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Abstract

A growing body of evidence suggests that gene flow between closely related species is a

widespread phenomenon. Alleles that introgress from one species into a close relative are

typically neutral or deleterious, but sometimes confer a significant fitness advantage. Given

the potential relevance to speciation and adaptation, numerous methods have therefore

been devised to identify regions of the genome that have experienced introgression.

Recently, supervised machine learning approaches have been shown to be highly effective

for detecting introgression. One especially promising approach is to treat population genetic

inference as an image classification problem, and feed an image representation of a popula-

tion genetic alignment as input to a deep neural network that distinguishes among evolution-

ary models (i.e. introgression or no introgression). However, if we wish to investigate the full

extent and fitness effects of introgression, merely identifying genomic regions in a popula-

tion genetic alignment that harbor introgressed loci is insufficient—ideally we would be able

to infer precisely which individuals have introgressed material and at which positions in the

genome. Here we adapt a deep learning algorithm for semantic segmentation, the task of

correctly identifying the type of object to which each individual pixel in an image belongs, to

the task of identifying introgressed alleles. Our trained neural network is thus able to infer,

for each individual in a two-population alignment, which of those individual’s alleles were

introgressed from the other population. We use simulated data to show that this approach is

highly accurate, and that it can be readily extended to identify alleles that are introgressed

from an unsampled “ghost” population, performing comparably to a supervised learning

method tailored specifically to that task. Finally, we apply this method to data from Drosoph-

ila, showing that it is able to accurately recover introgressed haplotypes from real data. This

analysis reveals that introgressed alleles are typically confined to lower frequencies within

genic regions, suggestive of purifying selection, but are found at much higher frequencies in

a region previously shown to be affected by adaptive introgression. Our method’s success

in recovering introgressed haplotypes in challenging real-world scenarios underscores the

utility of deep learning approaches for making richer evolutionary inferences from genomic

data.
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Author summary

It is now known that a sizeable fraction of species occasionally hybridize with related spe-

cies. Thus, many species harbor genetic material that traces its ancestry to closely related

species. For example, many humans contain DNA that was “introgressed” from Neander-

thals. The growing appreciation of the commonality of introgression has sparked a keen

interest in determining which portions of the genome were introgressed. Several statistical

approaches have been devised for identifying the population genetic signatures of intro-

gression, but the most powerful techniques for this task take advantage of modern

machine learning techniques. Here, we describe a deep learning method for identifying

segments of introgressed DNA. This method is based on neural networks used to deter-

mine which pixels in an image belong to which type of object. By treating a matrix of

genotypes from a sample of individuals from two closely related species, we can use this

deep learning approach to accurately infer which portions of which genomes from the

first population were introgressed from the second, and vice-versa. We show that our

method, which we have released as an open-source software package, is highly accurate

using a variety of simulated scenarios and a real test case from the genus Drosophila.

1 Introduction

Speciation events are often followed by the two nascent species coming into secondary contact.

In many cases this creates the potential for hybridization, which can in turn result in alleles

crossing from one species into the other [1]. There is a growing body of evidence such that

post-speciation gene flow is a common occurrence [1–4]. The introgression of alleles from one

species to another can have a significant impact on fitness and evolution. Introgressed alleles

will presumably often reduce fitness in the recipient species, because of incompatibilities

between the introgressed alleles and the recipient species’ environment or genomic back-

ground [5, 6], or because the donor species may in some cases have a higher burden of deleteri-

ous alleles [7]. In rarer instances introgression may be beneficial, especially if the species have

a shared selective environment, and the donor species contains alleles that that are adaptive in

this environment and that the recipient species lacks (e.g. [8, 9]). For example, in humans, an

EPAS1 allele that originated in an archaic human relative (Denisovans) and that confers

greater tolerance to high altitudes, is found at high frequency in Tibetans [10]. A similar obser-

vation of adaptive introgression at EPAS1 was also made in Tibetan mastiffs, who may have

received adaptive alleles from Tibetan gray wolves [11]. In Anopheles mosquitos, alleles that

increase resistance to insecticides have jumped across species barriers [12]—an alarming

observation that suggests that the control of these and other pests may be made even more

challenging by their potential to experience adaptive introgression. These findings suggest

that, while often deleterious, introgression may also present a route to more rapid adaptation

in species that are able to borrow adaptive alleles from a neighboring relative.

For these reasons, there is a great deal of interest in detecting the extent of and genomic loci

affected by introgression [13, 14]. A number of statistical tests have been developed to detect

the presence of introgressed alleles/haplotypes. These may ask whether there is an excess of

sites in the genome that appear to exhibit patterns of inheritance that depart from the known

phylogenetic relationship between species [15–17] or an excess of phylogenetic trees inferred

from individual loci that differ from the species tree in a manner that is best explained by

introgression [3, 18, 19]. When genomic data from multiple individuals from a given
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population are available, statistical tests may search for loci that have unusually similar allele

frequencies between the populations experiencing gene flow [20–22], or even for haplotypes

that appear to be shared between these populations [14, 23, 24]; the latter approach has the

potential to identify specific loci affected by introgression. Local ancestry inference methods,

which typically compare a sample of potentially admixed genomes to a reference panel of

potential donor populations [25], also have the potential to reveal introgressed regions [26,

27].

Although methodological advances in the search for introgressed regions are welcome,

merely assessing the presence of introgression within a genomic region has its limitations. We

may wish to know how much introgression has occurred in a given region: how many sites

were affected, and which individuals have introgressed material at each of these sites? Note

that this information would in turn yield estimates of the frequencies of introgressed alleles in

the recipient population. All of this information is useful for drawing inferences about the fit-

ness effects of gene flow between a particular pair of populations, or even at particular loci.

The development of machine learning methods for population genetic inference may repre-

sent one possible means of addressing this problem. Machine learning methods have recently

made significant inroads in a number of problems in population genetics, including detecting

positive selection [28–34], performing demographic inference [35, 36], and estimating recom-

bination rates [37, 38]. We previously developed a supervised machine learning method for

detecting gene flow, called FILET, that dramatically increases the power to detect introgressed

loci relative to methods that use a single summary statistic [39]. More recently, Durvasula et al.

created a machine learning method, called ArchIE, that infers, for each individual in a sam-

ple, whether they received introgressed alleles from an unsampled (or “ghost”) population in a

given window [40]. By averaging predictions made across all sliding windows overlapping a

given polymorphism, ArchIE is capable of producing an inference at every polymorphism

for each individual in the alignment.

Both FILET and ArchIE make their inferences by examining vectors of population genetic

summary statistics and using simulations to train a classifier to distinguish among alternative

evolutionary models, an approach that has become increasingly common in recent years [41].

However, an alternative approach that could potentially be even more powerful and flexible is

to skip the step of calculating summary statistics and instead train deep neural networks to

examine population genetic alignments directly as their input. For example, convolutional

neural networks (CNNs; [42, 43]), which are powerful tools for making predictions from vari-

ous data types including images [44], can readily be adapted to population genetic alignments

as these can be treated as images, with the value at any given pixel indicating which allele/geno-

type a given individual has at a given cite. Chan et al. recently showed that this approach can

detect recombination rate hotspots with excellent accuracy [45]. Flagel et al. showed that

CNNs could be trained to solve a number of population genetic problems, including detecting

selective sweeps and introgressed loci, and inferring recombination rates (see also [46]), with

accuracy matching or exceeding that of previous state-of-the-art methods [47]. Subsequent

studies have used CNNs to perform demographic inference [48], and detecting adaptive intro-

gression [49]. A variant of a generative adversarial network, which seeks to distinguish

between real and synthetic data, has also been used to estimate demographic parameters [50].

Additional population genetic tasks that artificial neural networks have been designed for

include identifying the geographic location of origin of a genome [51], mapping genetic varia-

tion data to a low-dimensional latent space [52], and inferring dispersal distances in spatial

populations [53].

Although the above examples all underscore the potential of deep learning for population

genetics, for the most part they simply use classification (model selection) or regression
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(parameter inference) to make a prediction for an entire region/genome. However, the

extraordinary flexibility of deep learning architectures makes them suitable for problems that

involve the production of far richer outputs. Indeed, deep learning has been used to generating

artificial genomic data [54]. Another recent interesting example that treats genetic alignments

as image data but produces more detailed outputs is Hamid et al’s network, which localizes

selective sweeps along a chromosome in admixed populations [55]. This method works by

uses an object detection framework, which seeks to identify and draw bounding boxes around

objects in an image—thus, an alignment is not only classified as having a sweep, but bounds

are drawn around the location of the target of selection. An even more detailed form of image

processing is semantic segmentation, where the goal is to produce a prediction for each pixel

in an image identifying the type of object that this pixel belongs to. This is an ideal framework

for detecting introgressed alleles, as we can in principle infer, for each allele in each individual

(i.e. for each pixel), whether that allele was introgressed or not. Here, we describe

IntroUNET, a fully convolutional neural network that examines a two-population alignment

and seeks to identify which alleles in each individual were introgressed from the other popula-

tion. We evaluate IntroUNET on simulated data where we show that it is able to infer intro-

gression with high accuracy, including in scenarios of bidirectional gene flow. We also show

that IntroUNET can be easily extended to detect ghost introgression. Finally, we examine the

well-known case of introgression between Drosophila simulans and Drosophila sechellia [39,

56], demonstrating that IntroUNET can accurately identify introgressed alleles/haplotypes in

challenging real-world scenarios.

2 Methods

2.1 Overview of method

In this paper we explore the potential efficacy of traditional fully convolutional neural net-

works (FNNs) to detect introgressed alleles in population genetic alignments, provided that

the user can supply a set of training examples where the precise introgressed haplotypes, and

the individuals that harbor them, are known. Typically these training examples will be simu-

lated under a demographic model (or a set of likely demographic models) that have been esti-

mated from the population(s) under study. FNNs were first designed to tackle image-to-image

semantic segmentation, wherein a prediction is made for each pixel in an image. Specifically,

these networks take multi-channel images (usually with three color channels for red-green-

blue (RGB) or hue-saturation-value (HSV)) as input and return an output of the same width

and height with the output pixels denoting the type of object to which the pixel belongs [57].

Here, we adapt a FNN for semantic segmentation to classify each allele/genotype for each indi-

vidual in a population genetic alignment as introgressed or not. Our approach is to treat a

multi-population alignment of a genomic window as a tensor whose dimensions are l × n × m,

where l is the number of populations in the sample, n is the number of (haploid) genomes in

each population, and m is the number of biallelic segregating sites in the genomic window.

Note that l = 2 in all experiments in this paper; one could in principle adapt this approach to

examine l> 2 populations by simply adding additional input channels, but one would also

have to decide how to order these population samples in the input (see below) and we caution

that we have not evaluated whether acceptable accuracy can be obtained with higher values of

l. The value for each entry in the tensor is a binary indicator specifying whether the derived

allele (or minor allele, in unpolarized data) is present in a given genome at a given polymor-

phism in a given population. On the basis of this input tensor, the FNN infers another l × n ×
m binary tensor that specifies which alleles were introgressed from the other population and

which were not, thus framing the problem as image-to-image segmentation. We note that
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IntroUNET does not include information about monomorphic sites or the physical distances

between segregating sites in the alignment.

2.1.1 Ordering individuals within the input image. Unlike the rows of pixels in an

image, the ordering of rows in population genetic alignments is not typically meaningful.

Thus, for the same set of population genomic sequences, there are n! possible image represen-

tations we could produce that all have the exact same information, meaning that the function

that we would like our neural network to learn is far from isomorphic (a one-to-one mapping).

One approach to deal with this problem is to use an exchangeable neural network (following

[45] and [58]) where only permutation-invariant functions (column-wise means/maxima,

etc.) are applied along the “genomes” axis of the input thereby ensuring that the ordering of

rows has no bearing on the output. However, standard FNNs, which were inspired by the

arrangement of cortical neurons in mammalian eyes [59], use 2D convolutions which rely on

the hierarchical and spatially local information inherent in visual images to learn relevant “fil-

ters” or kernels, and are by definition non-exchangeable.

One way to potentially induce hierarchical information in population genetic data, while

simultaneously mitigating the many-to-one mapping issue, is to sort the individual genomic

windows in a manner that may be meaningful in the context of the regression model being

attempted. However, there is no obvious choice of ordering that would be the most meaning-

ful. One could imagine using the topological order specified by the genealogical trees that the

alignment resulted from, but these are not known in real data and must be inferred, and in

recombining genomes the tree topology and branch lengths will vary along the sequence [60].

Flagel et al. [47] addressed this problem by sorting individuals by sequence similarity by con-

structing a nearest neighbor graph with some distance metric, finding that this yielded an

appreciable boost in accuracy relative to unsorted alignments. It is this approach that we build

on here.

One way to induce a visually meaningful structure in randomly ordered N-dimensional

vectors is to use seriation. Seriation, otherwise referred to as ordination, is a statistical method

which seeks the best enumeration order of a set of described objects [61]. More precisely, the

method seeks to order vectors in such a way that the distance between neighboring vectors in

the sequence is small and thus the total summed distance over neighboring pairs is minimized.

The choice of distance metrics includes any metric function defined for multi-dimensional

real fields; examples include Euclidean distance and Manhattan distance for binary vectors.

Such a sorting would be similar to ordering individuals by topological order along the “aver-

age” tree describing their relatedness within the focal genomic region. As a consequence, if

multiple individuals had introgressed alleles, this approach would create blocks of introgres-

sion that may be more conspicuous and thus easier for the neural network to detect. We exper-

imented with different distance metrics as described in the Results.

Seriation is known to be NP-hard, i.e. it is intractable to find exact or globally optimal solu-

tions because as the number of vectors or destinations, n, grows large, the complexity grows

faster than any finite polynomial function of n [62]. However, when the distance measure

between vectors is defined to be a metric, as we do here, seriation has been found to be APX-

complete or approximable-complete, i.e. there exists algorithms which can approximate the

global optimum in polynomial time given some asymptotic error bound [62]. For this project

we use Google’s OR-tools (https://developers.google.com/optimization/), which performs well

even on large samples.

Seriation orders a single population of vectors, but in our data schema there are two popula-

tions in the input tensor (dimension 1), and thus any given row in the image corresponds to

two haploid individuals: one in population 1, and the other in population 2. The correspon-

dence between these two overlying individuals may impact the ability of the neural network’s
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training algorithm to find meaningful 2D convolution filters. We addressed this problem by

seriating one population, and then ordering the second population by performing least-cost

linear matching between the seriated population and the other. Linear matching was per-

formed between populations using the scipy Python package’s functionality which employs

the Kuhn-Munkres algorithm, also known as the Hungarian method, to do so [63, 64]. Fig 1

shows, for a simulated two-population alignment, an example image representation of the

input and output as specified in this section. We recommend selecting the more diverse of the

two populations (as measured by nucleotide diversity [65, 66]) first, and then matching the

less diverse population to the first. If the two populations have very similar levels of diversity,

then this choice is unlikely to be consequential.

To summarize the intuition for the ordering and matching of populations in the image:

convolutional features were designed to capture hierarchical, spatially localized information,

such as stretches of similarity between individuals of different populations, and seriation and

least-cost matching procedures are done to make these similarities easier to detect by the con-

volutional filters. The effect of these procedures on the input representation can be seen in Fig

1: note that in this example, the introgressed individuals in population 2 tend to be matched in

their location along the y-axis with similar individuals from population 1.

2.1.2 Overview of neural network optimization. Here we briefly describe some terminol-

ogy and methods common to machine learning. Neural network inference is a type of non-lin-

ear regression and the task of “training” a neural network, i.e. finding optimal parameters that

make up the non-linear regression, is often broken up into two categories, supervised learning

and unsupervised learning. Supervised learning uses labeled input and output data and so the

ground truth labels or desired values for y are known in advance, whereas unsupervised learn-

ing does not include these. For the entirety of this paper we use a supervised approach where

our ground truth binary labels are obtained via population genetic simulation.

In supervised learning for neural networks, an optimal parameter set, or one that correctly

predicts the known y variables given x is often sought through a process called mini-batch gra-

dient descent sometimes called stochastic gradient descent [67]. Given θ, the learnable param-

eters in our neural network architecture, we first define some objective function Lðy; ŷ; yÞ
which we seek to minimize and common choices include the mean squared error between sca-

lar predictions, or binary cross entropy (defined below) for classification problems just as they

are used to define scalar regression and logistic regression respectively. In gradient descent we

update the weights, θ, by computing the gradient of L with respect to θ and moving in the

opposite direction:

y≔ y � ZrLðy; ŷ; yÞ ð1Þ

where the gradientrL is the vector of partial derivatives of L with respect to each scalar

weight θi, and η is small quantity called the learning rate that sets the size of the step taken each

iteration. In practice however, the loss function cannot be computed over all known examples

in the labeled dataset due to the limited computer memory, the large number of often high-

dimensional examples, and the number of weights involved. Thus, mini-batch gradient

descent estimates the gradients expected value via a sample of the dataset called a batch each

step:

w≔w � ZrLðy; ŷ; yÞ ¼ y �
Z

N

XN

i¼1

rLiðy; f ðy; xiÞ; yiÞ ð2Þ

where Liðy; f ðy; xiÞ; yiÞ represents the loss function computed on a single example and N rep-

resents the batch size or number of examples in each sample.
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2.1.3 Network architecture, training, and evaluation. We chose to use a variant of the

UNet++ architecture [68], a type of U-Net [69]. U-Nets are fully convolutional neural net-

works that have proved capable of achieving excellent performance in semantic segmentation

problems, and are so-named because of the shape of their architecture (e.g. Fig 2). U-Net++ is

a slightly modified version of the original U-Net that was proposed by Zhou et al. [68], who

showed that UNet++ outperforms its predecessor in medical image segmentation. UNet+

+ shares the same “backbone” of convolution, upsampling, and downsampling operations as

the original U-Net, but with added nested skip connections like those shown in Fig 2 that aim

to reduce the loss of information between the encoder (i.e. the left side of the “U”) and decoder

(the right side of the “U”) sub-networks. Our network architecture is a variant of U-Net++ in

that we also use the nested skip connections, but the sizes of our upsampling, downsampling,

and convolution layers differ from been altered from [68] to suit the image sizes used here.

Fig 2 shows an outline of the architecture we chose. In the left side of the “U” a traditional

CNN is trained to extract relevant features that become more and more coarse-grained due to

Fig 1. Image representation of an example input tensor (left column) and its corresponding output (right column), from a simulated scenario of bidirectional

gene flow. Here, the two populations are shown as separate matrices, although they are actually part of the same input tensor (i.e. they are the two values along the

“channel” dimension in the tensor). The input alignments are represented as black and white images where the ancestral allele is shown in black and the derived allele

in white. The output matrices show the locations of alleles in a recipient population that were introgressed from the donor population. Thus, the white pixels in the

output for population 1 show alleles that were introgressed from population 2, and the white pixels in the output for population 2 represent alleles introgressed from

population 1.

https://doi.org/10.1371/journal.pgen.1010657.g001
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downsampling, and then the information is passed via upsampling and concatenation to the

right side of the “U” finally resulting in a binary segmentation, or binary classification for each

allele in each individual (in our case as introgressed or not introgressed). In this version of a

U-Net, fine-grained and coarse-grained information are synthesized together using upsam-

pling and skip connections. Note that in this network, upsampling steps refer to 2-dimensional

bilinear upsampling, rather than transposed convolution. Each residual block consists of two

convolution layers where the last layer is summed with the output of the first, after which these

two outputs are concatenated. S1 Fig shows a diagram of our chosen residual block architec-

ture. The kernel size (i.e. the size of the filters whose weights are learned during training) of

each convolution layer is 3x3 pixels. The number of these filters (or feature maps) in the con-

volution operators for the decoder and encoder portions of the network was chosen to be

increasing integer powers of 2 beginning with 32 (after the concatenation in residual blocks)

with the largest number of filters in a given layer being 512. The depth of the network (i.e. the

number of downsampling/upsampling operations) was chosen to be 4.

Although we did not conduct systematic hyperparameter optimization for this architecture,

we did experiment some with different hyperparameter values and in general found that large

networks (i.e. networks with more layers or more learnable parameters) performed better than

smaller and more shallow networks. However, in general we found that, for this particular net-

work architecture, the choice of hyper-parameters had a limited impact on performance. We

therefore applied this architecture to each problem considered in the paper. We implemented

this network, in PyTorch [70]. For regularization, we employed both 2D InstanceNorm [71]

and dropout with a rate of 0.1 in each residual block of the network. We’ve made the code pub-

licly available and open-source on GitHub under a GNUv3 license (https://github.com/

SchriderLab/introNets).

We chose to using label smoothing in addition to the other forms of regularization present

(i.e. batch normalization and dropout). Label smoothing regularization has been shown

Fig 2. UNet++ type architecture [68] used for all the problems in this paper. The black arrows represent a residual block consisting of two convolutions

where each convolution in the series is summed to the previous, and the convolution layers are concatenated before a non-linear activation (ELU) [74] is

applied. The example output of the network is color scaled from 0 to 1 and represents the probability of introgression at a given allele for a given individual. The

loss function (represented by the bold L) is computed with the ground truth from the simulation and is the weighted binary cross entropy function (Eq 3). The

weights and biases of the convolution operations are updated via gradient descent during training. The architecture we use for the problems discussed actually

contains four down and up-sampling operations rather than the three portrayed here.

https://doi.org/10.1371/journal.pgen.1010657.g002
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empirically and theoretically to reduce the variance of the noise in estimating the gradient for

optimization problems when using stochastic gradient descent [72]. Label smoothing ran-

domly introduces uncertainty in the labels of batches via:

y∗ ¼ yð1 � �Þ þ
�

2
;

where � � Uð0; aÞ

Thus, true labels of 0 are perturbed up and labels of 1 are perturbed down via a randomly

uniform distribution with a max of α which can be thought of as the strength of smoothing.

For this problem, we experimented with three different values of α: 0.001, 0.01, and 0.1. We

found that a smoothing strength of α = 0.01 yielded the best validation accuracy (S2 Fig).

For network training, we used the Adam optimizer with default settings [73]: a learning

rate of 0.001 and β1, β2 = 0.9, 0.999. For all problems considered we trained the network for a

maximum of 100 epochs, with a patience of 10 epochs (meaning we halted training if for ten

consecutive epochs validation failed to decrease below the previous minimum). For our loss

function, we used the weighted binary cross-entropy function:

LðyÞ ¼
1

N

XN

n¼1

Hðpn; qnÞ ¼ �
1

N

XN

n¼1

wpyn logŷn þ ð1 � ynÞlogð1 � ŷnÞ
h i

ð3Þ

where H(pn, qn) is the cross-entropy function of the true and predicted label distributions (p
and q. respectively), the weight wp is the weight for positive (introgressed) examples and was

set to the ratio of negative (non-introgressed) examples to positive examples, yn and ŷn are the

true and predicted labels for example pixel n, respectively, and N is the total number of exam-

ple pixels in the training set. Note that our neural network used a softmax activation function

for the output layer, meaning that in the loss function above the prediction ŷn is a continuous

value ranging from 0 to 1. We use the weighted form of cross-entropy because the datasets

examined in this paper are unbalanced in that there are far more non-introgressed alleles

across individuals than introgressed alleles, and this may impact performance as the network

will learn to place less value on the rarer class. Class weights are a commonly used approach

for mitigating the effects of data imbalance during training [75, 76], and weighting by the rela-

tive frequency of each class as we have done here is one popular approach for setting these

weights [77]. Note that this data imbalance can affect evaluation metrics such as the ROC

curve, which plots a method’s true positive rate against its false positive rate, thereby showing

how much specificity must be relaxed (by decreasing the detection threshold) to achieve a

given sensitivity. For this reason we also compute precision-recall (which shows how a meth-

od’s positive predictive value decreases as its sensitivity increases) which is known to be robust

to unbalanced binary inference problems as it does not incorporate correctly predicted

absences [78]. We also note that class-imbalance does not bias our confusion matrices

obtained from these evaluation sets, and we also report unbalanced classification accuracies

obtained by simply averaging the percentages along the main diagonal of the confusion

matrix.

It is worth mentioning that our network has 4 pooling operations (and, in the second half

of the network, four upsampling operations) each of which leads to a reduction (and increase

in the second half of the network) in both the width and height of the input by a factor of 2.

Thus, both the width and height of the input image (individual and SNP axes) must be multi-

ples 24 = 16. In the problems considered in this paper, we chose to upsample the number of

individuals in the dataset to the nearest multiple of 16, and always choose SNP-window sizes

which are multiples of 16. When applied to real datasets, our tool upsamples the number of
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individuals as necessary, which will result in multiple predictions made for some individuals,

in which case our tool arbitrarily takes one of these predictions to be the final prediction for

that individual. This may somewhat decrease the variance in predictions obtained for those

individuals arbitrarily chosen to be upsampled, but this does not appear to have a major detri-

mental impact on accuracy. In the following sections, problem-specific details of batch size

and other training specifications are given when needed. Finally, we note that in all analyses in

this paper, if the ŷ predicted for an allele by IntroUNET was greater than 0.5, then we inter-

preted that as a positive prediction (i.e. the allele is inferred to be introgressed), and otherwise

as a negative prediction (no introgression).

2.1.4 Window-based classifier for detecting introgression. Previously developed

machine learning methods have been shown to be highly effective at identifying genomic win-

dows that have experienced introgression [39, 47]. As Discussed below, we found that when

applying IntroUNET to a dataset of D. simulans and D. sechellia genomes, accuracy was best

when we examined windows previously shown to have evidence for introgression (using

results from [39]). Because users may wish to incorporate such a step into their analyses of

introgression, we decided to incorporate a classifier into the IntroUNET software package

that, similar to that of Flagel et al. [47], examines an image representation of population

genetic alignment and classifies a region as having experience introgression from population 1

to population 2, introgression from population 2 to 1, or no introgression. Specifically, we

trained a discriminator with a ResNet34 architecture [79], a CNN that performs competitively

on image classification tasks. Other than the number of input channels (changed from three to

two in this case), we did not modify the architecture from its original implementation. We

demonstrated the accuracy of this classifier by training and testing it using the same simulated

dataset that was used to train IntroUNET to identify introgressed haplotypes in D. simulans
and D. sechellia. This dataset was then filtered for simulations that didn’t contain the desired

introgression case, class-balanced via downsampling, and then split into a training and valida-

tion sets with the validation set comprising 5 percent of the total number of simulations for

each case. We used the categorical cross entropy function as loss and the Adam optimizer [73]

with the same settings as for the IntroUNET segmenter described above. The network was

trained for a maximum of 100 epochs with a patience of 10 epochs.

2.2 Simulated introgression scenarios

2.2.1 A simple simulated test case. We assessed our method’s performance on a simple

simulated scenario where two subpopulations, each consisting of N = 500 diploid individuals,

split 4N generations ago and later experienced a pulse of gene flow. The time of the introgres-

sion event, and the fraction of individuals introgressed, was allowed to vary uniformly from

replicate to replicate. The full list of parameters and values for this model is shown in Table 1.

Note that we simulated fairly small population sizes here for computational tractability, and

therefore used large mutation and recombination rates, μ and r, respectively, such that 4Nμ =

4Nr = 0.02.

We simulated populations for this scenario using the evolutionary simulation software

SLiM [80]. We simulate equal numbers of replicates of three scenarios: unidirectional intro-

gression from population 1 to population 2, unidirectional introgression from population 2 to

population 1, and bidirectional introgression. For each case, 105 replicate 10 kb regions were

simulated and a predictor and target image was created for each as described above. For the

bidirectional case the target variable has two channels: one corresponding to whether a given

allele was introgressed from population 1 to population 2, and the other corresponding to

whether the allele was introgressed from population 2 to population 1. In the two
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unidirectional cases there is only a single output channel denoting whether or not there was

introgression in the direction being considered. Note that we did not explicitly simulate exam-

ples where migration was disallowed, but in most simulated examples the majority of pixels in

the alignment image were not affected by introgression.

Our initial set of 105 replicates was split into training and validation sets (95% training, 5%

validation), and an additional evaluation set of 1000 replicates was simulated separately but

with the same parameter distribution as the training and validation sets. For this experiment

we excluded from both training and testing the small number of simulation replicates that by

chance had no introgressed alleles in the sampled individuals. We used a batch size of 16 exam-

ples and trained for one hundred epochs or until experiencing ten consecutive epochs with val-

idation loss failing to achieve a new minimum (i.e. patience = 10). The model with the lowest

validation loss obtained was then used on the evaluation to obtain the metrics reported. An

example input along with true and inferred outputs of the bidirectional scenario is shown in

Fig 3A.

We also generated a test set incorporating background selection into this scenario of intro-

gression. To accomplish this, we used stdpopsim version 0.2.0 [81, 82] to generate SLiM
scripts simulating negative and background selection using a genetic map [83] and distribu-

tion of fitness effects [84] for mutations in exonic regions, and exon annotations (the

FlyBase_BDGP6.32.51_exons set in stdpopsim, taken from FlyBase [85]) all

obtained from D. melanogaster. We then programmatically modified the SLiM scripts to

include bidirectional introgression under the same scenario examined above, which each

script generating one test replicate of a 1 Mb region with recombination and annotation data

taken from chr3L, before running IntroUNET on the central 100 kb of each test example.

2.2.2 Training a U-Net to detect ghost introgression. We sought to assess the effective-

ness of our approach on the problem of detecting ghost introgression. Specifically, we followed

the scenario of Durvasula et al. [40], where the goal is to detect introgression from an

unsampled population when given data from the recipient population and an un-introgressed

Table 1. Parameters of the simple simulated test case. We begin with a single population of size N which is allowed

to “burn in” for 20N generations so that the populations reach, or at least approach, equilibrium. Then, a split occurs tS
generations ago. Next, after some amount of time of complete isolation, which follows the described uniform distribu-

tion, a pulse migration event occurs with individuals migrating with a probability also drawn from a uniform distribu-

tion. This migration event can occur in either direction or in both directions, and both unidirectional and bidirectional

introgression is examined the Results. Note that in the case of bidirectional migration a separate rate is drawn for both

directions, and the maximum value of this rate is one half that for unidirectional migration. Migration rates specify

backward probabilities (i.e. the expected fraction of the recipient population that migrates from the source population

during the introgression event).

Parameter Value

Simulated chromosome size, L 10 kb

Sub-population size, N 500

Burn-in time (generations) 20N
Split time (generations ago), tS 4N

Time of introgression event (generations ago) U(0, 0.25tS)

Unidirectional introgression probability per individual U(0.1, 0.5)

Bidirectional introgression probability per individual (in each population) U(0.1, 0.25)

Mutation rate 1.0 × 10−5

Recombination rate 1.0 × 10−5

Sample size, population 1, n1 32

Sample size, population 2, n2 32

https://doi.org/10.1371/journal.pgen.1010657.t001
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Fig 3. Example inputs and outputs (both true and inferred) for each of the three problems we used to assess IntroUNET’s effectiveness. (A) A simulated example

of the simple test scenario of a two-population split followed by recent single-pulse introgression event (bidirectional, in this case). The first column shows the

population genetic alignments for this example, with the two panels corresponding to the two input channels (population 1 and population 2). The second shows the

true histories of introgression for this example (again, with white pixels representing introgressed alleles); note that both population 1 and population 2 have introgressed

alleles. The third and fourth columns show IntroUNET’s inference on this simulation, with the former showing the most probable class (i.e. introgression or no

introgression) for each individual at each polymorphism, and the latter showing the inferred probability of introgression (i.e. the raw softmax output for the

introgression class). The color bar for these plots is shown in panel (A), and the scaling is the same for the panels below as well. (B) A simulated example of the archaic

ghost introgression scenario. The four columns are the same as in panel (A), but here we are examining a recipient population and a reference population, with the goal

of identifying introgression only in the former. Thus, our output has only one population/channel. (C) A simulated example of our Drosophila introgression scenario.

The four columns are the same as in (A) and (B), and here we are concerned with identifying introgression from D. simulans to D. sechellia, so again our output has only

one channel (i.e. introgressed alleles in D. sechellia).

https://doi.org/10.1371/journal.pgen.1010657.g003

PLOS GENETICS IntroUNET: identifying introgressed alleles via semantic segmentation

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010657 February 20, 2024 12 / 37

https://doi.org/10.1371/journal.pgen.1010657.g003
https://doi.org/10.1371/journal.pgen.1010657


“reference” population. We used the same neural network architecture described above for

this problem, but note that the two input channels are the recipient and reference populations,

and there is only one output channel, indicating whether or not a given allele in the recipient

population was introgressed from the donor ghost population. Here we train under the intro-

gression scenario from [40], which involves a split of the ghost population, followed by the

split of the reference and the recipient populations, and later followed by introgression from

the ghost population to the recipient population. A diagram of this model is shown in S12 Fig,

and the parameters used to simulate it are shown in Table 2. Simulated alignments were gener-

ated using msmodified, a version of Hudson’s coalescent simulator ms [86] modified by

Durvasula et al. to track introgressed alleles in the presence of unidirectional gene flow. This

was done using the simulation command line from the GitHub repository associated with ref.

[40] (https://github.com/sriramlab/ArchIE/).

We simulated 106 training/validation replicates with 5 percent of the data being randomly

chosen for validation, using a window size of 50 kb and filtering windows that had no intro-

gression. We chose to filter examples with no introgression to slightly upsample the amount of

introgressed alleles as the problem is heavily imbalanced. We used the training set obtained to

estimate the ratio of positive to negative alleles to weight the loss function as we describe in Eq

3. We simulated 1000 replicates separately with a window size of 1 Mb to evaluate both meth-

ods on. For this problem, we used an input size of 2 × 112 × 192, corresponding to 2 popula-

tions (the recipient and the reference populations), 112 individuals in each population, and

192 polymorphisms in each window examined, again with each entry being 0 (the ancestral

allele) or 1 (the derived allele). The original simulation command given by [40] gave 100 indi-

viduals per sub-population, and our images of 112 individuals (the nearest multiple of 16)

were created via up-sampling (i.e. arbitrarily selecting 12 individuals to duplicate in the input

tensor). Our target image is simply the alleles that were introgressed from the archaic popula-

tion into the recipient population represented in the form of a 192 × 112 binary matrix. We

used a batch size of 32 when training the neural network for this problem. An example input

along with true and inferred outputs of this scenario is shown in Fig 3B.

We compared the performance of our method on this task to ArchIE, the logistic model

that Durvasula et al. created to solve this problem [40]. Briefly, ArchIE uses a feature vector

generated for each (haploid) individual in the reference population to predict whether the

individual contains introgressed alleles in a given window. ArchIE then obtains predictions

for individual polymorphisms by using a sliding window and averaging the predictions for the

focal individual across all sliding windows overlapping the focal site. The features used by

Table 2. Parameters of the ghost-introgression demographic model, reproduced from Table. 1 from Durvasula

et al. [40]. Note that our simulations used the command from Durvasula et al.’s GitHub repository (https://github.

com/sriramlab/ArchIE/, which also contains a brief bottleneck experienced by the ghost population).

Parameter Value

Reference population size, N1 10000

Target population size, N2 10000

Archaic population size, Na 10000

Archaic split time (generations ago) 1.2N
Split time (generations ago), tS 0.25N

Time of introgression event (generations ago) 0.2N
Fraction of individuals introgressed 0.02

Mutation rate 1.25 × 10−8

Recombination rate 1.0 × 10−8

https://doi.org/10.1371/journal.pgen.1010657.t002
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ArchIE to make a classification for each focal individual include: the individual frequency

spectrum (IFS), which is a vector showing the number of mutations present on an individual

haplotype that are found at a given derived allele frequency within the recipient sample; a vec-

tor containing the Euclidean distance between the focal individual and each other individual

in the recipient sample, as well as the mean, variance, skewness, and kurtosis of the distribu-

tion of these distances; the minimum distance between the focal individual and all the individ-

uals within the reference sample, the number of singletons found in the focal individual (i.e.

the derived allele is absent from both all other individuals in both samples); finally, the S* sta-

tistic [87] is included in the vector. When training ArchIE using the same training data used

for IntroUNET on this problem, we found that we did not achieve accuracy comparable to

the original publication unless we balanced the training set. We accomplished this by ran-

domly downsampling the number of training vectors in the non-introgressed class until the

total number of vectors in each class was equal (resulting in a total training set size of *2.6

million vectors combined across both classes). Note that no balancing was done when training

IntroUNET.

For the sake of a fair comparison, the evaluation set of 1000 was kept the same between the

two methods. We note that, unlike ArchIE, IntroUNET’s window size and stride are speci-

fied in polymporphisms rather than base-pairs and were chosen to be 192 and 16 polymor-

phisms respectively; when averaging predictions across windows, ArchIE used a window size

of 50 kb and a step size of 10 kb. We also used a Gaussian window to weight predictions close

the edges of the “image” smaller when averaging. This choice was made to mitigate potentially

poor predictions close the edges which is known to be an issue for architectures that employ

2-d convolution due to the necessary padding operation that takes place in this part of the

input tensor.

2.2.3 Application to real data: Finding introgressed regions in D. simulans and D.
sechellia. To assess our method’s practical utility, we applied it do the dataset of 20 D. simu-
lans inbred lines [88] and 14 wild-caught D. sechellia genomes (i.e. 7 phased diploids) previ-

ously examined in [39]. First, we obtained genotypes, phased haplotypes, and trained our

method from simulated data in a manner similar to that described in [39]. Following [89], we

used @a@i to estimate the parameters of a two-population isolation-with-migration demo-

graphic model allowing for exponential population size change following the population split.

This was done after mapping reads, calling variants, and phasing haplotypes (via shapeit2 [90])

in the same manner as described previously [39]. In this instance, we mapped reads to Fly-

Base’s [91] release 2.02 of the D. simulans reference genome [92] using BWA version 0.7.15

[93].

When running @a@i, we used the same optimization procedure as described previously

[39], and once again calculated the SFS only using intergenic polymorphisms located at least 5

kb away from the nearest protein-coding gene. In our previous analysis, we had accounted for

uncertainty in our estimation of demographic parameters by drawing each parameter from an

arbitrarily chosen uniform distribution centered around the parameter point estimate [39].

For this study, we instead ran @a@i in a bootstrapped fashion by selecting with replacement

which of the contiguous intergenic regions at least 5 kb from genes would be included (i.e. the

allele frequencies at polymorphisms in these regions would be included in the joint-SFS for the

bootstrap replicate). This was repeated 100 times, and for each bootstrap replicate, we used the

same optimization procedure as described previously [39] to obtain 10 separate demographic

parameter estimates (each beginning from a different randomly chosen point in parameter

space) for each bootstrap replicate. Only replicates with at least 5 successful optimization runs

were retained. Of the 57 bootstrap replicates that satisfied this criterion, we recorded the
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maximum log-likelihood obtained for each replicate along with corresponding parameter

estimates.

In section 4, we list the demographic parameters and their estimated log-likelihood for each

bootstrap replicate run of @a@i. When examining these results we noticed that a 14 replicates

yielded maximum log-likelihood scores that were substantially lower than those of the remain-

ing replicates (i.e. <−2500 while all other scores were >−1750), and we opted to retain only

those 43 replicates for which this log-likelihood value was greater than −1750. For each of

these parameter sets we generated 5000 simulation replicates of 10 kb regions using

msmodified, resulting in 215,000 replicates total. For these simulations, the mutation and

recombination rates were set to 5 × 10 − 9 per bp. Note that although we did allow @a@i to

infer continuous migration rates, we did not include these in our training/test simulations.

Instead, we used msmodified to cause a pulse-migration event from D. simulans to D.
sechellia to occur in each replicate, at a time drawn uniformly from between 0 and 0.25 × Na

generations ago, where Na is the ancestral population size. The probability that any given indi-

vidual in the D. sechellia population descended from a migrant was drawn uniformly from 0

and 1.0. We again limited the U-Net training and validation set to only those windows which

contained introgressed alleles, which left 188,644 replicates total to be split into training and

validation, using a random five percent of the data for validation. A separately simulated test

set was generated in the same fashion, consisting of 1000 replicates containing introgressed

alleles; this set was used to produce evaluation metrics reported in the Results. Code for gener-

ating simulations from the bootstrap replicates shown in section 4, can be found at https://

github.com/SchriderLab/introNets/blob/main/src/data/simulate_msmodified.py.

Neural networks are often found to be poorly calibrated or biased in their predictions

resulting in overconfidence or underconfidence in the posterior probabilities, even if they

achieve high classification accuracy [94]. Platt scaling simply finds a line of best fit (a slope and

intercept) for the predicted logistic scores given by a pre-trained network and the ground

truth via the unweighted cross entropy function. We observed poor calibration in our test sim-

ulations for this Drosophila model. Thus, After training, we then learned a posterior probabil-

ity correction via Platt scaling [95], which we found to produce better calibrated estimates of

the probability of introgression than the raw output from IntroUNET. The recalibrator was

trained via gradient descent for 25 epochs on the unweighted cross entropy loss calculated on

the validation set. This was accomplished via PyTorch and the code to do so is also included in

the IntroUNET GitHub repository. We note that Platt scaling was used in both on our simu-

lated evaluation set and when applying it to real data below, giving us better confidence in the

posterior probabilities computed in our analysis of predicted introgressed haplotypes in D.
sechellia. An example input along with true and inferred outputs of the Drosophila simulated

scenario is shown in Fig 3C. We did not compute Platt corrections for the other problems

examined in this paper, as we did not examine posterior probabilities for further analysis, and

classification accuracy was adequate without this scaling. We also note that ROC and preci-

sion-recall curves are not expected to be impacted by recalibration.

As described in the Results below, the Drosophila version of our U-Net performed best

when some introgression was present in the input alignment. We therefore focused our analy-

sis on regions that we previously found to contain introgression in the direction of D. simulans
to D. sechellia (data obtained from https://github.com/kr-colab/FILET/blob/master/

simSechResults/intro_regions_sim_to_sech_clustered_flybase2.02.bed), and examined our

results with respect to version 2.02 of the FlyBase annotation [91] for the D. simulans genome.

We note that this iteration of the IntroUNET occasionally produced false positive predictions

where all of the D. sechellia genomes were inferred to be introgressed—we speculate that this is

due to the low degree of diversity within the D. sechellia population resulting in false positive
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introgression calls being repeated across individuals. Thus, to reduce the false positive rate in

our analysis of the real dataset, we ignored sites that were predicted to be introgressed in more

than half of our D. sechellia genomes. At sites that were inferred to have experienced introgres-

sion, we recorded the fraction of D. sechellia individuals inferred to be introgressed an intro-

gressed allele at that site, and used this as our estimate of the frequency of introgressed

haplotypes at that site.

3 Results

In the following section we evaluate the performance of IntroUNET on simulated data on

three different scenarios (see Fig 3 for example inputs/outputs for each). The third of these sce-

narios is the case of introgression between D. simulans and D. sechellia [56] for which we also

have a two-population sample [39] that we then use to demonstrate method’s performance on

real data. We then examine two practical considerations for our method: the effect sorting of

individuals within an alignment, and IntroUNET’s computational cost, respectively.

3.1 IntroUNET accurately identifies introgressed alleles in a simulated

dataset

After designing our IntroUNET as described in the Methods, we sought to assess its effec-

tiveness on simulated data. We began with a simple two-population model with constant pop-

ulation sizes, a split time of 4N generations ago, and introgression events occurring at times

ranging between 0 and N generations ago (see Methods and Table 1 for more detail and Fig

3A for example input and output for this problem). We evaluated IntroUNET’s accuracy

under three scenarios: introgression from population 1 to population 2, from population 2 to

1, and bidirectional introgression between both populations. We find that accuracy is very

high in both unidirectional cases (e.g. area under ROC curve, or AUC, *0.99, and area under

precision-recall curve, or AUPR, *0.98; with ROC curves, precision-recall curves, and confu-

sion matrices shown in Fig 4A and 4B). The examination of the two unidirectional cases is a

useful sanity check, as the two populations experience identical demographic histories and

thus performance should be similar in both cases, which is indeed the case. Accuracy is slightly

reduced in the bidirectional case (AUC *0.98 and AUPR*0.93; Fig 4C), which may be

expected as this is a more difficult problem because individuals in either population may trace

their ancestry to the other, perhaps making inter-population comparisons for the UNET more

difficult. In S3 Fig, we see several randomly chosen input alignments, along with the true and

predicted introgressed haplotypes. These results illustrate IntroUNET’s ability to recover

introgressed haplotypes with high accuracy in this simulated scenario.

Next, we examined the impact of sample size, the number of training examples, and the size

of the input alignment (i.e. the number of polymorphisms), on IntroUNET’s performance.

In S4 Fig, we show the trajectories of our loss function, calculated on both the training and val-

idation sets, over the course of training. We observe only a modest decrease in loss calculated

on the validation set when the sample size per population is increased from 32 to 64, and fur-

ther increasing to 128 yields no improvements. As we increase both the number of training

examples (1 × 103, 1 × 104, 1 × 105) and the length of the alignment (64, 128, and 256 polymor-

phisms), validation loss decreases continually albeit with diminishing returns. We observed

that as we increase the size of each of these properties of the input/training set, the training

time increases approximately linearly. GPU memory requirements also increase as the input

dimensions grow. We therefore used an image size of 64 individuals per population and 128

polymorphisms, as this seems to represent an acceptable balance between accuracy and

computational efficiency.
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Fig 4. Accuracy of IntroUNET on the simple introgression scenario. (A) Confusion matrix, precision-recall curve, and ROC curve showing IntroUNET’s

accuracy when trained to detect introgression in the direction of population 1 to population 2 and tested on data with introgression in this same direction. (B)

Same as (A), but for a network trained and tested in data with introgression from population 2 to population 1. (C) Same as (A) and (B), but for bidirectional

introgression. Note that all of these metrics evaluate IntroUNET’s ability to accurately identify individual alleles (i.e. a prediction is made for each pixel in each

input image in the test set, and the accuracy of this prediction is evaluated).

https://doi.org/10.1371/journal.pgen.1010657.g004
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3.2 IntroUNET performs well under scenarios of model misspecification

Like all model-based methods for population genetic inference, with IntroUNET there are

concerns that the user-specified model may differ enough from the true evolutionary history

of the data so that performance may be significantly impacted. We therefore examined the

impact of several types of model misspecification on IntroUNET’s accuracy: misspecification

of the population split time and the introgression times/direction, the presence of direct selec-

tion for or against introgressed haplotypes, and the presence of unmodeled background

selection.

Given that there may be uncertainty surrounding the population split time and also the

time at which secondary contact resulting in introgression may have begun, we asked how

IntroUNET’s performance was affected if these parameters were incorrectly specified during

training. We generated a grid of simulated datasets for all combinations of 5 values each of the

migration time upper bound and split time parameters. Specifically, the split time was set to

2N, 3N, 4N, 5N, or 6N generations ago, and the migration time upper bound, expressed as a

fraction of the split time, was set to 0.1, 0.2, 0.3, 0.4, or 0.5. This yielded a total of 25 parameter

combinations, and a training and test set was generated for each. A version of IntroUNET
was then trained on each of these training sets, and each trained network was then tested on all

25 test sets. As shown in S5 Fig, accuracy was acceptable in most cases of misspecification, and

misspecification of the split time had only a modest impact on performance. Interestingly,

accuracy suffered the most when the network was trained on a wide range of introgression

times but only recent introgression had occurred. On the other hand, when trained only on

more recent migration times, accuracy on data with a wider range of migration times

remained high in most cases. This may imply that training on the lower end of one’s confi-

dence window of the migration times could be a reasonable strategy, but repeating this analysis

on a wider range of demographic models may be required to confirm the effectiveness of this

approach. Another form of misspecification with respect to introgression parameters is the

direction if gene flow. For example, there may be cases where introgression is unidirectional

but the user has applied a bidirectional version of IntroUNET. In S6 Fig, we show that the

impact of this form of misspecification on accuracy is minimal (accuracy decreases from

*96% when the correct unidirectional network is used to *95% when the bidirectional net-

work is used).

Next, we asked whether direct selection on introgressed segments had a substantial impact

on IntroUNET’s accuracy. We did this by generating a new test set in the same manner as

described for the bidirectional scenario evaluated in Fig 4, but this time giving selection coeffi-

cients to introgressed nucleotides. In S7 Fig, we show the impact of direct positive and negative

selection on IntroUNET’s accuracy. When introgressed segments are deleterious, as might

be expected, we do not observe any decrease in accuracy. When introgressed segments are pos-

itively selected, accuracy is very similar to the neutral case when the selection coefficient per

introgressed nucleotide is 1 × 10−6 (92.9% accuracy versus 93.0% accuracy in Fig 4C), or

approximately 0.00995 for a 10 kb introgressed segment (using multiplicative fitness effects as

done by default in SLiM). When the selection coefficient is increased to 1 × 10−5 (or *0.095

for a 10 kb segment), accuracy decreases significantly, and a manual examination of simulated

examples revealed that this was because introgression became so pervasive in this scenario that

in many regions the majority of a population’s sample was introgressed. In such cases the net-

work would often invert the classifications, distinguishing between introgressed and non-

introgressed pixels but swapping their labels (S8 Fig), because there is not basis to distinguish

between the two populations in this scenario. Thus, we expect that IntroUNET will perform
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reasonably well when introgressed alleles are subject to selection, but the introgression is not

so rampant that populations cannot be distinguished from one another.

We also investigated the impact of background selection (BGS), the impact of linked nega-

tive selection on neutral diversity [96], on IntroUNET’s accuracy. To do this, we used

stdpopsim [81, 82] incorporate background selection (modeled after randomly chosen

regions of the D. melanogaster genome) into our simulations of the same introgression sce-

nario described above (see Methods for details). We generated a test set of 1000 regions each 1

Mb in length and ran IntroUNET on the central 100 kb of each region. As shown in S9 Fig,

the presence of unmodeled BGS did increase IntroUNET’s false negative rate substantially,

but the false positive rate decreased slightly S9 Fig. We note that in practice, demographic

inferences will be biased by BGS in such a way that will cause them to reproduce some of the

impacts of BGS on diversity (e.g. an underestimation of Ne to recapitulate the reduction in

diversity caused by BGS; see Figure 1 from [97]). This is especially so in species with genomes

dense with functional elements like Drosophila, where roughly half of intergenic DNA is sub-

ject to direct purifying selection and thus the impact of BGS is most likely pervasive. Thus, the

scenario examined here where BGS had no impact on the training data but was present in the

test data is probably more pessimistic than would be the case in practice. Furthermore, there

does not appear to be a strong impact of recombination rate on accuracy S10 Fig. This was the

case for both the average recombination rate in central 100 kb of the simulated region, or

across the simulated region as a whole. Thus, it appears that neither BGS nor recombination

rate variation will cause IntroUNET to produce an excess of false positives, although the for-

mer may cause IntroUNET to underestimate the extent of introgression.

3.3 IntroUNET can handle unphased data with minimal loss of accuracy

By default, IntroUNET requires phased haplotypes as input. This may be an onerous require-

ment for systems in which phased haplotypes cannot be easily obtained or inferred. However,

we have previously shown that deep learning algorithms can make accurate inferences from

population genetic alignments without phased data for other problems [47, 98]. Most notably,

Flagel et al. were able to infer recombination rates not only without phased haplotypes, but

even without genotypes for simulated autotetraploid populations, with almost no loss in accu-

racy [47]. We therefore trained a modified version of IntroUNET that takes diploid geno-

types as input, using the same training data as for the bidirectional introgression scenario

examined above but with pairs of haploid genomes from the same population combined to

form diploid individuals, and with genotypes represented by 0 (homozygous for the ancestral

allele), 1 (heterozygous), or 2 (homozygous derived). In S11 Fig, we show that this unphased

version of IntroUNET experiences only a very minimal drop in accuracy compared to the

phased version applied to this same task: the area under the ROC curve drops from 0.979 to

0.974, the area under the precision-recall increases slightly from 0.929 to 0.945, and balanced

accuracy drops from 0.930 to 0.920.

3.4 Reference-free inference of archaic local ancestry

Having demonstrated the efficacy of the IntroUNET on a simple scenario of introgression

between two sampled populations, we next sought to investigate its performance and versatil-

ity by addressing a more challenging problem: detecting introgression from an unsampled, or

“ghost”, population. A recent paper from Durvasula et al. presented a novel method for identi-

fying regions of a genome that are introgressed from an archaic ghost population using two

population genomic samples: a sample from a population that received genetic material via

introgression from the ghost population, and a reference sample from a population not
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thought to have experienced significant introgression from the ghost population [40]. Follow-

ing Durvasula et al., we refer to this as a reference-free scenario because there is no reference

panel from the donor population (although there is a non-introgressed “reference” popula-

tion). Such an approach can be used to identify alleles in the human genome that trace their

ancestry to archaic human species such as Neanderthals or Denisovans. Again, we trained and

tested our method using simulations, this time generated under Durvasula et al.’s model which

was motivated by the task of identifying Archaic introgression from Neanderthals to modern

humans [40] as described in the Methods. The two main differences between this network and

that described in the previous section is that the two channels of our network’s input corre-

spond to the recipient and reference populations, respectively, and the output has only a single

channel denoting whether a given allele was introgressed from the ghost population to the

recipient or not (see Fig 3B for example input and output). For this problem, we also compared

IntroUNET’s performance to that of ArchIE, the logistic model created by Durvasula

which uses a vector of statistics to infer whether a given individual contains introgressed alleles

from the ghost population. Note that by averaging predictions across sliding windows,

ArchIE can be used to obtain segmentations similar to those produced by IntroUNET (see

Methods and [40]).

We find that IntroUNET and ArchIE perform similarly on this problem. The metrics

reported in Fig 5 suggest that IntroUNET has slightly better accuracy than ArchIE on this

task, and this is supported by an examination of the ROC and precision-recall curves also

shown in Fig 5. However, we note that the confusion matrices shown in Fig 5 reveal a higher

false positive rate for IntroUNET than ArchIE, with a higher false-negative rate for

ArchIE. Given that in cases of rare introgression, false positive rates will be of greater con-

cern, this result suggests that a more stringent classification threshold may be necessary in this

scenario—an option that users can easily adjust from the IntroUNET command line. Finally,

we note that IntroUNET achieved accuracy metrics substantially lower than for the scenario

tested in the previous section, where data from both the recipient and donor populations are

available, underscoring that this archaic ghost introgression scenario is a more difficult task.

Nonetheless, IntroUNET’s relative effectiveness on this problem demonstrates that

IntroUNET is a versatile framework for detecting introgression, as it can readily be adapted

to very different scenarios without the need to adopt a different set of specialized statistics for

the task at hand. Example segmentations produced by IntroUNET and ArchIE are shown

in S13 Fig.

3.5 IntroUNET accurately detects introgressed haplotypes between D.
simulans and D. sechellia
We had previously developed a machine learning method, called FILET, for detecting intro-

gressed loci and applied it do data from D. simulans and D. sechellia, training it on a demo-

graphic model that we estimated from these two species [39]. While this effort revealed

genomic regions that were introgressed, predominantly in the direction of D. simulans to D.
sechellia, FILET can only predict whether a given window is introgressed, and cannot reveal

the boundaries of introgressed haplotypes and the individuals having them. Thus, we sought

to revisit this dataset as both a real-world proof-of-concept for our new method, and also to

characterize patterns of introgression between these two species in greater detail.

Because the joint demographic history of these two species of Drosophila is considerably

more complex than those of the test cases considered above, we first sought to evaluate

IntroUNET’s performance on data simulated under a demographic model estimated from

these data. As we had previously [39], we modeled the demographic history of D. simulans and
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Fig 5. Accuracy of IntroUNET and ArchIE on the archaic ghost introgression scenario. (A-B) Confusion matrices, (C) precision-recall curves,

(D) and ROC curves showing IntroUNET’s and ArchIE’s [40] accuracy when trained to detect introgression from a ghost population to a recipient

population when given population genetic data from the recipient population and a closely related reference population.

https://doi.org/10.1371/journal.pgen.1010657.g005
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D. sechellia using a two-population isolation-with-migration model, allowing for exponential

population size change in the two daughter populations, but having a constant ancestral popu-

lation. To account for uncertainty in the estimated parameters of this model, we ran 100 boot-

strap replicates using @a@i as described in the Methods, filtered replicates with low likelihoods,

and simulated an equal number of examples under each of the remaining 43 inferred demo-

graphic models. As before, we omitted continuous migration from these simulations, only

including single pulse migration events in simulated examples with introgression in order to

control the timing of migration and track introgressed alleles (following [39]). Because we pre-

viously found that gene flow between these two species was primarily in the direction of D.
simulans to D. sechellia, we modified our IntroUNET to detect introgression in this direction

only (i.e. each allele in each chromosome was classified either as not introgressed, or intro-

gressed in the direction of D. simulans to D. sechellia). We then used these simulations to train

and evaluate IntroUNET as described in the Methods (see Fig 3C for example input and

output).

We found that the IntroUNET was able to identify introgressed alleles in this simulated

scenario, although the accuracy was not quite as high as observed for our simple test case

described above (*90% in Fig 6 versus *95% for the unidirectional cases in the simple sce-

nario in Fig 4). We did observe that segmentations tended to be quite accurate within simu-

lated regions that had experienced introgression (see S14 Fig for examples), but a substantial

number of false positives were produced in simulated regions that had no introgression. We

therefore limited our analysis to regions of the genome that we previously showed to be

affected by introgression (see Methods and [39]). We also note that accuracy improved from

89.6% to 91.4% after recalibrating IntroUNET’s probability estimates using Platt scaling [95];

an examination of the calibration curve (S15A Fig) and the confusion matrices before and

after recalibration (Fig 6A and 6B) reveal that the uncalibrated version of IntroUNET was

overestimating the probability of introgression, and that recalibration corrected this (S15B

Fig). We therefore used the recalibrated version of IntroUNET in our analysis below.

We reexamined the 246 10 kb windows that we previously found to be introgressed from D.
simulans to D. sechellia, using IntroUNET to identify introgressed haplotypes in these

regions. These windows contained an average of 2086.5 SNPs, of which 705.3 (33.4%) on aver-

age were inferred to be in at least one introgressed block (Methods); we refer to these as

introSNPs. At these introSNPs, an average of 3.3 D. sechellia samples were inferred to have an

introgressed haplotype (Methods). We next asked whether the frequencies of introgressed hap-

lotypes differed between genic and intergenic regions of the genome. We found that intro-

gressed haplotypes were typically found at lower frequency in genic than intergenic regions

(3.2 vs. 3.7 genomes inferred to be introgressed at the average introSNP in genic and intergenic

regions, respectively), consistent with the action of purifying selection against introgressed

alleles. The estimated distributions of the frequency of introgressed haplotypes in genic and

intergenic regions are shown in Fig 7a.

Although the above results are consistent with the notion that introgression is often delete-

rious, a region on the right arm of chromosome 3 (chr3R:4539900–4769900) was previously

shown to have an especially large block of introgressed alleles [39] with at least one of these

introgressed alleles experiencing strong positive selection within the D. sechellia population

[99]. If this were the case, we would expect introgressed alleles in this region to be at especially

high frequency, as neutral or even slightly deleterious introgressed alleles would have hitch-

hiked to higher frequency along with the sweeping allele(s). We find that this is indeed the

case, with the average introgressed haplotype found in 3.7 individuals within this region, ver-

sus an average of 3.2 outside of this region (Fig 7b). More strikingly, we observe a marked

increase in the fraction of intermediate-frequency introgressed alleles in the region
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Fig 6. Accuracy of IntroUNET on the Drosophila introgression scenario. (A) Confusion matrix for the uncalibrated IntroUNET when applied to test

data simulated under the Drosophila scenario as specified in the Methods. (B) Confusion matrix for the reclibrated IntroUNET. (C) and (D) show the

Precision-recall and ROC curves for the Drosophila IntroUNET; note that these curves are not affected by recalibration.

https://doi.org/10.1371/journal.pgen.1010657.g006
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surrounding the sweep, a finding that is broadly consistent with theoretical predictions of allele

frequencies located at moderate recombination distances away from the sweep (see Figure A3

from [100]). In S16 Fig, we show IntroUNET’s predictions for three example windows near

the sweep, but far enough away to contain appreciable amounts of diversity, as well as three

randomly selected introgressed windows that appear to lie outside of the region affected by

adaptive introgression. Finally, we observed a dramatic decrease in IntroUNET’s predicted

lengths of introgressed haplotypes at increasing distances away from the center of the sweep

region (an *12-fold reduction in mean haplotype length between the regions nearest to and

furthest from the sweep shown in S17 Fig), as would be expected around the site of an adaptive

introgression event [101]. The fact that IntroUNET infers the presence of long, high-fre-

quency introgressed blocks within a region affected by adaptive introgression, but shorter and

lower frequency of introgressed alleles in coding regions elsewhere in the genome, is consistent

with biological expectations and implies that IntroUNET is able to make accurate inferences

on real as well as simulated data.

3.6 Sorting via seriation improves IntroUNET’s accuracy

As described in the Methods, IntroUNET preprocesses its input by first ordering the individ-

uals of one population and then matching individuals in the second population to those in the

first, and the choice of algorithms used for these steps (or whether to perform them at all) will

therefore influence IntroUNET’s output. To gain some insight into what effect the decision

to sort rows of the input alignment and the choice of sorting metric (i.e. the measure of dis-

tance between two sequences) might have on the ability of an FNN to detect introgressed hap-

lotypes, we trained our architecture on the simulated Drosophila and archaic ghost-

introgression datasets both without sorting and after seriating with various choices of metric.

For the set of metrics, we used many common distance metrics used to calculate distances

between vectors: L1 or city-block distance, Pearson’s correlation coefficient, the cosine dis-

tance, the Dice coefficient, or Euclidean distance, standardized Euclidean distance, and the

Russel-Rao metric. In figure S18 Fig we show the training and validation loss obtained when

Fig 7. The distributions of predicted frequencies of introgressed haplotypes in A) genic (red) and intergenic (blue) regions across the genome and B) the sweep

region on chr3R (blue) and other regions of the genome (red).

https://doi.org/10.1371/journal.pgen.1010657.g007
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training repeatedly on the same dataset but using different distant metrics or without seriating

at all. We find that sorting and the choice of distance metric have a sizeable effect on the ability

of our neural network’s final accuracy as measured by validation loss. In particular, the Dice

coefficient metric performed the best, with cosine, city block, and Euclidean distances also per-

forming well. Using standardized Euclidean distance or omitting the sorting step entirely both

produced notably worse performance than sorting with the other metrics. These results under-

score the importance of sorting data and choosing an appropriate distance metric (e.g. the

Dice coefficient) when using IntroUNET.

We did not investigate whether the choice of which population is first sorted and which

population is linear-sum-assigned to the former, or whether the choice of distance metric used

in the linear-sum-assignment step has any effect on the efficacy of our architecture for the

problems discussed here. For each problem, we chose the population that seemed to have the

most diversity to be seriated and linear-sum-assigned the other to it.

3.7 Computational cost and implementation

Here we examine the computational cost of training and applying IntroUNET. While the

simulation of synthetic alignments comes at low cost, both the training algorithm and the

application of seriation to the individuals of one or more populations are more costly. We

address these in turn below.

First, we compared the training times for IntroUNET and ArchIE. We trained ArchIE
via the R code provided by [40] on a AMD EPYC 7413 CPU clocked at 3 GHz and

IntroUNET method via an NVIDIA RTX 3090 GPU. ArchIE took roughly 7 minutes to

train but large amounts of CPU RAM (>32 Gb) as the method requires the entire dataset be

made available to R. Our method took *9.65 hours to train on this problem until

convergence.

Next, we examined the computational speed of seriation, and compared this to the feature

vector calculations required by ArchIE. Although the seriation problem is NP-hard, compu-

tationally tractable algorithms for approximately solving this problem do exist, and it is this

approach that we take here (Methods). We found that for both the Drosophila scenario

(n = 32) and the archaic introgression scenario given by [40] (n = 112) it took an average of

1.002 seconds to seriate one of the populations in a 128-segregating site alignment. This was

calculated over 100 simulation replicates on an Intel Core i9–9900K CPU @ 3.60GHz. For

comparison, it took an average of 0.08976 and 0.01701 seconds to simulate one replicate under

the Drosophila and archaic introgression models [40] respectively, although other scenarios

and simulators may require more computation. It is worth noting that the difference in sample

sizes in the two examples we benchmarked (112 vs 32) did not increase average computation

time (within one millisecond). We also note that the seriation routine that we used greatly out-

paced the average computation time for calculating the features used by ArchIE for detecting

introgression [40]—the latter took an average of 5.715 seconds to compute for each window

simulated, although we took these functions directly from the repository provided and did not

attempt to optimize them. Thus, although IntroUNET formats its input much faster than

ArchIE, we note that for both of these methods this step can be accelerated dramatically by

formatting subsets of the training set in parallel on a high-performance computing cluster, and

that the routines we package with the repository to do so use MPI to accomplish this.

In order to seriate an alignment, one must define a distance metric and compute the pair-

wise distance matrix for all pairs of sequences in the population sample to be sorted. If we have

n elements, each a p-dimensional vector then we have a complexity of n(n − 1)/2 multiplied by

the complexity of computing the distance metric itself, which for many common metrics is
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simply a linear function of p. For instance, the computational complexity of calculating the

Euclidean distance matrix is simply
3pnðn� 1Þ

2
. As described in the Methods, we used the Kuhn-

Munkres algorithm to perform linear matching between the two population samples in each

input. Although this algorithm has a complexity of Oðn4Þ, it takes on the order of a millisecond

to terminate for the relatively small sample sizes considered in this paper when benchmarked

on the same CPU mentioned above.

In short, although our method requires more training time than ArchIE, the computa-

tional cost is reasonable: when the simulation, formatting, and training steps are considered

together, the entire training process can be completed on a compute cluster within one day,

provided GPU resources are available. A tabular summary of the running times of the machine

learning methods examined here is found in section 4.

4 Discussion

It has been noted that at least 10% of species experience hybridization, creating the potential

for introgression [102]. Thus, in some species a sizeable fraction of the genome may be affected

by cross-species introgression, and a number of methods have therefore been developed to

detect introgressed loci (e.g. [14, 24, 39]). We have created a tool, called IntroUNET, that

adapts a powerful deep learning method for semantic segmentation to the task of detecting

alleles that have introgressed from one population to another by examining patterns of varia-

tion within an alignment consisting of samples from two populations undergoing recent gene

flow with one another. We showed that IntroUNET can accurately recover introgressed hap-

lotypes, and which individuals harbor them, in simulated data. With minimal adjustment, our

method can be adapted to detect archaic “ghost” introgression by examining a two-population

alignment consisting of the recipient population, and a “reference” population experiencing

comparatively little to no gene flow. On this task, IntroUNET performs at least as well as

ArchIE, a machine learning method that uses a set of features engineered for this specific

task. This relatively straightforward modification to successfully attack a different introgres-

sion-detection task demonstrates the flexibility of IntroUNET, and deep learning approaches

in general [47]. We additionally note that in some scenarios a non-introgressed “reference”

population may not be not be available, and other methods that do not require this reference

would be required in such cases [39, 87, 103]. Future work could examine whether the

IntroUNET framework could be successfully applied to this scenario.

Importantly, we showed that IntroUNET is relatively robust to several forms of model

misspecification: erroneous population split times and migration times (S5 Fig), violations of

our model’s assumptions of neutrality of introgressed haplotypes (S7 Fig), and the presence of

unmodeled background selection and recombination rate variation (S9 and S10 Figs). The

first of these analyses is also relevant to another type of misspecification that could potentially

impact our analysis of the Drosophila dataset: for this analysis we estimated continuous migra-

tion parameters between D. simulans and D. sechellia, but we trained IntroUNET using a

modified version ms that can only track introgressed alleles resulting from pulse migration

events. Because introgression in these data appears to be relatively rare, affecting only a minor-

ity of the genome [39, 56], those loci that are affected typically will only have experienced a sin-

gle introgression event—note that the example regions in S16 Fig are consistent with this.

Because IntroUNET is trained on simulations that experience only a single introgression

time within a given region, but the migration time varies across regions, this form of misspeci-

fication is a problem only inasmuch as it may result in migration times differing between the

true and simulated data. Thankfully, our results in S5 Fig suggest that IntroUNET will typi-

cally perform quite well in the presence of such misspecification. In addition, we note that
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IntroUNET can be used on unphased data and experiences only a small decrease in perfor-

mance relative to the phased case (S11 Fig). This property, combined with its robustness to

misspecification, make it a versatile tool that can be applied to model and non-model systems

alike.

We were also able to apply IntroUNET to a Drosophila dataset that we examined previ-

ously [39]. This dataset consists of D. simulans samples from mainland Africa, and D. sechellia
samples from the Seychelles, an island nation where D. simulans is also present and where

hybridization between the two species is known to occur [104]. It had previously been shown

that there was substantial introgression between these species [56], and we had found that this

gene flow was predominantly in the direction of D. simulans to D. sechellia [39]. Detecting

introgression is somewhat more challenging in this data set than in the simple two-population

scenario that we examined initially, most likely because of the relatively recent split time

between these two species [39], resulting in much-reduced levels of diversity in this species.

Nonetheless, IntroUNET performed quite well on data simulated under this demographic

scenario, and when applied to the real dataset it also revealed two key patterns that were con-

sistent with expectations, underscoring IntroUNET’s practical utility. First, we observed

lower frequencies of introgressed material in genic versus intergenic regions, consistent with

the notion that introgression is often deleterious [6]. Second, IntroUNET predicted much

higher frequencies of introgressed alleles within a region of the 3R arm that was previously

shown to be affected by adaptive introgression [99], as expected under a scenario where the

hitchhiking effect will cause neutral introgressed alleles that are linked to the selected allele to

hitchhike to higher frequencies [100, 105]. This suggests that IntroUNET correctly identifies

introgressed haplotypes even if one of the core assumptions of our training process—selective

neutrality—is violated.

Although IntroUNET performed well on our Drosophila dataset overall, our analysis did

reveal two limitations that future advances may be able to address. First, given that detecting

introgression in the direction of D. simulans to D. sechellia is especially challenging (see [39]),

we found that it was necessary to limit our analysis to regions that showed strong evidence of

introgression. This is because, on our simulated test data for this scenario, IntroUNET infers

some individuals/alleles as introgressed even in windows where no introgression is present.

However, in regions where introgressed alleles are present, IntroUNET was often able to

detect them accurately (S14 Fig). To improve the usability of our method, we have therefore

included in the IntroUNET package a neural network for classifying genomic windows as

having experienced introgression or not (Methods), in the same vein as the approach taken by

Flagel et al. (see Figure 4 from [47]). As shown in S19 Fig, this classifier, when trained to detect

genomic windows that have experienced introgression between D. simulans and D. sechellia, is

highly accurate. We recommend that users test the performance of IntroUNET on simulated

data prior to analyzing real data, and if they observe unsatisfactory performance in non-intro-

gressed regions in simulated test data, running our window-based classifier as a first step may

allow users to proceed with accurate segmentation on regions that appear to have experienced

introgression, as we were able to do for our Drosophila dataset.

Second, we also observed that, on data simulated under our Drosophila demographic model

but experiencing no selection, IntroUNET occasionally produced blocks of sites where

nearly every individual was predicted (incorrectly) to have introgressed alleles. This may be a

consequence of the low level of diversity in the D. sechellia population—when all individuals

are nearly identical we might expect false positive predictions to be propagated across the

entire alignment. Given that we were primarily concerned with regions where only a subset of

genomes had introgressed alleles, as manual examination of introgressed loci from Schrider

et al. [39] had revealed that introgressed haplotypes typically appeared to be present at lower
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frequencies, this issue was addressed by simply filtering out all sites where the introgressed

allele was predicted to be present in at least half of our D. sechellia sample. Another observation

we made during our analysis of the Drosophila introgression scenario is that IntroUNET’s

raw sigmoid outputs do not give well-calibrated estimates of the probability of introgression.

We were able to resolve this via Platt recalibration, which produced far better calibrated proba-

bility estimates (S15 Fig). We therefore recommend this recalibration step for any analyses

that hinge on the accuracy of the introgression probability estimates produced by

IntroUNET, and we have incorporated this functionality into the IntroUNET software.

We demonstrated that a semantic segmentation framework can be successfully adapted to

solve population genetic problems. Our method, IntroUNET, uses a variant of the U-net

architecture [69], called Unet++ [68], to accurately identify introgressed alleles under a user-

specified demographic history (specified during the simulation of training data) and sampling

scheme. In addition to its impressive accuracy and flexibility, IntroUNET is computationally

efficient, requiring on the order of a day or less for the entire training process when a high-per-

formance computing cluster is available (to accelerate data simulation and sorting), with very

rapid downstream prediction as well. Indeed, IntroUNET can feasibly be trained and run on

a single consumer grade computer. However, we note that if experimentation is needed to

identify the optimal neural network architecture and hyperparameters, then a cluster with

multiple GPU compute nodes may be needed to make the task time-feasible. We also note that

our method uses a heuristic to deal with the fact that the ordering of individuals in a popula-

tion genomic alignment is generally not meaningful, and there are therefore many possible

image representations of a single alignment: sorting via seriation. Although this approach is

relatively fast and improves classification accuracy, it is not guaranteed to produce the optimal

ordering of individuals for the detection of introgressed haplotypes. Future work may obviate

the need for sorting altogether by using more efficient methods that may not require sorting,

such as permutation invariant neural networks [45], or Graph Neural Networks (reviewed in

[106]) based on inferred tree sequences [107, 108].

Supporting information

S1 Fig. A diagram of the chosen residual block structure shown with the dimensions for

the first convolution for an initial size of two-populations by 64 individuals by 128 poly-

morphisms.

(PDF)

S2 Fig. Loss function value trajectories calculated on training and validation data for ver-

sions of IntroUNET with different values of the label smoothing strength parameter

alpha. All tests were calculated on simulated examples of the simple bidirectional scenario

described in the Methods. Note that for alpha = 0.1 training loss is higher than validation loss.

This is because label smoothing is only applied during training, and smoothing increases loss

by adding noise to the target y values.

(PDF)

S3 Fig. Five randomly chosen example segmentations on simulations from our simple bidi-

rectional introgression scenario. Each example shows the input alignments for the two popu-

lations (labeled “pop 1” and “pop 2” respectively), the true introgressed alleles for these two

populations (labeled “pop 1 (y)” and “pop 2 (y)” respectively), the introgressed alleles inferred

by IntroUNET (“pop 1 (pred)” and “pop 2 (pred)”), and IntroUNET’s inferred introgres-

sion probabilities (labelled “prob”, and scaled according to the color bar shown with the third

example). Alignments and introgressed histories, true and predicted, are shown in the same
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format as in Fig 1.

(PDF)

S4 Fig. Loss function value trajectories calculated on training and validation data for ver-

sions of IntroUNET with increasing sample sizes (32, 64, and 128 individuals per subpop-

ulation), training set sizes (1000, 10000, and 100000 alignments), and window sizes (64,

128, and 256 polymorphisms). All tests were calculated on simulated examples of the simple

bidirectional scenario described in the Methods.

(PDF)

S5 Fig. IntroUNET’s accuracy when the split and migration times may be misspecified.

IntroUNET was trained on 25 different combinations of the population split time and the

upper bound of the range of possible introgression times (with the lower bound always set to

zero). These simulations were performed in the same manner as described for the simple bidi-

rectional model in the Methods, with the exception of these two parameters. Each heatmap in

this grid shows the accuracy of one version of IntroUNET on each of the 25 test sets, and the

parameter combination used to train that network is marked by a circle. For example, if the

true split time is 2N generations ago and the true split time is 0.1 times the split time, one can

observe the impact of misspecification on accuracy by comparing the top-left value in the top-

left heatmap (i.e. no misspecification in this case) to the top-left value of all other heatmaps in

the figure, which experience varying degrees of misspecification.

(PDF)

S6 Fig. Performance of IntroUNET on the task of identifying introgression on a dataset

where introgression is occurring in only one direction, but IntroUNET was trained to

detect bidirectional introgression. The test data here were the same as those examined in Fig

4A, but the network used to perform inference was the same as that used for Fig 4C.

(PDF)

S7 Fig. The impact of direct selection on IntroUNET’s performance. The left column

shows confusion matrices obtained when using the same trained network used for the simple

bidirectional introgression scenario whose parameters are laid out in Table 1, and applied to

data simulated under the same model but with introgressed nucleotides experiencing negative

selection. The column on the right shows results when testing the same IntroUNET model

on data where introgressed segments are positively selected. The values of s represent the selec-

tion coefficient per introgressed nucleotide. Note that the shading represents the number of

examples in each entry of the confusion matrix rather than the fraction of examples.

(PDF)

S8 Fig. Five randomly chosen example segmentations on simulations from our simple bidi-

rectional introgression scenario with relatively strong positive selection acting on each

introgressed nucleotide (s = 1 × 10−5, or *0.095 for a 10 kb introgressed segment). Each

example shows the input alignments for the two populations (labeled “pop 1” and “pop 2”

respectively), the true introgressed alleles for these two populations (labeled “pop 1 (y)” and

“pop 2 (y)” respectively), the introgressed alleles inferred by IntroUNET (“pop 1 (pred)” and

“pop 2 (pred)”), and IntroUNET’s inferred introgression probabilities (labelled “prob”).

Alignments and introgressed histories, true and predicted, are shown in the same format as in

Fig 1.

(PDF)

S9 Fig. The impact of background selection (BGS) on IntroUNET’s performance. The

confusion matrix shows IntroUNET’s classification performance when applying the same
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trained network used for the simple bidirectional introgression scenario whose parameters are

laid out in Table 1 to data simulated under the the D. melanogaster BGS model specified in the

Methods. Note that the shading represents the number of examples in each entry of the confu-

sion matrix rather than the fraction of examples.

(PDF)

S10 Fig. The impact of recombination rate on IntroUNET’s accuracy under the D. mela-
nogaster background selection model. The left panel shows each simulation’s accuracy, aver-

aged across classified pixels from the central 100 kb of the simulated chromosome, as a

function of the average recombination rate in that same window. The right panel shows each

simulation’s accuracy, averaged across classified pixels from the central 100 kb of the simulated

chromosome, as a function of the recombination rate averaged across the entire simulated 1

Mb chromosome.

(PDF)

S11 Fig. Performance of IntroUNET on the task of identifying bidirectional introgression

using unphased genotype data. The test data here were the same as those examined in Fig 4

(C), but here rather than predicted which haplotypes are introgressed, IntroUNET, when

given a matrix of diploid genotypes, infers which diploid individuals have at least one intro-

gressed allele at a given polymorphic site.

(PDF)

S12 Fig. Diagram of the ghost introgression demographic model from [40], in which an

unsampled archaic population splits off from the main population, before a pulse intro-

gression event introduces alleles from this population into a sampled “Target” population,

not an unsampled “Reference” population.

(PDF)

S13 Fig. Ten example segmentations on simulations from our archaic introgression sce-

nario: 5 from IntroUNET (left) and 5 from ArchIE (right). For each example we show

the true and inferred introgressed alleles in the recipient population. For each method, both

examples with and without introgression are shown.

(PDF)

S14 Fig. Five example segmentations on simulations from our Drosophila introgression

scenario. Each example shows the input alignments for the two populations, the true and

inferred introgressed alleles for the D. sechellia population, and IntroUNET’s inferred intro-

gression probabilities. Alignments and introgressed histories, true and predicted, are shown in

the same format as in Fig 1.

(PDF)

S15 Fig. Calibration curves showing the impact of Platt scaling on the accuracy of the

introgression probability estimates produced by IntroUNET, calculated on the validation

set from the Drosophila simulations (Methods). A) The fraction of alleles falling within a

given bin of IntroUNET’s predicted probability of introgression that were in fact truly intro-

gressed, prior to Platt recalibration. B) Same as (A), after recalibration.

(PDF)

S16 Fig. Alignments and segmentations from six windows on chr3R in the vicinity of the

locus of adaptive introgression (AI). Three of the windows (left) are from outside of the

region affected by AI, and the other three (right) are within the AI locus. Each example shows

the input alignments for the two populations (labeled “X (dsim)” and “X (dsech)”,
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respectively), IntroUNET’s inferred introgression probabilities (“ŷ (probs)”), and the most

probable class for each allele in each individual (“ŷ (class)”). Inferred introgressed histories

and introgression probabilities are shown in the same format as in Fig 1. Alignments are

shown in the same format as for previous figures, with the exception that for D. sechellia which

has a different color scheme in haplotypes that were inferred to be introgressed in order to

highlight these regions of the alignment: blue for the ancestral allele, and red for the derived

allele.

(PDF)

S17 Fig. The lengths of introgressed haplotypes predicted by IntroUNET at increasing

distances away from the adaptive introgression even on chr3R. Introgressed haplotypes

were defined as runs of consecutive SNPs classified as introgressed for a given individual. The

sweep center was set to position 4624900, the center of the window with the lowest level of

diversity in this region (data from [39]).

(PDF)

S18 Fig. Results of training the same architecture on data seriated via different distance

metrics, as well as using unsorted data (i.e. individuals within each population are

arranged in the arbitrary order produced by the simulator), for the ghost-introgression

problem (top row, panels A and B) and the Drosophila demographic model (bottom row,

panels C and D). These plots show the values of training (A and C) and validation (B and D)

loss over the course of training. Validation loss is usually lower than training in the case of

Drosophila because label smoothing was applied to the training data for the purposes of regu-

larization, but not to the validation data.

(PDF)

S19 Fig. Confusion matrix showing performance of a classifier that detects genomic win-

dows that have experienced introgression, trained and evaluated on data simulated under

the D. simulans-D. sechellia scenario as described in the Methods.

(PDF)

S1 Table. Bootstrap parameter estimates for the D. simulans and D. sechellia joint demo-

graphic model obtained via @a@i. The parameters of the model are the ancestral population

size (Nref), the final population sizes of D. sechellia and D. simulans (N0−sech and N0−sim), the

initial population sizes (Nsech and Nsim), the population split time (ts), and the backwards

migration rates (msim! sech and msech! sim). Note that parameter estimates are shown for each

bootstrap replicate for which our optimization procedure succeeded (Methods), but only those

with log-likelihood scores greater than −1750 were used to simulate training data.

(PDF)

S2 Table. CPU/GPU time estimates for accomplishing the experiments in the paper. The

simulation and formatting results for this table were computed from a small sample of 430 rep-

licates over 4 cores of an Intel Core i9–9900K CPU @ 3.60GHz and then scaled to give esti-

mates for 105 replicates in each case. The Formatting column lists the time estimates for

alignment sorting (for IntroUNET) and statistic calculation (for ArchIE). The Discrimina-

tor and Segmenter columns list the training times for classifying entire windows and for iden-

tifying introgressed haplotypes, respectively. In the GPU columns the estimate is simply the

run time for the training described. The training of the neural networks was done on an NVI-

DIA A40 GPU, and we found that VRAM usage was<12Gb in all cases. We note that the

ArchIE method computes statistics over the entire simulated window (224.64 on average in

our simulated 50kb windows) whereas our method only formats a small sequential sample of
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SNPs from each replicate (192 for the Archaic introgression program). Below the time esti-

mates for simulation are the simulated region size, and below the formatting times are the

resulting “image” size or (populations, individuals, sites) and for the case of ArchIE, the win-

dow size in base pairs. Note that we do not include the time for execution on data after train-

ing, but we observed that classification times for all are generally negligible (although the

sorting/statistic calculation steps must be performed first and these can be costly as shown in

the Formatting section).

(PDF)
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