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Abstract 
Background and Aims: Anti-tumour necrosis factor [anti-TNF] therapy is widely used for the treatment of inflammatory bowel disease, yet 
many patients are primary non-responders, failing to respond to induction therapy. We aimed to identify blood gene expression differences be-
tween primary responders and primary non-responders to anti-TNF monoclonal antibodies [infliximab and adalimumab], and to predict response 
status from blood gene expression and clinical data.
Methods: The Personalised Anti-TNF Therapy in Crohn’s Disease [PANTS] study is a UK-wide prospective observational cohort study of anti-TNF 
therapy outcome in anti-TNF-naive Crohn’s disease patients [ClinicalTrials.gov identifier: NCT03088449]. Blood gene expression in 324 unique 
patients was measured by RNA-sequencing at baseline [week 0], and at weeks 14, 30, and 54 after treatment initiation [total sample size = 814].
Results: After adjusting for clinical covariates and estimated blood cell composition, baseline expression of major histocompatibility complex, 
antigen presentation, myeloid cell enriched receptor, and other innate immune gene modules was significantly higher in anti-TNF responders 
vs non-responders. Expression changes from baseline to week 14 were generally of consistent direction but greater magnitude [i.e. amplified] 
in responders, but interferon-related genes were upregulated uniquely in non-responders. Expression differences between responders and 
non-responders observed at week 14 were maintained at weeks 30 and 54. Prediction of response status from baseline clinical data, cell com-
position, and module expression was poor.
Conclusions: Baseline gene module expression was associated with primary response to anti-TNF therapy in PANTS patients. However, these 
baseline expression differences did not predict response with sufficient sensitivity for clinical use.
Key Words: Anti-TNF; Crohn’s disease; transcriptomic biomarkers

1. Introduction
Crohn’s disease [CD] is a chronic immune-mediated inflam-
matory disease [IMID] of the gastrointestinal tract. Along 
with ulcerative colitis [UC], it is one of the two main forms 
of inflammatory bowel disease [IBD]. The development of 
anti-tumour necrosis factor [TNF] biological therapies has 
revolutionized patient care for CD and a number of other 
IMIDs over the last two decades. Two major anti-TNF drugs, 
infliximab and adalimumab, are IgG1 monoclonal antibodies 
that bind both soluble and transmembrane TNF, inhibiting 
their interactions with TNF receptors.1,2 Two main mechan-
isms of action have been proposed: induction of CD4+ T cell 
apoptosis in the gut mucosa by inhibiting the TNF–TNFR2 
interaction; and binding of the antibody tail [Fc region] of the 

drug to Fc receptors on monocytes, inducing their differenti-
ation into wound-healing M2 macrophages.3,4

Unfortunately, anti-TNF therapy is not always effective at 
treating IBD. Various types of treatment failure can occur: pri-
mary non-response [PNR] within the induction period [the 
first 12–14 weeks for infliximab and adalimumab], secondary 
loss of response [LOR] during maintenance therapy after an 
initial response, failure to achieve remission after the treat-
ment course, or adverse events that lead to treatment discon-
tinuation.5 For IBD patients, the incidence of PNR is 10–40%, 
and the incidence of secondary LOR among initial responders 
is 24–46% in the first year of treatment.6–8 The ability to pre-
dict PNR and LOR could help guide changes in treatment 
regimens, such as dose intensification or switching to a drug 

© The Author(s) 2023. Published by Oxford University Press on behalf of European Crohn’s and Colitis Organisation.

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-0765-6398
https://orcid.org/0000-0002-4201-4879
https://orcid.org/0000-0003-0207-6706
https://orcid.org/0000-0002-0965-9587
https://orcid.org/0000-0002-6058-5528
mailto:ca3@sanger.ac.uk


432 B.Y.H. Bai et al.

class with a different mechanism of action.2,6 Reliable base-
line prediction would be especially valuable, allowing strati-
fication of patients to effective therapies from treatment 
initiation, minimizing healthcare costs and patient burden.

Clinical variables reported to be associated with anti-TNF 
response include age, disease duration, body mass index 
[BMI], smoking, C-reactive protein [CRP] levels, faecal 
calprotectin levels, serum drug concentrations, and anti-drug 
antibody concentrations.7,9–13 In the Personalised Anti-TNF 
Therapy in Crohn’s Disease [PANTS] study, the largest study 
of infliximab and adalimumab response in CD patients to date 
[enrolment n = 1610], baseline obesity, smoking, and greater 
disease activity were associated with low serum drug concen-
tration after induction. A low drug concentration was in turn 
associated with PNR and non-remission, suggesting immuno-
genicity may be mediating treatment failure by increasing the 
drug clearance rate.8

Multiple studies have also reported transcriptomic pre-
dictors for anti-TNF response.12–20 One such example is 
TREM1 expression, identified as a marker of anti-TNF re-
sponse in different studies with inconsistent directions 
of effect. Gaujoux et al.16 found TREM1 expression was 
lower in gut biopsies from infliximab responders than in 
non-responders [total cohort size n = 72], but higher in re-
sponders in a separate cohort measuring baseline whole 
blood expression [n = 22]. By contrast, Verstockt et al.18 re-
ported lower TREM1 expression in responders to infliximab 
and adalimumab in both baseline gut biopsies [n = 44] and 
baseline whole blood [n = 54]. Proposed reasons for the dis-
crepancy include false positives due to small sample sizes, 
differences in patient ethnicity, and differing definitions of 
response.12,21 In general, small sample sizes, and variation 
among studies in analysis methods, anti-TNF drug, response 
definition, tissues sampled, and disease subtype make a con-
sensus hard to establish. Few markers for anti-TNF response 
of any type, clinical or transcriptomic, have been validated in 
independent studies, and none has yet been translated to rou-
tine clinical practice.13

To identify novel transcriptomic associations with primary 
response to anti-TNF therapy, we generated longitudinal 
RNA-sequencing [RNA-seq] data from peripheral blood sam-
ples taken from a subset of the PANTS cohort (182 primary 
response [PR], 142 PNR) during the first year of follow-up. 
Differential gene expression [DGE] between primary re-
sponders and non-responders was performed at baseline 
[week 0], post-induction [week 14], and during maintenance 
[weeks 30 and 54]. We detected differences in gene module 
expression that may reflect differences in disease character-
istics or severity that influence risk of primary non-response. 
As this is one of the largest datasets currently available for as-
sessing transcriptomic associations with anti-TNF response in 
IBD, we also examined the significance of previously reported 
transcriptomic markers from the literature. Finally, we evalu-
ated the utility of measuring module expression for prediction 
of primary response status.

2. Materials and Methods
2.1. Study design
PANTS is a UK-wide, multicentre, prospective observa-
tional cohort study reporting the treatment failure rates of 
the anti-TNF drugs infliximab (originator, Remicade [Merck 
Sharp & Dohme] and biosimilar, CT-P13 [Celltrion]), and 

adalimumab (Humira [AbbVie]) in 1610 anti-TNF naive 
CD patients. The study design has been described in detail 
previously.8,22 In brief, patients were recruited at the time of 
first anti-TNF exposure between February 2013 and June 
2016, and evaluated for 12 months or until drug withdrawal. 
Eligible patients were aged ≥6 years with evidence of active 
luminal CD involving the colon and/or small intestine. Four 
major study visits were scheduled at week 0 [baseline], week 
14 [post-induction], week 30, and week 54. Additional visits 
were scheduled at treatment failure or study exit. At baseline, 
clinical and demographic data were recorded, including sex, 
ethnicity, BMI, smoking status, age at diagnosis, disease dur-
ation, Montreal classification, prior medical and drug history, 
and previous CD-related surgeries. At every visit, disease ac-
tivity score, weight, current therapy, and adverse events were 
recorded.8

2.2. RNA-seq sample selection
A subset of PANTS patients was selected for RNA-seq, with 
the inclusion criteria: age ≥ 16 years; and baseline CRP ≥ 4 
mg/L and/or baseline calprotectin > 100 µg/g. The target 
sample size was 200 patients on infliximab and 200 patients 
on adalimumab, with an even split between PR and PNR 
within each drug group. PR and PNR were defined based on 
patient outcome criteria from Kennedy et al.:8

• Primary non-response [assessed at week 14]: exit be-
fore week 14 because of treatment failure [including 
resectional IBD surgery] or corticosteroid use at week 
14 [new prescriptions or if previous dose had not been 
stopped]. Patients whose CRP did not decrease to ≤3 
mg/L or by ≥50% from baseline [week 0], and whose 
Harvey–Bradshaw index [HBI] score did not decrease to 
≤4 points or by ≥3 points from baseline were also classi-
fied as having a primary non-response.

• Primary response [assessed at week 14]: decrease in CRP 
to ≤3 mg/L or by ≥50% from baseline [week 0], and a de-
crease in HBI to ≤4 points or by ≥3 points from baseline.

• Remission [assessed at weeks 14, 30, and 54; implies pri-
mary response]: CRP of ≤3 mg/L and HBI score of ≤4 
points, no ongoing steroid therapy, and no exit due to 
treatment failure.

Steroid use was defined as any systemic therapy, either oral 
or intravenous [including use of steroids for other conditions], 
but excluding single pre-infusion dosing with hydrocortisone.

PNR were required to exhibit primary non-response at 
week 14 and non-remission at week 54. PR were required 
to exhibit primary response or remission at week 14, and 
be in remission at week 54 [or week 30 if week 54 status 
was unknown]. Furthermore, within infliximab-treated pa-
tients, PNR and non-PNR were matched based on baseline 
immunomodulator use, baseline steroid use, age at first dose, 
baseline albumin, sex, and weight at study entry.

2.3. Whole blood RNA-seq
Whole blood was collected in RNA Tempus tubes 
[Applied Biosystems] and stored at −80°C until extraction 
[QIAsymphony PAXgene Blood RNA Kit, Qiagen]. RNA 
was quantified using the QuBit BR RNA [ThermoFisher], 
and RNA integrity was assessed with the 4200 TapeStation 
[Agilent]. RNA-seq libraries were prepared using the Kapa 
mRNA HyperPrep Kit, with depletion of rRNA and globin 
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mRNA using the QIAseq FastSelect RNA Removal Kit, and 
adapter ligation with IDT xGEN Dual Index UMI adapters. 
A total of 1141 samples from 396 patients were sequenced. 
Raw sequencing data were demultiplexed with Picard23 and 
aligned to the reference genome [GRCh38] using STAR 
[v2.6.1d].24 Reads were deduplicated using UMI-tools25 and 
quantified against the Ensembl 96 gene annotation with 
featureCounts [v1.6.4].26

Outlier samples were excluded, defined as >2 standard de-
viations from the mean based on percentage of aligned reads 
in coding regions reported by Picard, percentage of unique 
reads, and number of unique reads. Samples with a sex mis-
match against the documented sex were removed. As gene 
expression measured from bulk tissue is heavily dependent 
on cell composition,27 cell proportions of six common cell 
types in whole blood [CD4+ T cells, CD8+ T cells, B cells, NK 
cells, monocytes, and granulocytes] were estimated using the 
Houseman method28 from paired DNA methylation data.29 
Samples missing clinical data and/or cell proportion estimates 
were removed. A total of 814 samples remained after filtering. 
To accommodate variability in sampling day, samples were 
mapped to timepoints based on Kennedy et al.’s8 windows 
around major visits: week 0 [week −4 to 0], week 14 [week 
10–20], week 30 [week 22–38], and week 54 [week 42–66]. 
Samples taken at additional visits [LOR or exit] falling within 
one of the windows were mapped to that timepoint, unless the 
patient also had a major visit sample inside that window. The 
mapping of samples to timepoints is shown in Supplementary 
Figure S1a. The number of samples per patient ranged from 
one to four, with a median of three [Supplementary Figure 
S1b].

Counts were normalized for library size using edgeR 
[v3.28.1].30 Globin genes and short non-coding RNAs were 
removed. Genes with low expression were filtered, requiring 
genes to have at least 1.25 counts per million in >10% of sam-
ples and non-zero expression in >90% of samples. Expression 
data from 15 511 genes remained after filtering. Finally, log2 
expression values were computed using variancePartition/
voom.31,32

2.4. Statistical analyses
A full description of the statistical analyses can be found in 
the Supplementary Methods. In brief, DGE analyses were 
performed in R [v3.6.2],33 with the significance threshold 
set at a false discovery rate [FDR] of <0.05. Variance com-
ponents analysis was used to identify influential variables 
for inclusion in DGE models [Supplementary Figure S2]. 
Cell proportion estimates were found to explain large frac-
tions of expression variance, and adjusting for cell pro-
portions reduced the number of significant associations 
but improved consistency between drug subgroups, with 
fewer highly significant modules showing significant drug-
by-response interaction effects compared to the unadjusted 
models [Supplementary Figure S3]. As this study was not 
designed to compare between drug subgroups, we fo-
cused on models adjusted for cell composition, where the 
improved consistency allowed us to pool expression data 
from both subgroups for greater statistical power. For all 
DGE models, cell proportions, sequencing batch, age of 
onset [the patient’s age at disease diagnosis], disease dur-
ation, BMI, anti-TNF drug type, prior surgery, and smoking 
were included as fixed effects; and patient was included as 
a random effect.

Per-gene linear mixed-effects models fit using DREAM 
[variancePartition v1.16.1]34 were used to detect pairwise 
DGE between study groups. Additionally, natural cubic 
splines [splines::ns]33 were fit to explore non-linear expression 
trajectories over all four timepoints, modelling expression as 
a function of study day in each group [day 0 = day of first 
drug dose]. Different expression trajectories were detected by 
testing for differences in spline parameters between the PR 
and PNR groups. Significant genes from the spline analysis 
were hierarchically clustered by their mean expression in PR 
and PNR at each timepoint, and the gap statistic35 was used 
to define clusters of genes with distinct trajectories. The spline 
analyses were only performed with drug subgroups pooled, 
as relatively small sample sizes at weeks 30 and 54 precluded 
stratification by drug.

Rank-based gene set enrichment analyses 
[tmod::tmodCERNOtest, v0.46.2],36 using blood 
transcriptomic modules [BTMs] were performed to identify 
coordinately up- or downregulated gene sets. These modules 
represent sets of genes that are coexpressed in whole blood, 
derived by Li et al.37 [module names prefixed with ‘LI’] and 
Chaussabel et al.38 [prefixed ‘DC’] from publicly available ex-
pression datasets. Gene set overrepresentation analyses were 
run for BTMs [tmod::tmodHGtest] and other publicly avail-
able gene sets [gprofiler2::gost, v0.2.0].39

Single-sample gene set enrichment scores [ssGSEAs, https://
github.com/broadinstitute/ssGSEA2.0/] were computed as a 
summary measure of module expression in a sample, both at 
baseline and at week 14. Predictive models using clinical vari-
ables, cell proportions, and module expression scores [baseline 
or week 14] to predict response status were constructed using 
caret [v6.0-86].40 Multiple predictive algorithms were evalu-
ated: penalized and regularized logistic regression methods, 
parallel random forest, eXtreme Gradient Boosting, support 
vector machines with a radial basis, k-nearest neighbours, 
naive Bayes, and Gaussian process models. Bootstrapping 
[50 replicates] with the area under the curve [AUC] metric 
was used to tune models, evaluate internal performance, and 
perform model selection. Pairwise tests for the difference in 
AUCs were performed with pROC.41

2.5. Ethical statement
The South West Research Ethics committee approved the 
study [Research Ethics Committee reference: 12/SW/0323] 
in January 2013. Patients were included after providing 
informed, written consent. The study is registered with 
ClinicalTrials.gov identifier NCT03088449 and the protocol 
is available at https://www.ibdresearch.co.uk/pants/.

3. Results
3.1. Baseline module expression associated with 
post-induction primary non-response
After RNA-seq quantification and quality control, expres-
sion data were available for 15 511 genes and 814 samples. 
These samples were from 324 patients, whose characteristics 
are shown in Table 1. We tested for associations between pri-
mary non-response and week 0 expression of genes [Figure 
1a] and gene modules37 [Figure 1b], adjusting for cell com-
position and other influential covariates. Although no single 
gene was differentially expressed in the infliximab subgroup 
[86 PR, 59 PNR], expression of NK cell [LI.M7.2] and T 
cell [LI.M7.1, LI.M7.0] modules was significantly lower in 

http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjad166#supplementary-data
http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjad166#supplementary-data
http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjad166#supplementary-data
http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjad166#supplementary-data
http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjad166#supplementary-data
http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjad166#supplementary-data
https://github.com/broadinstitute/ssGSEA2.0/
https://github.com/broadinstitute/ssGSEA2.0/
https://www.ibdresearch.co.uk/pants/
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Table 1. Baseline patient characteristics for the PANTS RNA-seq subcohort.

Adalimumab [ADA] Infliximab [IFX] Drugs pooled p-value

Sex [Col %]

  Female 78 [48.4%] 89 [54.6%] 167 [51.5%]

  Male 83 [51.6%] 74 [45.4%] 157 [48.5%]

Age of onset [years] 0.774

  Mean [SD] 33.3 [15.4] 32.8 [15.3] 33.1 [15.3] Wilcoxon rank-sum

  Missing 0 0 0

Disease duration [years] 0.546

  Mean [SD] 6.1 [8.1] 5.9 [7.7] 6.0 [7.9] Wilcoxon rank-sum

  Missing 0 0 0

Smoking status [Col %] 0.263

  Current 28 [17.4%] 36 [22.1%] 64 [19.8%] Fisher exact

  Ex 55 [34.2%] 43 [26.4%] 98 [30.2%]

  Never 78 [48.4%] 84 [51.5%] 162 [50.0%]

Crohn’s-related surgery [Col %] 0.549

  No 114 [70.8%] 110 [67.5%] 224 [69.1%] Fisher exact

  Yes 47 [29.2%] 53 [32.5%] 100 [30.9%]

On immunomodulator ever [Col %] 0.543

  No 23 [14.3%] 28 [17.2%] 51 [15.7%] Fisher exact

  Yes 138 [85.7%] 135 [82.8%] 273 [84.3%]

On immunomodulator at baseline [Col %] 0.912

  No 79 [49.1%] 81 [49.7%] 160 [49.4%] Fisher exact

  Yes 82 [50.9%] 82 [50.3%] 164 [50.6%]

On corticosteroids at baseline [Col %] 0.011

  No 113 [70.2%] 92 [56.4%] 205 [63.3%] Fisher exact

  Yes 48 [29.8%] 71 [43.6%] 119 [36.7%]

Baseline BMI 0.237

  Mean [SD] 25.2 [6.2] 24.3 [5.5] 24.8 [5.9] Wilcoxon rank-sum

  Missing 0 0 0

Primary response status [Col %] 0.263

  Primary non-response 76 [47.2%] 66 [40.5%] 142 [43.8%] Fisher exact

  Primary response 85 [52.8%] 97 [59.5%] 182 [56.2%]

CD8+ T cell [%] 0.380

  Mean [SD] 2.8 [4.2] 2.8 [5.2] 2.8 [4.7] Wilcoxon rank-sum

  Missing 38 18 56

CD4+ T cell [%] 0.752

  Mean [SD] 9.2 [6.3] 9.2 [6.8] 9.2 [6.5] Wilcoxon rank-sum

  Missing 38 18 56

B cell [%] 0.094

  Mean [SD] 1.9 [2.0] 1.5 [1.9] 1.7 [1.9] Wilcoxon rank-sum

  Missing 38 18 56

Monocyte [%] 0.497

  Mean [SD] 8.9 [3.5] 9.2 [3.7] 9.0 [3.6] Wilcoxon rank-sum

  Missing 38 18 56

NK cell [%] 0.683

  Mean [SD] 1.9 [3.2] 1.9 [3.8] 1.9 [3.5] Wilcoxon rank-sum

  Missing 38 18 56

Granulocyte [%] 0.911

  Mean [SD] 74.3 [9.7] 74.3 [10.8] 74.3 [10.3] Wilcoxon rank-sum

  Missing 38 18 56

Patient characteristics are stratified by drug subgroup. Values shown are count and percentage for categorical variables, and mean and standard deviation 
for continuous variables. Nominal p-values are reported for the comparison between drug subgroups.
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Figure 1. Baseline expression associated with primary response. [A] Volcano plots of differential gene expression between responders [PR] and non-
responders [PNR] at week 0: for infliximab [IFX], adalimumab [ADA], or with drug subgroups pooled. Annotated genes show significant associations 
from this study and previously reported associations from the literature in both blood and gut biopsies. Dashed line shows significance threshold at 
FDR = 0.05. [B] Top gene modules differentially expressed between PR and PNR at week 0. Columns correspond to results for IFX, ADA, difference 
between IFX and ADA [IFX − ADA, i.e. the drug-by-response interaction], and pooled drug analyses. The top 30 modules ranked by minimum FDR in any 
column are shown. Dashed lines show significance thresholds at FDR = 0.05.
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responders. In the adalimumab subgroup [66 PR, 57 PNR], 
PDIA5 (log2 fold change [FC] = −0.3512, FDR = 0.006777), 
KCNN3 [log2 FC = −0.8798, FDR = 0.006777], and IGKV1-
9 [log2 FC = −1.223, FDR = 0.04518] expression was signifi-
cantly lower in responders, accompanied by lower expression 
of plasma cell/immunoglobulin [LI.M156.0, LI.M156.1] and 
cell cycle [LI.M4.0, LI.M4.1] modules. This heterogeneity be-
tween drug subgroups was robust to model form [Figure S4] 
and differences in sample size between subgroups [Figure S5]. 
A pooled analysis was performed to identify modules con-
sistently differentially expressed in both drug subgroups [152 
PR, 116 PNR]. The MHC-TLR7-TLR8 cluster [LI.M146], 
antigen presentation [LI.M71, LI.M95.0], and myeloid cell 
enriched receptor and transporter [LI.M4.3] modules had 
higher expression at baseline in responders. Several of these 
module associations were largely or partially driven by major 
histocompatibility complex [MHC] class I and class II genes 
[Figure S6].

In addition, we collated baseline markers of anti-TNF re-
sponse in gut mucosal biopsies and blood from the litera-
ture.14,15,18,42 These were not significant in our per-gene DGE 
analyses [Figure 1a].

3.2. Expression changes from baseline to 
post-induction are largely amplified in primary 
responders
To characterize the changes in gene expression induced by 
anti-TNF therapy, we compared expression at baseline to ex-
pression post-induction, and also estimated the difference be-
tween expression changes in responders and non-responders 
[the timepoint-by-response interaction]. As expression 
changes from week 0 to week 14 were relatively consistent be-
tween patients on infliximab and adalimumab after adjusting 
for cell composition [Figure S7], we pooled drug subgroups 
for these models. We found that 5572 and 626 genes were 
differentially expressed between week 14 and week 0 in re-
sponders and non-responders respectively, with 179 genes 
having a significant timepoint-by-response interaction. Of 
the genes differentially expressed in both responders and 
non-responders, and with a significant timepoint-by-response 
interaction, nearly all [31/32 genes] had an expression change 
that was amplified in responders [Figure 2a]. For example, 
CD177, a neutrophil marker upregulated during inflamma-
tion, was downregulated at week 14 in both responders [log2 
FC = −2.225, FDR = 4.104 × 10−17] and non-responders [log2 
FC = −0.8981, FDR = 0.004598], with significantly greater 
downregulation in responders [interaction FDR = 0.008247]. 
Modules differentially expressed between week 0 and week 
14 included upregulation of B cell [LI.M47.0], plasma cell 
[LI.M156.0], and T cell activation [LI.M7.1] modules; and 
downregulation of immune activation [LI.M37.0], mono-
cyte [LI.M11.0], neutrophil [LI.M37.1], and Toll-like re-
ceptor [TLR] and inflammatory signalling [LI.M16] modules 
[Figure 2b]. Statistically significant amplification of expres-
sion changes in responders was also observed at the module 
level, with nearly all module expression changes aligned in 
the same direction in responders and non-responders, but 
with larger effect sizes in responders.

In contrast, GBP2 [a member of a family of guanylate-
binding proteins induced by interferons43] was downregulated 
from week 0 to week 14 in responders [log2 FC = −0.1783, 
FDR = 0.004878], but upregulated in non-responders [log2 
FC = 0.1849, FDR = 0.04502; interaction FDR = 0.005977]. 

At the module level, upregulation of the type I interferon re-
sponse [LI.M127], activated dendritic cell [LI.M165], and 
antiviral IFN signature [LI.M75] modules was observed in 
non-responders but not in responders [Figure 2b]. Extended 
gene set enrichment analyses including additional modules 
from Chaussabel et al.38 also identified interferon modules 
significantly upregulated at week 14 in non-responders: 
DC.M3.4, containing STAT2, GBP5, and PARP14 
[FDR = 3.447 × 10−21]; and two modules containing IFIT3 
and GBP2, DC.M1.2 [FDR = 9.492 × 10−16] and DC.M5.12 
[FDR = 1.355 × 10−13]. None of these modules were differen-
tially expressed from week 0 to week 14 in responders [Figure 
2c], suggesting upregulation of interferon pathways post-
induction occurs uniquely in primary non-responders.

3.3. Sustained expression differences between 
responders and non-responders during 
maintenance
As PANTS was an observational study, it was possible to re-
tain patients who continued with anti-TNF therapy even after 
meeting the study definition of PNR at week 14, enabling us 
to sample the blood transcriptome at weeks 30 and 54 during 
the maintenance period. Utilizing all 814 samples over the 
four study timepoints, we tested for general differences in ex-
pression trajectory over time, detecting 210 differentially ex-
pressed genes between responders and non-responders after 
adjustment for cell composition. To visualize the expression 
of these genes and identify common patterns of expression 
change during anti-TNF therapy, significant genes were hier-
archically clustered by their expression. Six clusters were 
identified [Figure 3a], each with distinct expression trajec-
tories for responders and non-responders [Figure 3b]. Cluster 
1 largely comprised genes previously found to have a signifi-
cant difference in expression change from week 0 to week 
14 between responders and non-responders [97/132 genes 
in the cluster]. The most significant gene was KREMEN1 
[FDR = 4.287 × 10−4], part of an inflammatory apoptotic 
pathway in the gut epithelium.44 Cluster 1 genes were enriched 
in modules associated with myeloid cells and monocytes [LI.
M81, hypergeometric test, FDR = 2.115 × 10−6], platelet ac-
tivation [LI.M196, 1.348 × 10−5], immune activation [LI.
M37.0, 1.436 × 10−4], and TLR and inflammatory signalling 
[LI.M16, FDR = 2.365 × 10−3] [Figure 3c]. Expression trajec-
tories showed cluster 1 genes were more downregulated from 
baseline in responders than in non-responders, probably rep-
resenting a lower inflammatory state in responders by week 
14 that is sustained at weeks 30 and 54. An opposing trend 
was observed in cluster 5, which contained genes enriched 
for B cell development/activation [LI.M58, FDR = 0.01653] 
that were more upregulated from baseline in responders than 
non-responders.

Cluster 3 was uniquely enriched for the type I inter-
feron response [LI.M127, FDR = 0.005681] [Figure 3c]. 
Subsequent enrichment analyses using publicly avail-
able gene sets39 revealed enrichments for type II interferon 
signalling [WP:WP619, adj. p = 2.826 × 10−4], and for genes 
containing putative transcription factor [TF] binding motifs 
for interferon regulatory factors IRF7 [TF:M00453_1, adj. 
p = 0.004768] and IRF8 [TF:M11684_1, adj. p = 0.006853; 
TF:M11685_1, adj. p = 0.01136] [Figure 3d]. The genes in 
cluster 3 showed opposing directions of expression change 
from week 0 to week 14 in responders vs non-responders, 
generating expression differences at week 14 that were also 

http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjad166#supplementary-data
http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjad166#supplementary-data
http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjad166#supplementary-data
http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjad166#supplementary-data
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sustained at weeks 30 and 54. A significant interaction be-
tween week 0 to week 14 expression change and response 
status from the per-gene differential expression analyses was 
observed for eight of the nine genes in the cluster [STAT1, 

BATF2, GBP1, GBP5, IRF1, TAP1, APOL1, APOL2], many 
of which are key interferon signalling genes.43,45,46 Unlike the 
majority of genes that followed trajectories of greater ex-
pression change in responders, genes in interferon response 
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Figure 2. Expression changes from baseline to post-induction in responders and non-responders. [A] Expression log2 fold changes from week 0 to week 
14 in primary responders [PR] and non-responders [PNR], for genes that were differentially expressed from week 0 to week 14 in both responders and 
non-responders, with a significantly different effect size between responders and non-responders [top ten labelled]. The identity line is shown by the 
dashed line. [B] Top modules differentially expressed between week 14 and week 0. Columns show effects in PR, PNR, and the PR minus PNR difference 
[the timepoint-by-response interaction]. The top 30 modules ranked by minimum FDR in any column are shown. Vertical dashed line shows significance 
threshold at FDR = 0.05. [C] Barcode plots showing interferon modules upregulated from week 0 to week 14 in PNR, but not in PR. Genes are ranked in 
ascending order by week 14 vs week 0 DGE z-statistic, with coloured bars indicating the rank of genes in a module. Curves show the cumulative fraction 
of genes in a module at a particular rank threshold. The area under the curve [AUC] reflects the effect size of the module association. Diagonal line shows 
the null of randomly distributed ranks. Modules sourced from Li et al.37 [prefixed ‘LI’] and Chaussabel et al.38 [prefixed ‘DC’].
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Figure 3. Expression differences between responders [PR] and non-responders [PNR] during maintenance. [A] Gap statistic vs cluster number k 
from hierarchical clustering of genes with significant expression differences between PR and PNR over all timepoints. Error bars derived from 500 
bootstraps. The optimal cluster number was selected to be k = 6 by the factoextra::fviz_nbclust firstSEmax criteria [https://rpkgs.datanovia.com/
factoextra/index.html]. [B] Normalized expression over study timepoints for genes in each cluster; 95% confidence intervals for expression are 
shown for each group at each timepoint. [C] Gene modules enriched in each cluster from gene set overrepresentation analyses. Modules significantly 
enriched in any cluster are shown. Vertical dashed line shows significance threshold at FDR = 0.05. [D] Gene sets enriched in cluster 3 from gene 
set overrepresentation analyses using gprofiler2::gost.39 Vertical dashed line shows significance threshold at an adjusted p-value = 0.05 [gost g:SCS 
multiple testing correction method].
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pathways were uniquely upregulated in non-responders after 
anti-TNF therapy.

3.4. Prediction of primary non-response from 
gene expression and clinical variables
Given there were numerous module-level associations with 
primary response status, we evaluated the ability to predict 
response from module expression. For predictive models 
using only baseline data, the median resampling AUCs over 
all combinations of algorithms and predictor sets evaluated 
ranged from 0.5541 to 0.6686 [Supplementary Figure S8]. 
The best-performing model was regularized logistic regres-
sion [caret regLogistic model40; hyperparameters: cost = 0.25, 
loss = L1, epsilon = 0.01] using clinical variables, cell propor-
tions, and module scores from ssGSEA as predictors, giving 
a median resampling AUC of 0.6686, a median sensitivity 
of 0.5392, and a median specificity of 0.6852, where non-
response was the positive class, with a prevalence of 43% 
[116/268]. Including cell proportions and module scores did 
improve predictive performance compared to using only clin-
ical variables [bootstrap p = 0.02629], but the increase in 
AUC was only 2.5% [Figure 4a]. This suggests that clinical 
variables provided the greatest contributions to baseline pre-
diction, especially those variables with consistently high im-
portance scores [high absolute t-statistics]: smoking history, 
BMI, and baseline steroid usage [Figure 4b].

Model performance was improved by utilizing week 14 cell 
proportions and module scores instead of baseline [median 
resampling AUC range 0.6216–0.7957] [Supplementary Figure 
S9]. The prevalence of non-response at week 14 was 42% 
[104/246]. Again, the best performing model was regularized 
logistic regression incorporating clinical variables, cell pro-
portions, and module scores as predictors [median resampling 
AUC = 0.7957, sensitivity = 0.6248, specificity = 0.7961]. 
Adding week 14 module scores to the predictor dataset had 
a larger benefit, with a 6.5% increase in AUC comparing the 
full model to the model including only clinical variables and 
cell proportions [bootstrap p = 2.306 × 10−10] [Figure 4c]. The 
modules with the highest variable importance included TLR 
and inflammatory signalling [LI.M16], chaperonin-mediated 
protein folding [LI.M204.0, LI.M204.1], and translation 
initiation factor 3 complex [LI.M245] modules [Figure 4d]. 
Greater predictive performance at week 14 than baseline 
probably reflects the larger expression differences observed 
between responders and non-responders after the induction 
period.

4. Discussion
We found substantial differences in whole blood gene ex-
pression between anti-TNF primary responders and non-
responders in the PANTS cohort. At baseline, three single-gene 
associations detected in the adalimumab subgroup implicated 
similar cell types; IGKV1-9 encodes the immunoglobulin light 
chain variable region that forms part of antibodies produced 
by plasma cells, KCNN3 is annotated to a plasma cell surface 
signature module from Li et al.37 [LI.S3], and the expression 
of both KCNN3 and PDIA5 is high in plasma cells [www.
proteinatlas.org/humanproteome/immune+cell, v21.1] and 
positively correlated with plasmablast frequencies in blood.47 
These genes were downregulated in responders, as was the 
expression of plasma cell and immunoglobulin modules. 
In keeping with our observations, Martin et al.17 identified 

plasma cells as part of a correlated module of cell popula-
tions, where lower module expression in gut biopsies was as-
sociated with better response to anti-TNFs. Baseline plasma 
cell abundances in gut biopsies have also been reported to 
be lower in responders, albeit in relatively small cohorts of 
infliximab patients.16 Our findings lend credence that associ-
ations driven by immune cells observed in gut biopsies may 
also be observable in blood, a more accessible tissue.

Previously reported single-gene baseline markers in gut 
biopsies and blood were non-significant in this study. For 
example, TREM116,18 was not significantly differentially ex-
pressed between responders and non-responders in blood 
samples from PANTS patients. Our observation is con-
sistent with two recent trials of comparable sample size, 
SERENE-CD and SERENE-UC, where baseline blood 
TREM1 expression was not predictive of response in either 
CD or UC patients.48 A variety of factors could explain fail-
ures to replicate reported markers from study to study. Many 
existing studies pool heterogeneous cohorts of patients taking 
different anti-TNF drugs due to the scarcity of large datasets, 
but even between arms of the PANTS study, we observed 
within-study differences in expression. Additional between-
study variation can arise from differences in clinical setting, 
tissues sampled [e.g. blood vs gut biopsies], and definition 
of primary response [e.g. endoscopic vs clinical parameters]. 
Any two studies are unlikely to have adjusted for the same 
combinations of covariates in modelling, including covariates 
such as cell composition that heavily influence bulk expres-
sion data. Finally, small sample sizes have considerable sam-
pling error. We recommend the use of set-based methods over 
single-gene association tests for identification of biomarkers, 
as drawing on differences in multiple genes improves statis-
tical power, and may also improve reproducibility between 
studies. Despite the small number of single-gene associations 
in PANTS, we detected module-level associations that were 
consistent between drug subgroups, revealing a higher base-
line expression of MHC and antigen presentation modules in 
primary responders. Genetic variation in the MHC region has 
been previously linked to immunogenicity rates in PANTS, 
where carriage of HLA-DQA1*05 was associated with a 
2-fold increase in the risk for developing anti-drug antibodies, 
although the mechanism is yet unknown.22

Utilizing the longitudinal design of PANTS, we charac-
terized changes in blood gene expression post-induction. 
Reduced expression of immune activation, monocyte, and 
neutrophil modules in responders at week 14 is consistent 
with successful drug inhibition of TNF-mediated inflamma-
tion, which correlates with reduced neutrophil activation and 
reduced monocyte recruitment.49 Apoptosis of monocytes in-
duced by anti-TNF in CD patients has also been previously 
described.44 Certain B cell subsets are reduced in the blood 
of IBD patients compared to controls,50 so upregulation of B 
cell modules at week 14 may also represent a shift towards 
health. Similar expression changes were observed in re-
sponders and non-responders, but with greater magnitude in 
responders, potentially suggesting a continuum of response. 
Gaujoux et al.16 found that changes in cell proportions after 
anti-TNF treatment were amplified in responders; here we 
demonstrate a similar trend at the transcriptional level in 
PANTS. Post-induction expression differences between re-
sponders and non-responders were sustained at weeks 30 
and 54 during the anti-TNF maintenance period. Kennedy 
et al.8 found that ‘continuing standard dosing regimens after 

http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjad166#supplementary-data
http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjad166#supplementary-data
http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjad166#supplementary-data
www.proteinatlas.org/humanproteome/immune+cell
www.proteinatlas.org/humanproteome/immune+cell
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primary non-response was rarely helpful’ for inducing re-
mission by week 54. This phenomenon may also be reflected 
in the blood transcriptome, although non-responders in this 
study were selected to exclude patients in remission by week 
54, so expression trajectories for non-responders at week 14 
who eventually achieved remission could not be observed, 
and differences in trajectory between PANTS responders and 
non-responders may be exaggerated.

Unlike the majority of baseline vs post-induction asso-
ciations, expression changes in genes and modules in the 
interferon pathway were uniquely upregulated in PANTS 
non-responders. Previous studies in IBD are conflicting, 

with Samie et al.51 reporting elevated expression of inter-
feron pathway genes in colonic biopsies from non-responders 
compared to responders, with no significant change pre- vs 
post-treatment [n ≈ 40]; and Mavragani et al.20 reporting a 
post-treatment reduction in blood interferon expression only 
in non-responders [n = 30]. In studies of rheumatoid arthritis 
[RA], another IMID with licensed anti-TNF therapies, in-
creases in type I interferon-regulated gene expression in blood 
after infliximab treatment were associated with poor clinical 
response [discovery n = 15, validation n = 18].52 A systematic 
review of our study with other studies reporting similar as-
sociations between interferon pathway genes and anti-TNF 
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Figure 4. Prediction of response status from clinical variables, cell proportions, and expression data. Receiver operating characteristic [ROC] curves for 
the caret regLogistic method40 trained on each predictor dataset are shown at baseline [A] and week 14 [C]. ROC curves were plotted after merging all 
50 resamples. Primary non-response was used as the positive class. DeLong 95% confidence intervals for the AUC are shown. The ten most important 
variables from models trained on each predictor dataset are shown for baseline [B] and week 14 [D] models. The overall variable importance score is 
computed from the absolute value of the t-statistic for each predictor from the final tuned models. Missing bars denote variables that were not in the 
predictor dataset for that model.
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response would not only help resolve the direction of effect, 
if any, but also provide an opportunity to consider the shared 
biology of anti-TNF response in IBD, RA, and other IMIDs.

We were unable to build clinically useful predictive models 
of response incorporating expression data. Using only base-
line clinical variables, Kennedy et al.8 used logistic regression 
with stepwise variable selection based on Akaike’s informa-
tion criterion [AIC] to predict response in the full PANTS 
cohort, achieving AUCs of 0.53 (95% confidence interval 
[CI] 0.46–0.59) for infliximab patients and 0.54 [0.46–0.62] 
for adalimumab patients. Whilst our best-performing base-
line model achieved a 13% improvement in AUC, expression 
data only contributed a small amount of predictive power on 
top of clinical variables and cell composition. Unsurprisingly, 
models had greater predictive power when provided with 
week 14 expression and cell composition data, and adding 
expression data also provided a comparatively large increase 
in AUC. This suggests that when expression differences be-
tween responders and non-responders are sufficiently large, 
transcriptomic markers do provide unique information, and 
are not simply proxies for clinical variables or coarse esti-
mates of blood cell composition. A potential route to more 
effective prediction is to consider whether expression dif-
ferences arising early in the induction period can discrim-
inate between responders and non-responders. For example, 
Mesko et al.53 found that week 2 blood gene expression was 
predictive of infliximab response in CD [discovery n = 20, val-
idation n = 20] and RA [discovery n = 19, validation n = 15] 
patients. More recently, Mishra et al.54 trained random forest 
models using blood DNA methylation and gene expression 
measured in IBD patients receiving infliximab [n = 37]. They 
did not find consistent baseline-only predictive signatures, but 
a model combining baseline with week 2 measurements pre-
dicted response in the Mesko et al. cohort with 85% accuracy 
[95% CI: 62–97%]. As we observed in PANTS, expression 
differences between responders and non-responders were far 
greater by week 14 than at baseline. Post-induction associ-
ations were also more consistent between drug subgroups, as 
baseline differences are diluted by the large transcriptomic 
perturbation from taking an anti-TNF. Expression changes 
in the innate immune system are observable within hours of 
treatment initiation,54 and robust prediction of non-response 
within that timeframe may be more valuable than a less reli-
able prediction at baseline.

An important limitation of our analyses is that PANTS 
was not designed to directly compare between drug sub-
groups. Differences between patient groups taking different 
anti-TNF drugs can arise from patient and physician pref-
erences, influenced by cost, disease severity, location, and 
comorbidities. Unsurprisingly, many associations with re-
sponse had significantly different effect sizes in the infliximab 
and adalimumab patient subgroups. We found that adjusting 
DGE models for estimated proportions of major cell types as 
a proxy for these uncontrolled factors alleviated heterogen-
eity between subgroups. However, the adjustment is unlikely 
to work well for rare cell types, and thus the associations we 
report may reflect differences in cell proportions rather than 
per-cell expression. Given the myriad of factors that could 
drive the observed heterogeneity, we strongly caution against 
interpreting associations with different effects in the PANTS 
infliximab and adalimumab subgroups as drug-driven differ-
ences with biological significance, and recommend that fu-
ture transcriptomic studies consider influential factors such 

as cell composition. Additionally, PANTS defined response 
pragmatically as a composite, clinical outcome incorporating 
physician evaluation, disease severity scores, and serum CRP. 
Although this clinical outcome is significantly associated with 
faecal calprotectin, which correlates with endoscopic out-
comes,8 our results would have been strengthened if paired 
endoscopic data were available.

In conclusion, we observed significant differences in gene 
module expression between responders and non-responders 
to anti-TNF therapy in the whole blood of PANTS CD pa-
tients at baseline and post-treatment timepoints. Interferon-
induced genes were uniquely upregulated post-induction in 
non-responders, going against the general trend of amplified 
transcriptomic change in responders vs non-responders. We 
were unable to robustly predict response from baseline data 
with our current sample size. To obtain more accurate pre-
dictions, utilizing large upcoming datasets with paired drug 
response phenotypes and transcriptomic data such as the 
1000IBD project will be essential.55
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