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Abstract
The exact function of M1 macrophages and CXCL9 in forecasting the effective-
ness of immune checkpoint inhibitors (ICIs) is still not thoroughly investigated.
We investigated the potential of M1 macrophage and C-X-C Motif Chemokine
Ligand 9 (CXCL9) as predictivemarkers for ICI efficacy, employing a comprehen-
sive approach integrating multicohort analysis and single-cell RNA sequencing.
A significant correlation between high M1 macrophage and improved overall
survival (OS) and objective response rate (ORR) was found. M1 macrophage
expression was most pronounced in the immune-inflamed phenotype, aligning
with increased expression of immune checkpoints. Furthermore, CXCL9 was
identified as a key marker gene that positively correlated with M1 macrophage
and response to ICIs, while also exhibiting associations with immune-related
pathways and immune cell infiltration. Additionally, through exploring RNA
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epigenetic modifications, we identified Apolipoprotein B MRNA Editing
Enzyme Catalytic Subunit 3G (APOBEC3G) as linked to ICI response, with high
expression correlating with improved OS and immune-related pathways. More-
over, a novel model based on M1 macrophage, CXCL9, and APOBEC3G-related
genes was developed using multi-level attention graph neural network, which
showed promising predictive ability for ORR. This study illuminates the pivotal
contributions of M1 macrophages and CXCL9 in shaping an immune-active
microenvironment, correlating with enhanced ICI efficacy. The combination of
M1 macrophage, CXCL9, and APOBEC3G provides a novel model for predicting
clinical outcomes of ICI therapy, facilitating personalized immunotherapy.
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1 INTRODUCTION

Cancer immunotherapy, particularly immune checkpoint
inhibitors (ICIs), has revolutionized the field of oncol-
ogy by harnessing the immune system of patients to
combat cancer.1 Despite the remarkable success observed
in a subset of patients, a significant proportion fails to
respond to ICIs, highlighting the need to identify predic-
tive biomarkers and understand the underlying mecha-
nisms of response and resistance.1 The tumor immune
microenvironment (TIME) is pivotal in influencing the
response to ICIs, and understanding its properties can
offer significant information for categorizing patient and
advancing personalized immunotherapy.
High infiltration of CD8+ T cells is associated with

improved responses to ICIs.2 Recent research has high-
lighted the insufficiency of T-cell infiltration alone in iden-
tifying ICI responders.3 The concept of “effector immune
cell deployment” has emerged, underscoring the signif-
icance of multiple immune cell (IC) types in the TIME
for effective antitumor immune responses.3 This concept
provides a rationale for transforming “cold” tumors into
“hot” tumors, characterized by enhanced IC activation
and infiltration.3 In addition to T cells, myelomonocytic
cells, including macrophages, monocytes, and dendritic
cells, play critical roles in antitumor immune responses.3
Among the various ICs in the TIME, macrophages are
key players that exhibit phenotypic and functional hetero-
geneity. Despite substantial evidence implicating T cells in
predicting ICI outcomes, the role of macrophages in this
context remains poorly characterized.
Macrophages, a diverse population of ICs, exert a pro-

found influence on the TIME and exhibit a dual nature

with both pro- and anti-tumorigenic effects, reflecting
their plasticity in response to environmental cues.4–6 Deci-
phering the differential expression patterns and functional
implications of these macrophage subtypes is crucial
for comprehending their role in the context of ICIs.
Recent studies have highlighted macrophages as attrac-
tive targets for checkpoint blockade therapy due to their
expression of programmed cell death-ligand 1 (PD-L1)
and PD-L2.5–7 M1 macrophages, known as classically acti-
vated macrophages, are associated with pro-inflammatory
responses and have been implicated in antitumor immu-
nity, while M2 macrophages contribute to immunosup-
pression within the TIME.5
Earlier research has suggested that M1 macrophages

might act as indicators of positive responses to ICIs in indi-
viduals with metastatic urothelial cancer (mUC).8–10 Sev-
eral cytokines and chemokines, such as those derived from
macrophages in the CXCR3 chemokine system, have been
identified as responsible for recruiting ICs into tumors.11
Accumulating evidence suggests that macrophages are
major producers of the chemokine CXCL9, a ligand for the
CXCR3 receptor.9,10,12–14 Macrophage-expressed CXCL9
regulates the recruitment and localization of stem-like
CD8 T cells expressing CXCR3, which contributes to the
clinical responses to anti-programmed cell death-1 (PD-1)
or PD-L1 treatment.12 Notably, a study examining tumor-
associated macrophages in lung cancer patients revealed
varying expressions of genes associated with inflam-
matory macrophages, specifically highlighting CXCL9,
CXCL10, and Stat1 in relation to an “M1hot” phenotype.15
Macrophages-derived CXCL9 correlates with increased
intratumoral CD8 T-cell density and has been demon-
strated to directly enhance the function of effector CD8
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T cells, thus serving as a crucial component of antitumor
immunity.9,12,14 Furthermore, the epigenetic modification
of RNA has been discovered to regulate immune responses
through macrophage reprogramming.16 Nevertheless, the
molecular mechanisms underlying the TIME associated
with cancer immunotherapy are intricate and require fur-
ther elucidation. The precise role of M1 macrophage and
their molecular characteristics in predicting ICI efficacy
remains poorly understood.
In this study, we aimed to unravel the role of M1

macrophage and CXCL9, a chemokine known to attract
cytotoxic T cells, in predicting ICI efficacy through a mul-
ticohort analysis and single cell RNA-sequencing (scRNA-
seq). Additionally, we investigated the interaction between
M1macrophage and other IC populationswithin the TIME
to gain insights into the underlying mechanisms of ICI
response and resistance. Furthermore, we validated our
findings using independent cohorts of ICI-treated patients
and evaluated the clinical significance of M1 macrophage
and CXCL9 as predictive biomarkers. We also explored
the potential of developing a predictive model incor-
porating M1 macrophage, CXCL9, and RNA epigenetic
modification-related genes to stratify patients and guide
precision immunotherapy.

2 RESULTS

2.1 Association of high M1macrophage
expression with improved survival and
treatment response to ICIs

Figure 1 presents a schematic representation of the study’s
design. We first employed a comprehensive approach
to investigate the clinical significance and molecular
characteristics of M1 macrophage in cancer patients
treated with ICIs. In the IMvigor210 cohort, high expres-
sion of M1 macrophage showed a significant associa-
tion with improved overall survival (OS) (p < 0.0001)
(Figure 2A). Conversely, high expression of both M0
and M2 macrophages predicted worse OS (both p-
values < 0.001) (Figure S1A,B). Similarly, in the mUC
cohort2, the hepatocellular carcinoma (HCC) cohort and
the head and neck squamous cell carcinomas (HNSCC)
cohort, high expression of M1 macrophage was remark-
ably associated with favorable OS (p = 0.022, 0.0009,
and 0.0086, respectively) (Figure 2B-D). Additionally, in
patients from the Cancer Genome Atlas (TCGA) pan-
cancer cohort, high M1 macrophage infiltration was
predictive of improved OS (Figure S2). After adjust-
ing confounding variables, including age and stage, on
the multivariate analysis for the mUC-cohort2, high M1
macrophage expression remained an independent prog-

nostic factor for improved OS (hazard ratio [HR] = 0.206,
95% confidence interval [CI] 0.050–0.854, p = 0.029)
(Figure S3A). Additionally, in the HNSCC cohort, M1
macrophage retained its independent prognostic sig-
nificance for OS after adjusting for age and gender
(HR = 0.569, 95% CI 0.372–0.871, p = 0.009) (Figure S3B).
In the IMvigor210 cohort, the expression level of M1

macrophage was notably higher in the group respond-
ing to ICIs compared to the group that did not respond
(p < 0.001) (Figure 2E,F). The high expression group of
M1 macrophage exhibited a significantly higher objective
response rate (ORR) compared to the low expression group
(51.2% vs. 18.0%) (Figure 2G). The association betweenhigh
M1 macrophage expression and improved ORR was fur-
ther validated in the HCC cohort and the HNSCC cohort
(Figure 2H–M).

2.2 Associations of M1 macrophage
with immune phenotypes and checkpoints
in the tumor microenvironment

To further elucidate the role of M1 macrophage associated
with the TIME, we assessed the associations between M1
macrophage and immune phenotypes as well as immune
checkpoints in the IMvigor210 cohort. Based on the three
previously defined immune phenotypes,17 we observed
that the expression level of M1 macrophage peaked in
the immune-inflamed phenotype and was at its mini-
mal in the immune-desert phenotype (Figure 3A). We
also examined the distribution of M1 macrophage in the
four immune phenotypes proposed earlier, which were
based on a combination of long noncoding RNAs and
tumor-specific cytotoxic T lymphocytes.18 Consistently,
M1 macrophage expression was markedly elevated in
the immune-active phenotype relative to the immune-
dysfunctional, immune-exclusion, and immune-desert
phenotypes (all p values < 0.05) (Figure 3B).
Furthermore, we found that the expression of M1

macrophage was higher in patients with elevated lev-
els of PD-L1 expression by either ICs or tumor cells
(TC) (Figure 3C,D). In line with this, high expres-
sion of M1 macrophage coexisted with increased infil-
trations of other immune checkpoints, including cyto-
toxic T lymphocyte-associated protein 4 (CTLA4), PD-1,
indoleamine 2,3-dioxygenase, and lymphocyte-activation
gene 3 (Figure 3E–L). The analysis of breast cancer patients
from the Sun Yat-sen Memorial Hospital of Sun Yat-sen
University (SYSMH-BC cohort) also illustrated substan-
tial correlation between highM1macrophage and elevated
immune checkpoint expression (Figure S4). These data
indicated that M1 macrophage might contribute to an
immune-active contexture within the TIME.
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F IGURE 1 Study design overview. (A) A comprehensive approach was used to investigate the clinical significance and molecular
characteristics of M1 macrophage in cancer patients treated with immune checkpoint inhibitors (ICIs). (B) The role of CXCL9, a chemokine
involved in immune cell migration and activation in predicting ICI efficacy, was then investigated. The association between the expression
levels of CXCL9 and clinical outcomes as well as immune checkpoint was evaluated. (C) To further understand the molecular mechanisms
and interactions within the tumor immune microenvironment (TIME), the study performed combined analyses of transcriptomics and
single-cell RNA sequencing (scRNA-seq) data. This approach aimed to identify novel biomarkers associated with ICI response, with a
particular focus on the RNA epigenetic modification gene APOBEC3G. (D) Furthermore, a novel model was constructed using deep learning
algorithms, specifically the multi-level attention graph neural network (MLA-GNN) model, based on M1 macrophage and TIME-associated
factors, to predict ICI efficacy.

2.3 Associations of CXCL9 expression
with M1 macrophage infiltration and ICI
efficacy

The IMvigor210 cohort was further analyzed to investigate
the key marker genes that exhibited a high correlation
with M1 macrophage infiltration and response to ICIs.
Initially, we identified 85 genes differentially expressed
between the ICI response and nonresponse groups, and
additionally, 402 genes exhibited distinct expression
patterns between the high and lowM1macrophage groups
(Figure 4A,B). The protein–protein interaction (PPI)
analysis revealed potential collaborative effects among

proteins targeted by the top differentially expressed genes
(DEGs) in the high and low M1 macrophage groups
(Figure S5A). Additionally, based on the GENEMANIA
database, the top DEGs exhibited interactions with 20
potential target genes (Figure S5B). Specifically, CXCL11,
CXCL9, CXCL10, CXCL13, CCL19, and CCL5 were
predominantly related to the cytokine- and chemokine-
related pathways, while GBP1 and GBP5 were involved in
the response to interferon-gamma pathway (Figure S5B).
Notably, five genes (CXCL9, CXCL10, COLA4A6, KLRC2,
and KLRC3) overlapped between the aforementioned
two sets of DEGs (Figure 4C). Subsequently, these five
genes underwent further selection using random forest
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F IGURE 2 The expression levels of M1 macrophage are associated with favorable clinical outcomes in cancer patients undergoing
treatment with immune checkpoint inhibitors (ICIs). (A–D) Kaplan–Meier curves illustrating the overall survival (OS) based on M1
macrophage infiltration in the IMvigor210 cohort (A), metastatic urothelial carcinoma (mUC) cohort2 (B), hepatocellular carcinoma (HCC)
cohort (C), and head and neck squamous cell carcinomas (HNSCC) cohort (D). (E) CIBERSORT analysis of the IMvigor210 cohort, assessing
the association between 22 immune cell types and the response to ICI therapy. (F and G) Association of M1 macrophage infiltration with the
response to ICI therapy in the IMvigor210 cohort. (H) CIBERSORT analysis of the HCC cohort, investigating the association between 22
immune cell types and the response to ICI therapy. (I and J) Association of M1 macrophage infiltration with the response to ICI therapy in the
HCC cohort. (K) CIBERSORT analysis of the HNSCC cohort, investigating the association between 22 immune cell types and the response to
ICI therapy. (L and M) Association of M1 macrophage infiltration with the response to ICI therapy in the HNSCC cohort. In (F), (I), and (L),
the significance of the difference was tested by Mann–Whitney test. In (E), (H) and (K), *p-value ≤ 0.05, **p-value ≤ 0.01, and ***p-value ≤

0.001.

analysis, which revealed CXCL9 as the most important
gene for subsequent analyses (Figure 4D). Correlation
analyses consistently demonstrated a positive correla-
tion between CXCL9 expression and M1 macrophage
in the IMvigor210 cohort (R = 0.84, p < 0.0001), mUC-

cohort2 (R = 0.69, p < 0.0001), HCC cohort (R = 0.63,
p = 0.0009), and HNSCC cohort (R = 0.85, p < 0.0001)
(Figure 4E–H).
In the IMvigor210 cohort, high expression of CXCL9

was significantly associated with superior OS (p < 0.0001)
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F IGURE 3 The expression levels of M1 macrophage are correlated with immune phenotypes and immune checkpoints. (A and B) The
expression levels of M1 macrophage were evaluated in previously defined three immune phenotypes (A) and in the four immune phenotypes
(B) based on the IMvigor210 cohort. (C and D) The expression levels of M1 macrophage were examined across different PD-L1 expression
levels by immune cells (C) and tumor cells (D) in the IMvigor210 cohort. (E, G, I, and K) The differences in expression levels of immune
checkpoints between the high and low M1 macrophage groups were assessed in the IMvigor210 cohort (E), metastatic urothelial carcinoma
(mUC) cohort2 (G), hepatocellular carcinoma (HCC) cohort (I), and head and neck squamous cell carcinomas (HNSCC) cohort (K). (F, H, J,
and L) Spearman correlation analyses were conducted to investigate the correlation between M1 macrophage and immune checkpoints in the
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(Figure 4I) and a higher ORR (47.7% vs. 18.5%) (Figure 4M,
Figure S6A). This association was further validated in the
mUC cohort2 (OS: p = 0.0031; ORR: 29% vs. 11%), HCC
cohort (OS: p = 0.023; ORR: 50% vs. 12%), and HNSCC
cohort (OS: p= 0.0019; ORR: 23% vs. 3%) (Figure 4J–L, N–
P; Figure S6B–D). Moreover, high CXCL9 expression pre-
dicted betterOS in the TCGApan-cancer cohort (p< 0.001)
(Figure S7).

2.4 Impact of CXCL9 on the TIME and
its correlation with immune phenotypes
and checkpoints

To gain insights into the functional role of CXCL9, a
chemokine involved in IC migration and activation, in
predicting ICI efficacy, we further explored its potential
influence on the TIME. Using data from the IMvigor210
cohort, we compared gene expression profiles between
the high CXCL9 expression group and the low expression
group, resulting in the identification of 1359 DEGs (Figure
S8A). Gene ontology (GO) pathway enrichment analy-
sis revealed that these DEGs were significantly related
with immunologic processes, including T-cell activation,
MHC protein complex, and immune receptor activity
(Figure S8B). Additionally, Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analysis demonstrated
enrichment in antigen processing and presentation, and
cytokine–cytokine receptor interaction processes (Figure
S8C).
Further analyses using the CIBERSORT algorithm

indicated that patients with high CXCL9 expression
exhibited elevated levels of active CD4+ T cells, T-cell
gamma delta, active natural killer (NK) cells, and M1
macrophage (Figure 5A, Figure S9).Moreover, highCXCL9
expression positively correlated with StromalScore and
ImmuneScore, indicating a more pronounced stromal and
IC infiltration in the TIME (Figure 5A).
We investigated the correlations betweenCXCL9 expres-

sion and immune phenotypes as well as immune check-
points based on the IMvigor210 cohort. Consistently,
CXCL9 expressionwas significantly higher in the immune-
inflamed and immune-active phenotypes (Figure 5B,C).
Additionally, CXCL9 expression positively correlated with
PD-L1 expression (by either IC or TC) (Figure 5D,E) and
other immune checkpoints (Figure 5F–H). These posi-

tive associations between CXCL9 expression and immune
checkpoints were also observed in the mUC cohort2,
HCC cohort, HNSCC cohort, and SYSMH-BC cohort
(Figure S10A–I). Collectively, these findings demonstrated
that high CXCL9 expression was indicative of a tumor
immune-active microenvironment, which might enhance
the sensitivity of tumors to ICIs.

2.5 RNA epigenetic modifications and
APOBEC3G: Implications for antitumor
immune response and prognosis

Previous evidence suggests that RNA epigenetic modifica-
tions play a crucial role in regulating dynamicmacrophage
polarization, thereby influencing cancer growth and
metastasis.16,19 To further understand themolecularmech-
anisms and interactions within the TIME, the study per-
formed combined analyses of transcriptomics and scRNA-
seq data. This approach aimed to identify novel biomarkers
associated with ICI response, with a particular focus on
RNA modification genes. Among the 1357 DEGs identi-
fied between the CXCL9 high expression group and the
low expression group, two genes, namely, APOBEC3D
and APOBEC3G, were found to overlap within the 184
RNA modification genes associated with the “GOBP RNA
MODIFICATION” pathway in the Molecular Signatures
Database.
To further explore the significance of these genes,

we performed scRNA-seq using fresh tumor samples
from two triple negative breast cancer (TNBC) patients
who received anti-PD-1 antibody-based combinational
treatment. Through t-distributed stochastic neighbor
embedding (t-SNE) visualization, we identified seven
distinct cell clusters based on lineage-specific genes
(Figure 6A, Figure S11). Notably, CXCL9 was predomi-
nantly expressed in myeloid clusters, while APOBEC3G
exhibited a more widespread distribution across myeloid,
B-lymphocyte, and T-lymphocyte clusters (Figure 6B,C).
Subsequently, we specifically identified the macrophage
cluster within the myeloid clusters (Figure 6D,E). Within
the macrophage cluster, both CXCL9 and APOBEC3G
showed a positive correlation with response to ICI ther-
apy, whereas APOBEC3D exhibited a contrasting pattern
(Figure 6F). Responders demonstrated higher expression
levels of CXCL9 and APOBEC3G (Figure 6G). Based

IMvigor210 cohort (F), mUC cohort2 (H), HCC cohort (J), and HNSCC cohort (L). PD-1, anti-programmed cell death-1; PD-L1, programmed
cell death-ligand 1; CTLA4, cytotoxic T-lymphocyte-associated protein 4; IDO1, indoleamine 2,3-dioxygenase, LAG3, lymphocyte-activation
gene 3; IC, immune cells; TC, tumor cells. In (A–D), the significance of the difference was tested by Kruskal–Wallis test. In (E), (G), (I), and
(K), *p-value ≤ 0.05, **p-value ≤ 0.01, and ***p-value ≤ 0.001. In (F), (H), (J), and (L), the proportion of the pie charts represents the
correlation coefficients.
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F IGURE 4 CXCL9 is closely associated with M1 macrophage and plays a significant role in influencing the clinical outcomes of immune
checkpoint inhibitors (ICIs). (A) Volcano plot illustrating the differentially expressed genes (DEGs) between the ICI response and
nonresponse groups based on the IMvigor210 cohort. (B) Volcano plot displaying the DEGs between the high and low M1 macrophage groups
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on these findings, APOBEC3G was selected for further
analysis.
Further analysis of transcriptomic data from the

IMvigor210 cohort revealed a moderate correlation

between APOBEC3G expression and CXCL9 expres-
sion as well as M1 macrophage infiltration (Figure
S12A,B). APOBEC3G also displayed a moderate cor-
relation with CD4+ T-cell infiltration (Figure S12C).

based on the IMvigor210 cohort. (C) Venn diagram depicting the intersection of the two sets of DEGs. (D) Random forest analysis highlighting
CXCL9 as the most important feature. (E–H) Spearman correlation analysis demonstrating the correlation between M1 macrophage and
CXCL9 expression in the IMvigor210 cohort (E), metastatic urothelial carcinoma (mUC) cohort2 (F), hepatocellular carcinoma (HCC) cohort
(G), and head and neck squamous cell carcinomas (HNSCC) cohort (H). (I–L) Kaplan–Meier curves illustrating the overall survival (OS)
according to CXCL9 expression in the IMvigor210 cohort (I), mUC cohort2 (J), HCC cohort (K), and HNSCC cohort (L). (M–P) Evaluation of
the difference in objective response rate (ORR) between the high and low CXCL9 expression groups in the IMvigor210 cohort (M), mUC
cohort2 (N), HCC cohort (O), and HNSCC cohort (P).

F IGURE 5 CXCL9 expression is significantly higher in the immune-inflamed and immune-active phenotypes based on the IMvigor210
cohort. (A) Heatmap representing the CIBERSORT analysis, which assesses the correlation between the expression level of CXCL9 and 22
different types of immune cells. (B and C) Expression levels of CXCL9 in the previously defined three immune phenotypes (B) and the four
immune phenotypes (C). (D and E) Expression levels of CXCL9 across different PD-L1 expression levels by immune cells (D) and tumor cells
(E). (F) Difference in expression levels of immune checkpoints between the high and low CXCL9 expression groups. (G and H) Spearman
correlation analysis investigating the correlation between CXCL9 and immune checkpoints. GO, gene ontology; KEGG, Kyoto Encyclopedia
of Genes and Genomes; DEGs, differentially expressed genes; PD-1, anti-programmed cell death-1; PD-L1, programmed cell death-ligand 1;
CTLA4, cytotoxic T-lymphocyte-associated protein 4; IDO1, indoleamine 2,3-dioxygenase, LAG3, lymphocyte-activation gene 3; IC, immune
cells; TC, tumor cells. In (B–E), the significance of the difference was tested by Kruskal–Wallis test. In (F), ***p-value ≤ 0.001.
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F IGURE 6 APOBEC3G is identified to be positively correlated with the response to immune checkpoint inhibitors (ICIs) and the tumor
immune microenvironment (TIME). (A) Distribution of the seven cell clusters visualized by t-distributed stochastic neighbor embedding
(t-SNE), colored according to the respective cell clusters. (B) t-SNE plot displaying the expression levels of CXCL9. (C) t-SNE plot illustrating
the expression levels of APOBEC3G. (D) t-SNE plot showing two triple negative breast cancer (TNBC) samples stratified based on their
response to ICI therapy, with one classified as a responder and the other as a nonresponder. (E) t-SNE plot highlighting the distinction
between responders and nonresponders within the macrophage cluster. (F) Heatmap depicting the expression levels of CXCL9, APOBEC3D,
and APOBEC3G between responders and nonresponders within the macrophage cluster. (G) t-SNE plot demonstrating the expression levels
of CXCL9 and APOBEC3G within the macrophage cluster. (H–J) Kaplan–Meier curves depicting the overall survival (OS) based on the
expression of APOBEC3G in the IMvigor210 cohort (H), metastatic urothelial carcinoma (mUC) cohort2 (I), and TCGA-Pancancer cohort (J).

Functional analysis based on DEGs between the high
and low APOBEC3G expression groups suggested that
APOBEC3G may be involved in immune-related path-
ways, including T-cell activation, immune receptor
activity, and antigen processing and presentation (Figure
S13). Moreover, high APOBEC3G expression was sig-
nificantly associated with better OS in the IMvigor210
cohort, mUC cohort2, and TCGA pan-cancer cohort
(Figure 6H–J).

2.6 Construction of a novel model for
predicting clinical outcomes of ICIs based
onM1macrophage, CXCL9, and APOBEC3G

Furthermore, we aimed to conduct a novel model using
deep learning algorithms, specifically the multi-level
attention graphneural network (MLA-GNN)model. Given
the consistent association of highM1macrophage, CXCL9,
and APOBEC3G expression with improved outcomes of
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ICIs, genes associated with these factors were utilized to
develop a novel model for predicting clinical outcomes of
ICIs. Among the three sets of DEGs in the IMvigor210
cohort, a total of 318 genes overlapped. Among these,
294 genes were shared between the IMvigor210 cohort
and mUC cohort2, and were subsequently used to con-
struct the novel model using MLA-GNN. An overview
of the MLA-GNN is presented in Figure 7A. The novel
model demonstrated favorable predictive ability for ORR
in patients receiving ICIs, with area under curve (AUC)
values of 0.813, 0.725, 0.704, and 0.712 for the IMvigor210
cohort, mUC cohort2, HNSCC cohort, and SYSMH-gastric
cancer (GC) cohort, respectively (Figure 7B).
The predictive performance of the novel model was

compared with that of PD-L1 and tumor mutation burden
(TMB) based on patient who had data on PD-L1 and/or
TMB. In the IMvigor210 cohort, the novel model achieved
an AUC of 0.780, outperforming PD-L1 (AUC= 0.560) and
TMB (AUC = 0.720) (Figure S14A). Similarly, in the mUC
cohort2, the AUC of the novel model (0.730) for predicting
ORRwas higher than that of PD-L1 (AUC= 0.620) (Figure
S14B). Moreover, utilizing the scores from the newly
developed model, patients were segregated into groups
with high scores and low scores. Notably, patients in
the high-score category exhibited a markedly improved
OS compared to their low-score counterparts in the
IMvigor210 cohort, mUC cohort2, HNSCC cohort, and
SYSMH-GC cohort (Figure 7C–F).
In comparison to those with low scores, individu-

als in the high-score group showed increased expres-
sion levels of diverse IC types, including CD8+ T cells,
active CD4+ T cells, T-cell gamma delta, active NK
cells, and M1 macrophage (Figure 7G). Moreover, patients
with high scores showed elevated expression levels of
immune checkpoints compared to those with low scores
(Figure 7H). Pathway enrichment analyses, based on
the DEGs between the high-score and low-score groups,
revealed that the novel model was highly enriched in path-
ways associated with the extracellular matrix, cell cycle,
DNA replication, and drug metabolism (Figure 7I–K).

3 DISCUSSION

This study provides a comprehensive investigation into the
role of M1 macrophage and the molecular mechanisms
associated with the TIME in determining the response
to ICIs in cancer patients. Moreover, the associations of
CXCL9 and APOBEC3G with ICI responses further sup-
port their relevance as valuable prognostic markers. In
addition to the molecular insights gained, we present a
novel predictive model for ICI response based on M1
macrophage and TIME-associated factors, utilizing the

MLA-GNNmodel. This model demonstrates superior pre-
dictive performance compared to conventional markers
such as PD-L1 expression or TMB.
The consistent association between high expression of

M1 macrophage and improved OS as well as treatment
response, as observed across different cohorts, under-
scores the prognostic and predictive significance of M1
macrophage. Our results align with previous studies that
have demonstrated the favorable role of M1 macrophage
in promoting antitumor immune responses and improving
patient outcomes.20 It has been reported that anti-PD-L1
therapy can induce remodeling of the macrophage com-
partment in responsive tumor models, primarily through
increased levels of IFNγ, leading to a more proinflamma-
tory phenotype and enhanced activity of CD8 T cells.21
Notably, the presence of macrophages exhibiting a dual
M1-like and M2-like phenotype, referred to as M1hot, has
been associatedwith robust T-cell responses and improved
survival outcomes in lung cancer.15 These findings are
consistent with prior studies that have highlighted the
favorable role of M1 macrophage in promoting antitu-
mor immune responses and improving patient outcomes.
The pro-inflammatory and tumoricidal functions of M1
macrophage make them a crucial component of an effec-
tive immune response against tumors. Conversely, high
expression of M0 and M2 macrophages, which are asso-
ciated with immunosuppressive and protumoral effects,
predicts worse OS. This highlights the importance of dis-
cerning macrophage subtypes and their functional states
when evaluating the landscape of the TIME. Additionally,
these insights underscore the potential therapeutic rele-
vance of developing strategies that modulate the balance
between M1 and M2 macrophages to optimize the efficacy
of immunotherapy, thereby enhancing the overall clinical
outcomes for cancer patients.
The associations between M1 macrophage and immune

phenotypes provide valuable insights into the immune
contexture of the tumor microenvironment (TME). The
higher expression of M1 macrophage in the immune-
inflamed and immune-active phenotypes suggests their
involvement in an immune-responsive environment. This
aligns with previous studies demonstrating that an
inflamed TME characterized by IC infiltration is associ-
ated with improved responses to ICIs. The coexistence of
M1 macrophage with increased infiltrations of immune
checkpoints indicates a potential interplay between M1
macrophage and immune checkpoint pathways. These
observations suggest that M1 macrophage may contribute
to an immunologically active contexture within the TIME,
enhancing the sensitivity of tumors to ICIs. Overall, the
identification of M1 macrophage as a key player in the
contexture of TIMEunderscores its significance as a poten-
tial target for therapeutic interventions. Furthermore, the
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F IGURE 7 A novel model was constructed for predicting the outcomes of immune checkpoint inhibitors (ICIs) based on M1
macrophage, CXCL9, and APOBEC3G-related genes. (A) Overview of the multi-level attention graph neural network (MLA-GNN) model. (B)
Evaluation of the performance of the novel model in predicting the objective response rate (ORR) of ICIs in the IMvigor210 cohort, the
metastatic urothelial carcinoma (mUC) cohort2, the head and neck squamous cell carcinomas (HNSCC) cohort, and the Sun Yat-sen
Memorial Hospital-gastric cancer (SYSMH-GC) cohort. (C–F) Kaplan–Meier curves illustrating the overall survival (OS) based on the novel
model score in the IMvigor210 cohort (C), the mUC cohort2 (D), the HNSCC cohort (E), and the SYSMH-GC cohort (F). (G) CIBERSORT
analysis of the IMvigor210 cohort, assessing the association between the novel model score and 22 different types of immune cells. (H)
Comparison of the expression levels of immune checkpoints between the high score and low score groups in the IMvigor210 cohort. (I)
Volcano plot illustrating the differentially expressed genes (DEGs) between the high score and low score groups in the IMvigor210 cohort.
(J–K) Gene ontology (GO) (J) and Kyoto Encyclopedia of Genes and Genomes (KEGG) (K) pathway enrichment analyses conducted on the
DEGs. PD-1, anti-programmed cell death-1; PD-L1, programmed cell death-ligand 1; CTLA4, cytotoxic T-lymphocyte-associated protein 4;
IDO1, indoleamine 2,3-dioxygenase, LAG3, lymphocyte-activation gene 3. In (A), the first step involved examining the intersection of three
sets of DEGs from the M1 macrophage, CXCL9, and APOBEC3G high and low groups in the IMvigor210 cohort. The genes that overlapped
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observation of the interplay between M1 macrophage and
immune checkpoint pathways offers promising prospects
for the development of combination therapies that target
both M1 macrophages and specific immune checkpoints,
thereby fostering a more effective anti-tumor immune
response.
The efficacy of ICI therapy largely relies on the recruit-

ment of tumor-infiltrating lymphocytes (TILs). However,
the precisemechanisms underlying TIL recruitment in the
context of ICIs are not yet fully understood. The CXCR3
chemokine and its ligands, including CXCL9, CXCL10,
and CXCL11, play crucial roles in the migration, differ-
entiation, and activation of ICs.22 CXCL9, also known
as monokine induced by IFN-γ, is primarily responsible
for inducing lymphocytic infiltration into tumors, leading
to the suppression of tumor growth.23 In the context of
PD-1 blockade, the CXCR3 chemokine system has been
proposed to be essential for the functional CD8+ T-cell
response, with CXCL9 derived fromCD103+ dendritic cells
playing a pivotal role in this process.Moreover, CXCL9 and
CXCL10 have been identified as potential early biomark-
ers for predicting the response to ICI.10 High expression
of CXCL9 and CXCL10 has been strongly associated with
improved survival and a substantial increase in the num-
ber of intratumoral CD8+ T cells in cancer patients treated
with ICIs. Interestingly, a study has demonstrated that
macrophages are also a major source of CXCL9, both
in preclinical models and in clinical patients, and this
production is dependent on IFN-γ.9
In this study, the strong correlation between high

CXCL9 expression andM1macrophage infiltration further
underscores the role of CXCL9 as a valuable biomarker
in ICI therapy. CXCL9 functions as a chemoattractant
for effector T cells, integral to the immune responses
against tumors. The positive association between high
CXCL9 expression and superior OS as well as higher
response rates to ICIs emphasizes the importance of
CXCL9-mediated immune activation in determining
treatment outcomes. Moreover, the enrichment of
immune-related pathways, and the correlation between
CXCL9 expression and immune checkpoints support
the notion that CXCL9 contributes to an immune-active
microenvironment. Taken together, the robust association
between CXCL9 and enhanced treatment responses to
ICIs illuminates a potential avenue for patient stratifica-

tion and personalized therapeutic interventions. Elevated
CXCL9 expression can serve as a reliable biomarker to
identify patients with a higher likelihood of benefiting
from ICI therapy. Moreover, these findings underscore the
potential for developing therapeutic strategies whichmod-
ulate CXCL9 expression to enhance the clinical impact
of ICIs.
Furthermore, through comprehensive analyses of tran-

scriptomics and scRNA-seq data, this study identifies
APOBEC3G, an RNA modification gene, as significantly
associated with the survival benefit derived from ICIs.
This highlights the potential role of RNA modification
processes in shaping the response to ICIs. APOBEC3,
a member of the large apolipoprotein B mRNA editing
enzyme catalytic polypeptide-like family, plays a critical
role in innate immunity by inducing mutations in viral
DNA and restricting viral replication.24 The APOBEC3
family is highly expressed in macrophages, lymphoid
cells, and dendritic cells, and dysregulated APOBEC3
activity has been implicated in genome mutagenesis in
cancer.24–26 Notably, high expression of APOBEC3G, one
of the APOBEC3 genes, has shown a strong correlation
with T-cell infiltration and improved outcomes in patients
with high-grade serous ovarian carcinoma.27 APOBEC3G
also exhibited significant positive correlations with PD-L1,
suggesting that APOBEC-driven mutagenesis may con-
tribute to an active immunemicroenvironment in estrogen
receptor-positive breast cancer.28 However, contrasting
findings have been reported in kidney renal clear cell
carcinoma, where APOBEC3G positively correlated with
the expression of immune checkpoints and immunosup-
pressive cells, serving as a potential biomarker for poor
prognosis.29 Despite the observed association between
APOBEC3G and immune infiltration, it remains unclear
whether APOBEC3G can influence the clinical outcomes
of ICIs.
Our finding that APOBEC3G was associated with

ICI response and improved OS highlights the potential
influence of RNA epigenetic modifications on the antitu-
mor immune response. The positive correlation between
APOBEC3G expression and response to ICI therapy
further supports the role of APOBEC3G as a prognos-
tic marker. This finding prompts the consideration of
APOBEC3G as a potential tool for patient stratification,
enabling clinicians to accurately predict patient clinical

among these sets were used to construct the topological overlap matrix. Next, multi-level graphs were built using the Multi-Level Graph
Construction module, which utilized graph attention layers. Following that, local gene-level features and global pathway-level features were
fused after linear projection and vectorization, utilizing the Multi-level Graph Feature Fully Fusion module. Finally, the fused feature was
passed through the Multi-Task Prediction module to perform the prediction of ICI response. In (B), the area under curve (AUC) values of
0.813 and 0.725 were obtained based on all patients from the IMvigor210 cohort (n = 348) and the mUC-cohort2 (n = 88), respectively. In (E
and F), *p-value ≤ 0.05, **p-value ≤ 0.01, and ***p-value ≤ 0.001.
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outcomes to ICI treatment and tailor therapy regimens
accordingly. Interestingly, the results of our scRNA-seq
analysis indicated that high expression of APOBEC3G
withinmacrophages was associated with benefits from ICI
therapy. This observation suggests the potential involve-
ment of APOBEC3G in the regulation of macrophage-
mediated immune responses and underscores the
significance of macrophage-associated mechanisms in
enhancing the efficacy of ICIs. Furthermore, APOBEC3G
was correlated with immune-related pathways. Despite
these data, the important influence of APOBEC3G
and RNA epigenetic modifications on ICI efficacy and
detailed mechanisms underlying this need further
elucidation.
In addition, we developed a novel model incorporating

M1 macrophage, CXCL9, and APOBEC3G-relatde genes.
This innovative model offers a promising tool for predict-
ing the clinical outcomes of ICIs, which can substantially
enhance patient care and treatment decision-marking.
This model exhibited superior predictive ability compared
to conventional markers such as PD-L1 and TMB, empha-
sizing the importance of considering the comprehensive
immune landscape in treatment response prediction. The
increased expression of IC types and immune checkpoints
in the high-score group suggests a more favorable TIME
for ICI efficacy. These findings support the potential clin-
ical utility of the novel model in identifying patients who
aremost likely to benefit from ICI therapy, thus optimizing
treatment outcomes and minimizing unnecessary expo-
sure to potential side effects in patients who are unlikely
to respond.
While this study contributes valuable insights, several

limitations should be acknowledged. First, the analy-
ses were primarily based on retrospective cohorts, and
prospective validation is required to confirm the findings.
Since the study encompassed several study cohorts involv-
ing ICI therapy, there may be heterogeneity in patients
and treatment across study cohorts. Caution should be
paid when interpreting the results. Second, the sample
size of the GSE140901 cohort is relatively small (n = 24),
which can probably explain the nonstatistically signifi-
cant association between M1 macrophage or CXCL9 and
several immune checkpoints in this cohort. Additionally,
the direct or indirect interactions involving APOBEC3G,
CXCL9, or M1 macrophages were not investigated in this
study. More studies delving into the molecular pathways
and interactions between M1 macrophage, CXCL9, and
APOBEC3G within the TME may provide further insights
into the underlying biology. Future investigations with
cell or animal experiments are necessary to elucidate
the functional mechanisms underpinning these observed
associations.

4 CONCLUSIONS

In conclusion, the findings highlight the clinical signifi-
cance ofM1macrophage and CXCL9 as potential biomark-
ers for patient stratification and indicate the potential
importance of RNA modification processes in impact-
ing cancer immunotherapy response. The novel predictive
model based on M1 macrophage and TIME-associated
factors offers promise for improving patient selection
and facilitating the implementation of cancer precision
immunotherapy strategies. Further research is warranted
to elucidate the underlying mechanisms and validate the
findings in prospective clinical trials.

5 METHODS ANDMATERIALS

5.1 Patients and study design

The study incorporated patients from various sources,
resulting in the inclusion of the following patient cohorts:
First, a total of 348 patients with metastatic mUC who
received treatment with the PD-L1 inhibitor atezolizumab
were included from the single-arm, phase 2, multicen-
ter IMvigor210 trial.30 Second, another cohort consisted
of 88 patients with mUC who underwent anti-PD1/PD-
L1 therapies and were part of the mUC cohort2. These
patients were sourced from the GEO dataset GSE176307.31
Additionally, 24 patients with advanced/metastatic HCC
who were treated with ICIs were included as the
HCC cohort. These patients were obtained from the
GEO dataset GSE140901.32 Furthermore, 102 patients
with advanced HNSCC who underwent PD-1/PD-L1 tar-
geted immunotherapy from the GSE159067 cohort were
included as the HNSCC cohort.33 The transcriptomic and
corresponding clinical data from the IMvigor210 trial
were obtained using the R package IMvigor 210 Core
Biologies.30 For the GEO datasets, transcriptomic and
related clinical data were retrieved from the GEO database
(http://www.ncbi.nlm.nih.gov/geo/). The patients lacking
survival data were omitted from the analyses. Detailed
characteristics of patients are shown in Table S1.
Moreover, the analysis encompassed a cohort of 99

breast cancer patients who underwent standard treat-
ment. Among them, 97 patients had available RNA-seq
data from SYSMH-BC cohort. scRNA-seq was conducted
on two TNBC patients who received PD-1 antibody-based
combinational treatment at Sun Yat-sen Memorial Hos-
pital. Among the two patients, one exhibited a positive
response to ICIs, while the other did not achieve a
response. Additionally, 44 gastric cancer patients under-
going anti-PD-1 therapy with RNA-seq data from Sun

http://www.ncbi.nlm.nih.gov/geo/
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Yat-sen Memorial Hospital (SYSMH-GC cohort) were
included for the subsequent model validation.
In addition, a pan-cancer cohort, referred to as the

Pancancer-cohort, was incorporated from TCGA. The
Pancancer-cohort included the following patient num-
bers for each respective cancer type: 928 patients with
breast cancer, 446 patients with colon adenocarcinoma,
88 patients with rectum adenocarcinoma, 495 patients
with lung squamous cell carcinoma, 376 patients with
ovarian serous cystadenocarcinoma, 459 patients with
skin cutaneous melanoma, and 504 patients with thyroid
carcinoma.
The study focused on two primary endpoints: OS and

ORR. Patients were divided into two groups based on
their response to ICIs: the response group, which included
patients with complete response and partial response, and
the non-response group, which included patients with sta-
ble disease and progressive disease. The study adhered to
the principles outlined in the Declaration of Helsinki and
received approval from the ethics committee of Sun Yat-
sen Memorial Hospital, Sun Yat-sen University (Approval
Number: SYSEC-KY-KS-2019-171-001). Due to the retro-
spective nature of the study and the utilization of publicly
available datasets, the requirement for informed con-
sent from study participants was waived by the ethics
committee.

5.2 Quantification of IC proportions,
DEG analyses, and identification of key
marker genes

Immune cell quantification: The proportions of 22 types
of ICs, including seven T-cell types, naïve and memory
B cells, plasma cells, NK cells, and myeloid subsets, were
quantified using the CIBERSORT algorithm.34 This quan-
tification was performed with the LM22 signature matrix
and a 100× permutation count, without applying quan-
tile normalization. CIBERSORTwas utilized to analyze the
relative expression levels of 547 genes in each tissue sam-
ples utilizing the high-dimensional genomic data derived
from bulk tissue samples. Consequently, the normalized
gene expression profiles were converted into the propor-
tion of 22 tumor-infiltrating ICs. Macrophages consisted
of M0, M1, and M2 subtypes. Heatmaps were generated
to visualize the differences in IC expression levels among
different groups.
DEG analyses: All DEG analyses were performed using

the R package “Limma.”35 DEGs were identified using the
Wilcoxon test, considering absolute log2 (fold change) val-
ues > 0.5 and p value < 0.05 as criteria for significance.
Volcano plots were generated to display the DEGs between
two groups.

GO and KEGG pathway enrichment analyses: The R
package “clusterProfiler”36 was utilized for conducting
GO and KEGG pathway enrichment analyses. Bio-
logical functions encompassing cellular component,
molecular function, and biological process were iden-
tified using Fisher’s exact test, with false discovery
rate-corrected p value < 0.05 considered statistically
significant.
Identification of key marker genes: The process to pin-

point key marker genes linked to M1 macrophage infiltra-
tion and ICI response beganwith analyzingDEGs between
groups with high and low M1 macrophage expression,
and between the response and non-response groups in the
IMvigor210 cohort. Subsequently, the overlapping genes
among these DEGs were identified. Finally, the “random-
Forest” R package was employed to rank the importance
of each gene using the random forest classification
algorithm.
PPI network analysis: We utilized STRING database

(https://string-db.org)37 to examine the functional inter-
actions among proteins targeted by the top DEGs iden-
tified between the high and low M1 macrophage groups.
Cytoscape was applied to develop a PPI network diagram.
GENEMANIA (http://genemania.org/search/), a versatile
and user-friendly web interface, was employed to generate
hypotheses regarding gene function with high accuracy of
prediction, facilitating the analysis of gene lists and the pri-
oritization of genes for subsequent functional assays.38 We
employed GENEMANIA to construct a gene–gene inter-
action network, assessing the connections between the
top DEGs and their closest counterparts, along with an
exploration of their functions.

5.3 Single-cell RNA sequencing

Collection and preparation of samples: Fresh breast tissues
from two TNBC patients were collected within 30 min
of surgery and preserved in sCelLiveTM Tissue Preserva-
tion Solution (Singleron Bio Com). The tissues were then
washed three timeswithHanks Balanced Salt Solution and
cut into small pieces measuring 1–2 mm. Subsequently,
the tissue fragments were dissociated and digested using
2 mL of GEXSCOPETM dissociation solution (Singleron)
at 37◦C for 15 min with shaking. After passing the samples
through a 40-μm sterile filter, the filtrate was centrifuged
for 5 min at 1000 rpm. Following the disposal of the
supernatant, the cells were resuspended in 1 mL of PBS
(HyClone) solution. To eliminate any remaining erythro-
cytes, 2 mL of GEXSCOPETM erythrocyte lysis buffer
(Singleron) was added, and the solution was left at 25◦C
for 10 min. The number of viable cells was determined by
microscopic examination following centrifugation at 500 g

https://string-db.org
http://genemania.org/search/
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for 5 min. The cells were resuspended in PBS, stained with
trypan blue (Sigma), and then centrifuged at 500 g for 5
min for accurate cell counting.
Sequencing of single-cell transcriptome libraries: The

scRNA-seq libraries were generated from the TNBC tis-
sue samples using the GEXSCOPETM Single-Cell RNA
Library Kit (Singleron Biotechnologies) according to
the manufacturer’s instructions. The libraries were then
sequenced using an Illumina Novaseq 6000 platform with
150 bp reads.
Analysis of raw read data: Using CeleScope ver-

sion 1.4.0 (available at https://github.com/singleron-
RD/CeleScope), the raw reads obtained from scRNA-seq
were processed to generate gene expression matrices. Ini-
tially, the raw reads were subjected to quality control using
Cutadapt v1.1739 through the CeleScope pipeline. This
step involved trimming poly-A tail and adapter sequences,
effectively removing low-quality reads. Subsequently, the
barcode and unique molecular identifier (UMI) associated
with each cell were extracted. In the next stage, the
processed reads were aligned to the GRCh38 reference
genome (annotated by Ensembl version 92) using STAR
v2.6.1a.40 The alignment allowed for mapping the reads to
their corresponding genomic locations. Gene counts and
UMI counts were then obtained using featureCounts ver-
sion 2.0.1 software,41 enabling the quantification of gene
expression levels. Finally, expressionmatrix files were gen-
erated, which served as the basis for further analysis in the
study.
Quality control, dimension reduction, and clustering: To

ensure high-quality data for downstream analysis, we
applied several filtering steps. First, we filtered out cells
with gene counts below 200, as well as those with gene
counts and UMI counts in the top 2%. Additionally, cells
with amitochondrial content exceeding 20%were removed
from further analysis. After filtering, a total of 27,351
cells were retained for subsequent analysis, with an aver-
age of 2108.319 genes and 8085.971 UMIs per cell. For
dimension reduction and clustering, we utilized func-
tions from Seurat v3.1.2.42 After normalizing and scaling
the gene expressions, we identified the top 2000 variable
genes using the FindVariableFeatures function for prin-
cipal component analysis (PCA). To further separate the
cells into distinct clusters, we employed the FindClusters
function, which utilized the top 20 principal components.
The batch effect between samples was removed using the
Harmony algorithm.43 To visualize the cells in a two-
dimensional space, we applied the t-SNE algorithm. This
technique allowed for the representation of the high-
dimensional gene expression data in a lower dimensional
space, facilitating the visualization of cell clusters.

5.4 Developing a model for predicting
ICI efficacy using deep learning and
multi-level attention graph neural network

To develop a novel model for predicting ICI efficacy, we
employed deep learning algorithms and focused on M1
macrophage and factors associated with the TIME. The
IMvigor210 cohort was selected as the training group,
while the mUC cohort2, the HNSCC cohort, and SYSMH-
GC cohort served as the validation groups. TheMLA-GNN
has shown strong resilience to batch effects by imitat-
ing the biological regulatory process and pinpointing
biomarkers at the pathway level. This approach signifi-
cantly improves the precision and effectiveness in predic-
tion tasks involving both transcriptomic and proteomic
data.44 Through the use of the full-gradient graph saliency
mechanism, theMLA-GNNhas the capacity to reveal clin-
ically meaningful biomarkers at the pathway level, which,
although pertinent, often remains undetected by conven-
tionalmethods.44 In this study, theMLA-GNNwas utilized
to construct the novel model based on 294 genes44 (Table
S2). This approach involved identifying the intersection
of differential genes at three levels: gene expression, M1
macrophage infiltration, and TIME-associated factors. The
parameter settings for the MLA-GNNmodel were detailed
in Table S3, and the Python code to construct the novel
model using the MLA-GNN was displayed in Supporting
Information. To examine the performance of the model,
we used the receiver operating characteristic (ROC) and
AUC to estimate its accuracy in predicting ICI efficacy. The
ROC curve offers a visual display of the balance between
the true positive rate and the false positive rate, allowing
for the assessment of the model’s predictive capabilities.

5.5 Statistical analysis

For categorical variables, comparisons were performed
using the chi-square test or Fisher’s exact test, while con-
tinuous variables were analyzed using the Mann–Whitney
test for binary comparisons, or through one-way analy-
sis of variance complemented by the Kruskal–Wallis test
for multi-group comparisons. Spearman correlation anal-
ysis was used to assess correlation coefficients. OS was
estimated with the Kaplan–Meier method and compared
using the log-rank test. The optimal cutoff values for con-
tinuous variables in each dataset were determined using
the R package “survminer.” A two-sided p-value < 0.05
was considered statistically significant. Statistical analy-
ses were conducted using R version 4.0.0 (http://www.
rproject.org/) and Python 3.10 version software.

https://github.com/singleron-RD/CeleScope
https://github.com/singleron-RD/CeleScope
http://www.rproject.org/
http://www.rproject.org/
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