conducted in compliance with the dec-

laration of Helsinki and its amendments.44 Informed consent was pri-

marily obtained from patients directly. In patients without the capacity

of judgment, informed consent was obtained from surrogate

decision-makers according to Swiss legal regulations.

Data collection and measures

Data was prospectively collected from the digital ICU patient-data

management system and the medical records of the University

Hospital Basel. The following data was collected for the purpose of

this study:
- Baseline characteristics (Age, sex, and comorbidities)

- Cardiac arrest-related data (Cardiac arrest etiology, no-flow time

[time from the beginning of cardiac arrest until the beginning of

basic life support measures], low-flow time [time from the begin-

ning of basic life support measures until ROSC], time until ROSC

[no-flow time + low-flow time], the initial rhythm of cardiac arrest

[i.e., shockable, non-shockable], cardiac arrest circumstances

[observed/non-observed, public/private/in-hospital, professional/

non-professional bystander cardiopulmonary resuscitation], epi-

nephrine dosing during resuscitation)

- Laboratory values at hospital/ICU admission (e.g., pH, lactate

levels, neuron-specific enolase, potassium, etc.) and on the fol-

lowing seven days or until ICU discharge (maximum seven days).

For this study we used the laboratory values recorded ad ICU

admission.

- Clinical parameters at hospital/ICU admission (Glasgow Coma

Score [GCS], endotracheal intubation, haemodynamic support

[mechanical/pharmacological].

Post-cardiac arrest scores

The predictive performance of ChatGPT-4 was compared to three

post-cardiac arrest scores that can be used to predict outcomes after

cardiac arrest: The OHCA score, the Cardiac Arrest Hospital Progno-

sis (CAHP) score, and the PROLOGUE score (PROgnostication

using LOGistic regression model for Unselected adult cardiac arrest

patients in the Early stages). All three scoring systems have been

repeatedly validated.8,30,45 The scores integrate different parameters

that have been associated with outcomes after cardiac arrest: Per-

sonal, cardiac arrest-related, and clinical/laboratory parameters upon

hospital and/or ICU admission. An overview of the individual scores

can be obtained from the online-only supplement (eTable 1).9–11 For

the calculation of the respective cardiac arrest scores, the methodol-

ogy of the original publications was strictly followed.9–11

Outcomes

The primary outcome was defined as in-hospital mortality. The sec-

ondary outcome was poor neurological outcome at hospital dis-

charge measured by the Cerebral Performance Category (CPC),

which is recommended by international expert consensus.46,47 The

CPC system classifies the neurological outcome after cardiac arrest

into five different levels: CPC = 1: Good neurological recovery;

CPC = 2: Moderate cerebral disability; CPC = 3: Severe cerebral dis-

ability; CPC = 4: Persistent vegetative state or coma; CPC = 5: Death

including brain death.48 In accordance with expert consensus and

previous research in the field, the neurological outcome was then

dichotomized into good outcome (CPC 1–2) and poor outcome

(CPC 3–5).46,47

Development of the chat prompt and data extraction from

ChatGPT-4

For the development of a standardized chat prompt, we utilized an

iterative approach as suggested by Kanjee et al.17 An introductory

text was drafted and refined by trial and error until the desired

responses were given by ChatGPT-4. The introductory text rigor-

ously explained the task and the setting to the LLM. The complete

standardized chat prompt can be obtained from the online-only sup-

plement (eMethods 1). In brief, the LLM was asked to put itself into

the position of an ‘AI intensive care doctor’ receiving a cardiac arrest

patient with ROSC in his intensive care unit. Also, the LLM was

https://www.eknz.ch
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provided with sixteen patient-related parameters. These have been

selected as they are well-known predictors of outcomes after cardiac

arrest and are all included in one or more of the post-cardiac arrest

scores (OHCA, CAHP, PROLOGUE). Furthermore, uploading

unstructured data in the form of medical charts to a cloud-based

LLM would cause significant issues regarding data privacy. The fol-

lowing sixteen parameters were provided: Age, sex, observed car-

diac arrest, setting, initial rhythm, no-flow time, low-flow time,

epinephrine administration during resuscitation, pH at ICU admis-

sion, potassium level at ICU admission, lactate level at ICU admis-

sion, haemoglobin level at ICU admission, phosphate level at ICU

admission, creatinine level at ICU admission, pupillary light reflex

at ICU admission, GCS motor score at ICU admission. The LLM

was then asked to provide replies to the following two questions:

- Will this patient survive to hospital discharge? Please provide a

yes/no answer and the probability of survival in percent.

- Will this patient experience a good neurological outcome at hos-

pital discharge as defined by a cerebral performance category

scale of 1 or 2? Please provide a yes/no answer and the proba-

bility of a good neurological outcome in percent.

The chat prompt for each patient was generated by a pre-

programmed Excel (Microsoft, Redmond, Washington, USA) spread-

sheet (eMethods 2), which combined the standardized chat prompt

with the cardiac arrest parameters of each patient, which allowed to

copy-paste the whole chat prompt in a single command thereby

reducing the possibility of erroneous data entries.

The LLM’s answers to the questions were then registered in a

separate Excel (Microsoft, Redmond, Washington, USA) spread-

sheet. We verified that the LLM would assess each patient individu-

ally by re-opening a new chat after each patient. In total, we

performed three runs so that each patient was assessed three times

by the LLM. Regarding the dichotomous yes/no answers, the most

frequent answer of the three runs was counted, e.g., if the individual

answers were yes/yes/no, the overall answer was registered as yes.

Regarding the probability of survival and the probability of good neu-

rological outcome in percent, the mean value of the three runs was

used for statistical analysis. All chat prompts, including answers,

have been thoroughly documented by screenshots. If the LLM pro-

vided non-logical answers (i.e., hallucinations), such as providing a

higher probability of survival with a good neurological outcome than

survival, the LLM was asked to reconsider its answer, also using a

standardized text input. For the statistical analysis, the corrected,

logical answers were used.

Statistical analysis

To characterize the patient cohort, descriptive statistics, including

means (±SD), were used for continuous variables, whereas frequen-

cies were reported for binary or categorical variables. Receiver operat-

ing characteristics (ROC) and corresponding areas under the curve

(AUC) were created to evaluate the prognostic performance of

ChatGTP-4 to predict outcomes and to compare it to the OHCA,

CAHP, and Prologue scores. We calculated sensitivity, specificity, pos-

itive and negative predictive values, and likelihood ratios for mortality

and poor neurological outcome predicted by ChatGTP-4. Missing data

was handled by multiple imputations based on chained equations to

enhance the completeness of the dataset, mitigate biases arising from

missing data, and contribute to more robust and reliable analyses, thus

strengthening the validity of our study findings. Imputations were
calculated using multiple covariables (i.e., socio-demographics, comor-

bidities, resuscitation information, vital signs), including main outcomes

(death, neurological outcome) as suggested by Sterne et al.49 STATA

15.0 was used for statistical analyses, and a two-sided p-value of

<0.05 was considered significant.

Results

Baseline characteristics

Of the 713 included patients, 309 patients died in hospital, and 387

had a poor neurological outcome (including CPC 5 = death) at hos-

pital discharge. The baseline characteristics of the cohort overall and

stratified based on survival status are shown in Table 1. Factors sig-

nificantly associated with mortality were higher age, pre-existing

comorbidities (e.g., diabetes, chronic obstructive pulmonary disease,

malignant disease), cardiac arrest at home, unwitnessed arrest, non-

shockable initial heart rhythm, longer time to ROSC, no bystander

CPR, longer no-flow and low-flow time, higher doses of epinephrine

during resuscitation, non-reactive pupils and a low Glasgow coma

scale motor score at ICU admission.

Mortality prediction by ChatGPT-4 compared with post-

cardiac arrest scores

Mortality at hospital discharge was 43% (95% CI 40% to 47%; n =

309). The mean predicted mortality by ChatGTP-4 was 44% (95%

CI 42 to 46%). Overall, the AUROC of ChatGTP-4 was 0.85, similar

to the predictive performance of the OHCA (AUROC 0.81), CAHP

(AUROC 0.83), and Prologue (AUROC 0.84) scores (Fig. 1).

In addition to the probabilities, we also looked at the prediction of

mortality as binary outcomes. ChatGTP-4 predicted death in 229

patients and survival in 484 patients. Overall, ChatGTP-40s positive

predictive value (PPV) was 85% (194/229), and the negative predic-

tive value (NPV) was 76% (369/484), resulting in a sensitivity and

specificity of 63% and 91%, respectively (Table 2).

Prediction of poor neurological outcome by ChatGPT-4

compared with post-cardiac arrest scores

Poor neurological outcome at hospital discharge was 54% (95% CI

51% to 58%; n = 387). The mean predicted probability of the

ChatGTP-4 was 61% (95% CI 60% to 63%). Overall, the AUROC

of ChatGTP-4 for poor neurological outcome was 0.84, which was

again similar to the OHCA (AUROC 0.83), CAHP (AUROC 0.84),

and Prologue (AUROC 0.82) scores (Fig. 2).

ChatGTP-4 predicted a poor neurologic outcome in 506 patients

and a good neurological outcome in 207 patients. Overall, the PPV

was 67% (340/506), and the NPV was 77% (160/207), resulting in

a sensitivity and specificity of 88% and 49%, respectively (Table 2).

Hallucinations of ChatGPT-4 concerning the
prediction of probabilities

In all three runs of the ChatGPT-4 experiment, instances of halluci-

nations occurred in the form of irrational responses to the input

prompts provided to ChatGPT-4. Specifically, we observed irrational

responses in 59 out of 713 cases (8.3%), 94 out of 713 cases

(13.2%), and 100 out of 713 cases (14.0%) in the first, second,

and third run, respectively. When directly entering a standardized

prompt requesting a correction, all illogical responses were



Table 1 – Baseline characteristics.

n All Survivors to hospital

discharge (n = 404)

In-hospital

Death

(n = 309)

p-value

Factors included in chat prompt

Age, mean (SD) 713 64.8 (14.4) 62.9 (14.2) 67.4 (14.2) <0.001

Female, n (%) 713 198 (27.8%) 98 (24.3%) 100 (32.4%) 0.018

Cardiac arrest setting 703

At home 262 (37.3%) 116 (29.2%) 146 (47.7%) <0.001

In public 322 (45.8%) 212 (53.4%) 110 (35.9%)

In-hospital 119 (16.9%) 69 (17.4%) 50 (16.3%)

Witnessed 712 578 (81.2%) 361 (89.4%) 217 (70.5%) <0.001

Initial rhythm of cardiac arrest 711

Non-shockable 341 (48.0%) 134 (33.2%) 207 (67.4%) <0.001

Shockable 370 (52.0%) 270 (66.8%) 100 (32.6%)

No-flow time, min, mean (SD) 583 3.02 (5.26) 1.63 (3.49) 5.02 (6.58) <0.001

Low-flow time, min, mean (SD) 675 19.33 (17.12) 15.54 (13.85) 24.15 (19.53) <0.001

Epinephrine during resuscitation, n (%) 669

No epinephrine 251 (37.5%) 195 (51.7%) 56 (19.2%) <0.001

>0 to < 3 mg epinephrine 208 (31.1%) 100 (26.5%) 108 (37.0%)

>3mg epinephrine 210 (31.4%) 82 (21.8%) 128 (43.8%)

Levels of routine blood markers

pH, mean (SD) 626 7.21 (0.17) 7.25 (0.134) 7.15 (0.184) <0.001

Potassium, mean (SD) 694 4.32 (0.81) 4.23 (0.75) 4.49 (0.88) 0.001

Lactate, mean (SD) 686 6.48 (4.43) 4.94 (3.4) 8.39 (4.81) <0.001

Hemoglobin, g/l, mean (SD) 692 132 (24) 135 (22) 127 (25.7) <0.001

Creatinine, mmol/l mean (SD) 678 113 (79.7) 105 (91.4) 123 (60.2) 0.006

Phosphate, mean (SD) 707 1.60 (0.76) 1.38 (0.56) 1.89 (0.86) <0.001

Pupil reaction at ICU admission 604

Not reactive 103 (16.1%) 14 (3.9%) 89 (32.0%) <0.001

Reactive 537 (83.9%) 348 (96.1%) 189 (68.0%)

Glasgow Coma Scale, motor score, at ICU admission mean (SD) 708 2.30 (1.99) 2.97 (2.20) 1.43 (1.22) <0.001

Cardiac arrest characteristics

Time to ROSC, min, mean (SD) 566 22.03 (18.31) 16.91 (13.59) 29.29 (21.44) <0.001

Bystander CPR 712 507 (71.2%) 324 (80.2%) 183 (59.4%) <0.001

Reason for Cardiac arrest 708

Coronary heart disease, n (%) 335 (47.3%) 229 (57.4%) 106 (34.3%) <0.001

Primary arrhythmia 103 (14.5%) 63 (15.8%) 40 (12.9%)

Other/unclear 270 (38.1%) 107 (26.8%) 163 (52.8%)

Comorbidities

Coronary heart disease, n (%) 712 411 (57.7%) 252 (62.4%) 159 (51.6%) 0.005

Congestive heart failure, n (%) 711 101 (14.2%) 52 (12.9%) 49 (16.0%) 0.28

COPD, n (%) 712 78 (11.0%) 25 (6.2%) 53 (17.2%) <0.001

Liver disease, n (%) 712 19 (2.7%) 9 (2.2%) 10 (3.2%) 0.48

Hypertension, n (%) 712 368 (51.7%) 214 (53.0%) 154 (50.0%) 0.45

Diabetes, n (%) 712 155 (21.8%) 75 (18.6%) 80 (26.0%) 0.022

Chronic kidney disease, n (%) 712 98 (13.8%) 53 (13.1%) 45 (14.6%) 0.58

Malignant disease, n (%) 711 79 (11.1%) 30 (7.4%) 49 (16.0%) <0.001

Neurological disease, n (%) 712 103 (14.5%) 51 (12.6%) 52 (16.9%) 0.13

Table 1. Baseline characteristics of the study population stratified according to the primary outcome (in-hospital mortality).

Abbreviations: COPD Chronic obstructive pulmonary disease; CPR Cardiopulmonary resuscitation; ICU Intensive care unit; ROSC Return of Spontaneous

Circulation; SD standard deviation.
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subsequently replaced with logical and coherent answers. The prog-

nostic performance of the uncorrected prediction, however, was sim-

ilar to the final results regarding mortality (AUROC of 0.84) and

inferior regarding neurological outcome (AUROC of 0.75).

Discussion

This study compared the prognostic value of a large language model

(ChatGPT-4) for prognostication in cardiac arrest patients with that of
well-validated and established cardiac arrest scores. The prognostic

performance of ChatGPT-4 for predicting mortality and poor neuro-

logical outcomes was good and in the range of the validated post-

cardiac arrest scores, demonstrating the potential capabilities of arti-

ficial intelligence in clinical practice. However, some findings need

further discussion.

First, in about 14% (300/2139) of chat queries, the untrained

ChatGPT-4 generated illogical answers (i.e., hallucinations), such

as a higher probability of poor neurological outcome compared to

the probability of death. Here, we asked ChatGPT-4 to reconsider



Fig. 1 – Comparison of ROC curves for mortality at hospital discharge. Abbreviations: AUROCArea under the receiver

operating characteristics curve; CAHP Cardiac arrest hospital prognosis; ChatGPT-4 Chat Generative Pre-Trained

Transformer 4; OHCA Out-of-hospital cardiac arrest; PROLOGUE Prognostication using logistic regression model for

unselected adult cardiac arrest patients in the early stages.

Table 2 – Prognostic measures of ChatGPT-4.

In-hospital mortality Poor Neurological Outcome

Prevalence %, (95%CI) 43.3 (39.7–47.1) 54.3 (50.5–58.0)

Sensitivity %, (95%CI) 62.8 (57.1–68.2) 87.9 (84.2–90.9)

Specificity %, (95%CI) 91.3 (88.2–93.9) 49.1 (43.5–54.6)

Positive likelihood ratio, (95%CI) 7.25 (5.2–10.1) 1.73 (1.5–1.9)

Negative likelihood ratio, (95%CI) 0.41 (0.4–0.5) 0.25 (0.2–0.3)

Odds ratio, (95%CI) 17.79 (11.7–26.9) 6.97 (4.8–10-1)

Positive predictive value %, (95%CI) 84.7 (79.4–89.1) 67.2 (62.9–71.3)

Negative predictive value %, (95%CI) 76.2 (72.2–80.0) 77.3 (71.0–82.8)

Table 2. Performance of ChatGPT-4 for the prediction of in-hospital mortality and poor neurological at hospital discharge (Cerebral Performance Category Scale 3–

5 including death).

Abbreviations: ChatGPT-4 Chat Generative Pre-Trained Transformer 4, CI confidence interval.

R E S U S C I T A T I O N P L U S 1 8 ( 2 0 2 4 ) 1 0 0 5 8 7 5
and correct the prediction, which was done without generating further

illogical answers. This illustrates that artificial intelligence still may be

used most efficiently when combined with ‘human intelligence’, i.e.,

an experienced clinician. Furthermore, this emphasizes that the

use of LLMs in clinical practice needs close supervision by its user.

End-of-life decisions are inherently difficult and require a high

level of exclusively human qualities such as professional experience,

compassion, emotions, and consciousness of cultural backgrounds

and social inequalities. However, LLMs are solely machines that

base decisions on stochastic principles without consciousness or

emotions.

Although there is an increasing number of studies using LLMs in

medicine, studies assessing LLM’s prediction skills for patient out-

comes are scarce. In a small study including 30 emergency depart-

ment patients, ChatGPT-3.5 and -40s ability to generate a meaningful

differential diagnosis was comparable to medical experts. However,

a potential association with outcomes was not assessed.19 In a pre-
print online publication investigating the performance of three large

LLMs (ChatGPT-3.5, ChatGPT-4, Bard) for the prediction of 10-

year cardiovascular risk, the LLM’s performance was comparable

to the Framingham score.23

Although the performance of LLM in predicting medical outcomes

seems promising, important limitations need to be addressed. First,

the predictive value does not significantly exceed known validated

post-cardiac arrest scores. As the positive predictive value for mor-

tality and/or poor neurological outcome are not satisfactory, clini-

cians should never base their decisions regarding withdrawal of

life-sustaining therapies on single tests or scores. This is reflected

in the clinical guidelines recommending a multimodal approach with-

out the use of post-cardiac arrest scores.

Also, clinicians assessing LLMs should be aware of the ‘stochas-

tic parrot’ principle proposed by Bender et al.50 and emphasized by

Boussen et al.51. Due to the underlying algorithm, an LLM does nei-

ther understand the input that is entered nor the output generated. It



Fig. 2 – Comparison of ROC curves for poor neurological outcome at hospital discharge (Cerebral Performance

Category Scale 3–5 including death). Abbreviations: AUROC Area under the receiver operating characteristics

curve; CAHP Cardiac arrest hospital prognosis; ChatGPT-4 Chat Generative Pre-Trained Transformer 4; OHCA Out-

of-hospital cardiac arrest; PROLOGUE Prognostication using logistic regression model for unselected adult cardiac

arrest patients in the early stages.
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just rigidly repeats structures and patterns it has been trained on,

including prejudices, stereotypes, and social inequalities.52 This

might be an explanation for the comparable but not significantly bet-

ter performance of ChatGPT-4 in the prediction of mortality and neu-

rological outcomes when compared to validated post-cardiac arrest

scores. This aligns with other studies finding comparable, but not

superior, performances in clinical or theoretical contexts.17,53 Due

to the algorithm behind LLMs, the user should be aware of a certain

number of ‘hallucinations’ or illogical answers generated. Hallucina-

tions are a well-known shortcoming of LLMs and are associated with

the stochastic parrot principle.50,51 However, in our study, the rate of

hallucinations was considerably low, with a maximum value of 14.1%

per run. Nevertheless, ChatGPT-40s ability to detect illogical answers

is limited and still warrants the presence of a human controller.50,51,54

Additionally, ChatGPT-4 provided inconsistent answers in some

patients, which we tried to account for by using the most frequent

answer out of the three runs. However, this is a major limitation

the use of ChatGPT-4 in prognosticating outcomes after cardiac

arrest.

The field of LLM in medicine is exponentially increasing, as will

the capabilities of LLMs. Hence, future research should focus on

the evaluation of performance-enhancing plugins, which might have

the ability to reduce the production of false results and/or references

by checking the results with external databases such as PubMed.55

Furthermore, specific training of healthcare professionals and trans-

forming medical datasets into easily accessible and structured data-

bases will be crucial to improving the value of LLMs for clinical

questions, as recently shown in a study integrating an LLM in the

clinical workflow.28 Also, further specific training of the LLM is war-

ranted to enable the LLM to perform significantly better than vali-

dated scores. However, specific training requires a training dataset

which can be difficult to obtain, if considering patient data safety.
Training an LLM with unstructured medical charts might involuntarily

expose patients’ identities or upload confidential data to a cloud-

based LLM. In the present study this issue was addressed through

uploading anonymized and structured patient data. Furthermore,

training data must be well chosen and representational for the train-

ing purpose, as otherwise real-world bias might be reproduced by the

LLM.

At the moment of prompting ChatGPT-4 was designed to answer

queries based on its training data only, and its current knowledge did

not extend beyond September 2021. Furthermore, the ‘black box

problem’, describing the current lack of understanding of the under-

lying algorithm and its method of solving, remains an issue. This is in

line with the recently published expert opinion,56 that we need to

ensure that these models are safe and effective through vigorous

testing, uncovering possible biases, and thereby enabling a correc-

tion and training of the models.54

Future research should focus on the direct integration of LLMs

into clinical information systems, which could substantially decrease

the administrative workload for physicians, allowing a focus on

patient care as a historic core competence. However, concerns

regarding data privacy will be significant.

Strengths and limitations

To the best of our knowledge, this is the first study assessing the

prognostication of outcomes after cardiac arrest by an LLM using

real-world data. A pragmatic approach aiming at high reproducibility

and data integrity using an established post-cardiac arrest database

was used. However, the present study also has several limitations.

First, the parameters used for prognostication were also available

to the clinicians involved in WLST. Hence, there might be a certain

risk of self-fulfilling prophecies.57,58 In addition, the studies the LLM

has been exposed to might also have been influenced by self-
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fulfilling prophecies. Hence, one cannot be sure to what extent the

LLM can predict true outcomes or just reproduces the self-fulfilling

prophecies present in studies the LLM has been exposed to.

Second, due to the algorithm behind LLMs, the user should be

aware of a certain number of hallucinations or illogical answers

generated.

Third, as ChatGPT-4 was not designed for healthcare purposes,

its applicability and validity to answer specific clinical questions

remains unclear and warrants further research. Fourth, our study is

based on a single-center cohort, limiting its generalizability to other

centers or regions and emphasizing the importance of future

research in diverse contexts to enhance the external validity of the

results.

Conclusions

ChatGPT-4 showed a good performance in predicting mortality and

poor neurological outcome comparable to validated post-cardiac

arrest scores and thus may be a helpful future tool for early risk pre-

diction in adult cardiac arrest patients. However, due to frequent hal-

lucinations in the output data, ChatGPT-4 still needs human

supervision. Also, training a specific future LLM needs structured

medical data sets, and future research should focus on validation

of LLMs in various clinical settings.
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