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Abstract

Approaches to quantify stress responses typically rely on subjective surveys and questionnaires. 

Wearable sensors can potentially be used to continuously monitor stress-relevant biomarkers. 

However, the biological stress response is spread across the nervous, endocrine, and immune 

systems, and the capabilities of current sensors are not sufficient for condition-specific stress 

response evaluation. Here we report an electronic skin for stress response assessment that 

non-invasively monitors three vital signs (pulse waveform, galvanic skin response and skin 

temperature) and six molecular biomarkers in human sweat (glucose, lactate, uric acid, sodium 

ions, potassium ions and ammonium). We develop a general approach to prepare electrochemical 

sensors that relies on analogous composite materials for stabilizing and conserving sensor 

interfaces. The resulting sensors offer long-term sweat biomarker analysis of over 100 hours 

with high stability. We show that the electronic skin can provide continuous multimodal 

physicochemical monitoring over a 24-hour period and during different daily activities. With 

the help of a machine learning pipeline, we also show that the platform can differentiate 

three stressors with an accuracy of 98.0%, and quantify psychological stress responses with a 

confidence level of 98.7%.
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Stress is a process triggered by demanding physical or psychological events, and may 

cause anxiety as a prototypical psychological response. While acute stress responses in 

healthy individuals can be adaptive and manageable, persistent experiences of stress can 

have deleterious impacts on mental and physical health1,2, and many mechanisms behind the 

stress response are yet unknown3,4 (Supplementary Note 1). In the United States alone, over 

50 million adults suffer from depression, and after the onset of the COVID-19 pandemic, 

the number of people suffering from mental disorders has drastically risen, causing a heavy 

burden on the healthcare system5,6. Elevated levels of stress and anxiety also pose a large 

burden to high-demand occupation workers7, such as athletes8, soldiers9, first responders10, 

and aviation personnel11, potentially interfering with their cognitive performance and 

decision-making process12. In response to these impacts, understanding and evaluating 

the stress response has become a cornerstone of clinical healthcare. However, current 

gold standards for clinical stress response assessments rely on surveys and performance 

evaluations, which can be highly subjective13-15. Thus, there exists a pressing demand for 

developing a more efficient and effective stress assessment tool that is not characterized by 

these limitations16,17.

Non-invasive biomarkers present themselves as a reliable alternative for monitoring the 

stress response due to the interdependencies between biological and psychological stress. In 

particular, stress induces a complex biological response within the nervous, endocrine, and 

immune systems (Fig. 1a)18,19. The perception of stress activates the hypothalamic-pituitary-

adrenal (HPA) axis and sympathetic adrenal medullary (SAM) axis from the hypothalamus 

in the brain. Acetylcholine in nerve fibers from both axes will stimulate the adrenal gland, 

releasing stress hormones (e.g., epinephrine, norepinephrine, and cortisol) into the blood. 

Acetylcholine can also activate sudomotor neurons connected to sweat glands that release 

ion-rich fluids. This sympathetic activity can be indirectly measured through the galvanic 

skin response (GSR) and sweat electrolyte levels20. The released stress hormones inhibit 

insulin production, affecting the synthesis of metabolites such as glucose, lactate, and uric 

acid (UA), as well as narrow arteries, boosting cardiac activities. By monitoring these stress-

relevant biomarkers, it is possible to develop a comprehensive and objective health profile 

relating biophysical and biochemical signals to dynamic stress response monitoring21-23.

Recent advances in wearable sensors have enabled real-time and continuous monitoring of 

physical vital signs24-28, allowing for a more personalized remote healthcare. Through in 
situ human sweat analysis, wearable biosensors can provide insightful information on an 

individual’s health at the molecular level29-32. Despite these promising prospects, major 

challenges of these sensors exist for clinical applications: a limited set of physical signals 

are not sufficient for condition-specific assessment of psychological and physiological 

stress33; existing wearable biochemical sensors suffer from poor operational stability in 

biofluids, which precludes reliable long-term continuous monitoring34; the access to human 

sweat usually requires physical activity that can affect an individual’s stress; despite recent 

progress on stress hormone analysis, continuous monitoring of sweat stress hormones at 

physiologically-relevant levels using wearable sensor has not yet been achieved due to 

their extremely low concentrations35-37. Therefore, while understanding and monitoring the 

endocrine response to stress is a promising approach, it is still underdeveloped.
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We report here a consolidated artificial intelligence-reinforced electronic skin (CARES) with 

robust long-term sensing capabilities for stress response monitoring (Fig. 1a). Fabricated 

via a scalable inkjet-printing approach, the wearable device is capable of multiplexed, 

non-invasive monitoring of key stress-related physiological signals – pulse waveform, GSR, 

and skin temperature – along with sweat metabolites – glucose, lactate, and UA – as well 

as electrolytes – Na+, K+, and NH4
+ – during daily activities (Fig. 1b,c). Through the 

integration of a miniaturized iontophoresis module, sweat can be induced autonomously at 

rest without the need for vigorous exercise. We introduce a general approach to prepare 

highly stable and sensitive electrochemical biosensors, which utilizes analogous composite 

materials for stabilizing and conserving sensor interfaces. The obtained biochemical sensors 

achieved a record-breaking long-term stability of more than 100 hours of continuous 

operation with minimal signal drifts (amperometric signals decaying less than 0.07% h−1 

and potentiometric signals drift less than 0.04 mV h−1), which greatly exceeds those 

obtained with previous widely adopted wearable sweat sensors. Built on an ultrathin 

flexible polyimide substrate (4 μm) for flexibility and robustness as well as integrated 

with microfluidics, the CARES device conformally laminates on the wrist for reliable and 

robust sensing (Fig. 1d,e). This allows for 24-hour continuous monitoring of daily activities, 

yielding greater insight into how these signals vary throughout the day. With a machine 

learning (ML) pipeline incorporating previously inaccessible multimodal data (Fig. 1f), we 

demonstrate that the physicochemical sensor data obtained by the wearable technology can 

not only be used to classify responses to stressors at high accuracies, but also predict state 

anxiety levels (a key psychological response to stress) with high reliability.

The CARES platform

The CARES platform consists of a multi-layered sensor patch and a skin-interfaced 

laser-engraved microfluidic module (Fig. 1d,e). The sensor patch contains carbachol 

hydrogel (carbagel)-loaded sweat stimulation electrodes, three enzymatic biosensors, three 

ion-selective sensors, a capacitive pulse sensor, a resistive GSR sensor, and a skin 

temperature sensor. The platform can be mass-fabricated through serial inkjet printing 

of silver and carbon as the interconnects and electrodes for top and bottom layers 

(Supplementary Fig. 1). A middle polydimethylsiloxane (PDMS)-based airgap layer was 

spin coated between top and bottom layers, as the soft PDMS facilitates pulse pressure 

sensitivity and sweat reservoir collection. The microfluidic module was assembled in a 

sandwiched structure (PDMS/polyethylene terephthalate/medical tape) and contains two 

separate reservoirs (Supplementary Figs. 2 and 3) that enable fresh sweat sampling and rapid 

refreshing for accurate sweat analysis with high temporal resolution. Carbachol was used 

for sweat induction as it enables long-lasting sudomotor axon reflex sweat secretion from 

the surrounding sweat glands owing to its nicotinic effects38. In this work, six molecular 

biomarkers (glucose, lactate, UA, Na+, K+, and NH4
+) were selected as the detection targets 

due to their strong associations with stress responses (Supplementary Note 2)39-43. Together 

with laser-patterned microfluidics, the CARES device can be attached to the subject’s wrist 

comfortably and performs multiplexed metabolic sensing in situ.
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Wearable sensors for long-term continuous operation

A number of electrochemical sensing strategies based on enzymes29, ionophores44, 

molecularly imprinted polymers30, aptamers45, and antibodies46 are reported, where the 

majority of existing wearable chemical sensors are primarily based on amperometric 

enzymatic sensors or potentiometric ion-selective electrodes (ISEs) as these sensors could 

offer real-time continuous monitoring with high temporal resolution. However, one main 

bottleneck for the practical applications of these sensors is their limited operation lifetime 

and long-term stability during continuous wearable sensing. Large sensor drifts are evident 

when they are used in body fluids which substantially hinder the long-term continuous 

usability of wearable chemical sensors.

Most wearable enzymatic biosensors are based on Prussian blue (PB), which serves as an 

efficient electron-transfer mediator with a low redox potential of around 0 V. However, 

PB-based biosensors suffer from poor stability during long-term use in biofluids because 

PB degrades in neutral and alkaline solutions as the hydroxide ions (OH−), a product 

of H2O2 reduction, can break the Fe─(CN)─Fe bond (Supplementary Note 3). In order 

to stabilize PB while retaining its catalytic activity, we utilize a PB-analogue nickel 

hexacyanoferrate (NiHCF) with a similar zeolitic crystal structure that is catalytically 

inactive but forms a stabilized solid solution composite, protecting the PB sensor interface 

(Fig. 2a). Additionally, the enzymes were protected in a glutaraldehyde-crosslinked 

bovine serum albumin (BSA) matrix. To fabricate enzymatic sensors, gold nanoparticles 

(AuNPs) were electrodeposited onto an inkjet-printed inert carbon electrode to possess 

a high electroactive area for sensitive electrochemical sensing followed by PB-NiHCF 

deposition. Scanning transmission electron microscopy (STEM) and energy dispersive 

spectroscopy (EDS) analyses (Fig. 2b and Supplementary Fig. 4) indicate that NiHCF 

forms a thin protective layer on PB with an obscure boundary. Our electrochemical 

characterizations confirmed that, compared to PB which suffered from rapid degradation 

during electrochemical measurement and other transition metal hexacyanoferrates (i.e., PB-

CoHCF and PB-CuHCF), PB-NiHCF could withstand pH corrosion and maintain most 

consistent electrochemical catalytic activity (Supplementary Figs. 5-7). This could be 

attributed to two mechanisms (Supplementary Note 3): 1) nickel is inert compared with 

iron and can withstand OH− group corrosion (Supplementary Fig. 8); 2) Ni ion has a 

smaller ionic radius compared to other transitional metal ions (such as Co and Cu ions), 

which is preferred to withstand ion insertion (Supplementary Fig. 9). Both mechanisms 

were further supported with scanning electron microscope (SEM) characterizations of the 

electrodes (Supplementary Fig. 10) and inductively coupled plasma–mass spectrometry 

(ICP–MS) analysis of the dissolved Fe2+ from the electrodes (Supplementary Fig. 11) before 

and after electrochemical tests. These results indicated that PB dissolved after tests under 

different pHs and repetitive CV scans, while NiHCF didn’t show any substantial degradation 

and maintained the highest stability among the transition metal hexacyanoferrates for PB 

stabilization.

Highly stable, continuous, and selective monitoring of sweat glucose, lactate, and UA 

was realized amperometrically, and a linear response between current output and target 

concentrations was obtained for all three sensors in physiologically relevant concentration 
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ranges over a 25-hour evaluation period (Fig. 2c). The sensitivities for glucose, lactate, 

and UA sensors were 33.65 nA μM−1 cm−2, 185.56 nA mM−1 cm−2, and 26.36 nA μM−1 

cm−2, respectively. These sensors also showed a record-breaking long-term stability of 

more than 100 hours of continuous operation in phosphate buffered saline (PBS) solutions 

and untreated human sweat samples, which greatly exceeded those obtained with previous 

widely adopted wearable sweat sensors (Supplementary Fig. 12, Supplementary Fig. 13, 

and Supplementary Table 1). It should be noted that as sweat lactate is present in high 

concentrations (up to 60 mM), an additional diffusion-limited polyvinyl chloride (PVC)/

bis(2-ethylhexyl) sebacate (DOS) membrane was introduced on top of the enzyme film to 

achieve a wide linear range while maintaining high sensor stability (Supplementary Fig. 14).

Existing wearable ISEs are based on PVC/DOS membranes and are plagued with a 

potential drift of typically ~2 mV h−1 over time, which is attributed to ionophore leaching 

and water formation below the ion-selective membrane47. To address this issue during 

long-term operation, we adopted another analogous composite materials design strategy 

by introducing polystyrene-block-poly (ethylene butylene)-block-polystyrene (SEBS) into 

the PVC system, which shares a similar long-chain structure but holds more methyl and 

phenyl groups at the sensor interface to promote hydrophobicity and mechanical strength 

(Fig. 2d). High hydrophobicity suppresses ionophore leaching and prevents water layer 

formation at the interface. To fabricate ISEs, the inert yet high surface area nature of inkjet-

printed carbon nanoparticle electrodes was utilized without the need to deposit additional 

ion-charge transducer materials. Ion-selective membranes based on the PVC-SEBS matrix 

were dropcasted onto the carbon electrode, and the ratio of SEBS-PVC was evaluated 

to identify the optimal stability (Fig. 2e, Supplementary Note 4). The optimized ISEs 

could obtain prolonged stability of 100 hours of continuous operation in both standard 

solutions and human sweat samples with the potential value decaying less than 0.04 

mV h−1 (Supplementary Fig. 15, Supplementary Fig. 16, and Supplementary Table 2). A 

logarithmic-linear relationship between the potentiometric output of Na+, K+ and NH4
+ with 

near-Nernstian sensitivities of 58.9, 60.6 and 61.2 mV per decade respectively was identified 

during a 25-hour prolonged sensor evaluation in physiologically relevant ranges (Fig. 2f and 

Supplementary Fig. 17).

With an analogous composite materials’ approach, our sensors demonstrated high 

reproducibility (Supplementary Fig. 18), selectivity (Supplementary Fig. 19), and long-term 

continuous operation stability in both standard solutions and untreated human sweat over 

multiple days (Supplementary Figs. 12, 13, 15 and 16). Such sensor performance, to the best 

of our knowledge, was among the best in wearable sweat sensing (Supplementary Tables 1 

and 2). The low-cost mass-producible sensor patch is designed to be disposable after use: 

the anticipated wearable usage time for each patch is 24–48 hours and the users could easily 

replace the sensor patch. Thus, our sensors can provide a stable response longer than the 

expected wearable usage time. The general material strategy demonstrated here, based on 

electrodes prepared by inkjet printing, can be applicable to electrodes manufactured by other 

scalable technologies including laser engraving and thin-film evaporation (Supplementary 

Fig. 20). In addition, the sensor preparation approach here is also not limited to the six 

sensors we proposed in this study; it can serve as a universal and readily reconfigurable 
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method for other enzymatic and ionophore-based biosensors toward a broad range of 

practical applications.

To realize practical molecular biomarker monitoring without the need for vigorous exercise, 

miniaturized iontophoresis electrodes coated with carbagels were incorporated into the 

CARES for autonomous, local sweat induction (Fig. 2g). Sweat can be continuously 

secreted from the surrounding glands over a prolonged period of time due to the nicotinic 

effects of carbachol (transdermally delivered for 5 minutes via a small 50 μA current). 

Efficient sampling was obtained through custom-developed microfluidics for real-time 

bioanalysis with high temporal resolution (Fig. 2h, Supplementary Figs. 21 and 22, 

Supplementary Video 1).

In addition to chemical sensors, the CARES also contains multiple physical sensors to 

monitor stress-related vital signs. We placed a capacitive pressure sensor above the radial 

artery for pulse waveform monitoring (Fig. 2i). Because of the soft PDMS-engraved airgap, 

the pressure sensor is highly sensitive to soft pressure loads (such as a feather), with 

an impressive sensitivity of 113.1% kPa−1 under the range of 0–500 Pa (Fig. 2j,k). The 

pressure sensor also displays highly robust performance and mechanical stability during 

a repetitive pressure-loading test involving 5,000 cycles, mimicking daily use on the skin 

(Supplementary Fig. 23). A printed resistive temperature sensor was integrated into the 

CARES for skin temperature recording in situ with a sensitivity around 0.115% °C−1 in 

physiological temperature ranges between 25–50 °C (Fig. 2l and Supplementary Fig. 24). 

Considering that temperature has a strong influence on enzymatic activities, the temperature 

information is used for calibrating the response of the three enzymatic biosensors to achieve 

highly accurate in situ metabolic analysis (Supplementary Figs. 25 and 26). It should 

be noted that other environmental factors such as humidity showed minimal influence 

on the performance of our chemical sensors (Supplementary Fig. 27). Additionally, a 

pair of printed Ag electrodes were used as a GSR sensor which demonstrated high 

conductivity compared with commercial gel electrodes (Fig. 2m). Owing to the ultrathin 

flexible polyimide substrate and strong interfacial strength enabled by the medical adhesive, 

the CARES showed excellent skin contact and mechanical resilience against undesirable 

physical deformations during continuous operations (Supplementary Figs. 28 and 29). 

The impermeable polyimide packaging also eliminated the influence of humidity from 

environmental surroundings and sweat (Fig. 2n).

Continuous daily monitoring across various activities

Owing to the excellent long-term stability of wearable sweat biosensors, the CARES enables 

long-term real-time continuous monitoring of physicochemical biomarkers. As illustrated 

in Fig. 3a, the CARES can successfully record the dynamic changes of metabolites 

and vital signs over 24-hours of activity, involving casual and vigorous exercise, dietary 

intakes, lab work, relaxing entertainment, and sleep. Glucose and UA levels spiked after 

food intake, indicating rapidly increased metabolic activities. During vigorous exercise, 

substantial increases in vascular activity and skin electrolyte/conductivity were observed, 

and stable output for both metabolites and vital signs were detected during sleep at night. 
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Such powerful capabilities of continuous multimodal monitoring will enable a number of 

personalized healthcare and human performance monitoring applications.

Machine learning approach for stress evaluation

To evaluate the use of the CARES for stress response monitoring, controlled experiments 

were performed on ten healthy subjects using three different physiological and 

psychological stressors, namely the cold pressor test (CPT), a virtual reality challenge (VR), 

and intense exercise (Supplementary Note 5). The dynamic profiles of all individual sensors 

integrated in the CARES were collected during each study, as illustrated in Fig. 3b-d and 

Supplementary Figs. 30-33. State anxiety levels, as measured by the State-Trait Anxiety 

Inventory (STAI-Y) questionnaire with scores ranging between 10 – 40 points (10 indicating 

little to no anxiety)48, were the psychological stress response measure for data training 

(Supplementary Note 6). The questionnaire was administered before and after each stressor 

to quantify the induced anxiety levels within a subject (Supplementary Fig. 34).

For each experiment, on-body chemical and physical data showed significant variations in 

response to each stressor. During the CPT experiment, the subjects immersed one hand in 

ice water for 3 minutes. A natural reaction of vasoconstriction occurred where the blood 

vessel constricted in response to cold temperatures49. As a result, immediate physiological 

responses including altered pulse waveform and elevated GSR were observed, consistent 

with previous reports on the variations of physiological signals with cold-stimulated stress 

response50,51. In addition, delayed mild fluctuations in metabolite concentrations of glucose, 

lactate, and UA from some subjects were also observed. During the VR test, subjects wore 

an Oculus VR headset to play a rhythm game (Beat Saber) while the gaming screen was 

mirrored to a computer monitor with an audience, resulting in both physiological and social-

evaluative psychological stress. We observed substantial differences in the pulse waveform 

and GSR amplitude during and after the stress stimulus, along with elevated glucose, lactate 

and UA levels minutes later39-41. During vigorous exercise, profound activation of the 

HPA axis led to dramatic changes of all physiological signals as well as sweat metabolites 

and electrolytes (e.g., Na+), in agreement with previous studies on exercise induced stress 

response42,52. These results indicate that the CARES can monitor stress-induced biological 

signals reliably.

To quantify the stress response-related features, data-driven stress and anxiety evaluation 

were performed after each experiment was complete, where an ML pipeline was developed 

to extract features and deconvolute connections between physicochemical information and 

stressor types and state anxiety levels (Fig. 4a and Supplementary Note 7). We undertook 

this challenge using three separate ML analyses: stress detection versus relaxation, stressor 

classification, and anxiety level evaluation, where we trained and tested each model 

across three experiments (VR, CPT, exercise) of all ten subjects for a total of 60,000 s 

of physiological CARES signals. All signals were calibrated and normalized to ensure 

that the features extracted after data pre-processing were stable against patch variations 

and any moderate motion artifacts (Supplementary Figs. 35-37, Supplementary Note 

8, and Supplementary Table 3). Feature extraction was validated before ML analysis 

through projecting the multidimensional feature-space into 2D space via t-distributed 
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stochastic neighbor embedding (t-SNE)53, where data from stress/relaxation naturally 

formed distinctive clusters, indicating the discriminative power of the features (Fig. 4b, 

Supplementary Fig. 38a).

Different ML models were evaluated, and the trained boosting decision tree model Extreme 

Gradient Boosting (XGBoost) outperformed typical ML models, including linear and 

radial basis function (RBF) support vector machines (SVM), logistic and ridge regression, 

and conventional decision trees (Fig. 4c). Combined with features extracted from both 

physiological and metabolic data, it was found that our XGBoost ML model could 

yield a much higher accuracy, with stress response classification accuracy of 99.2% 

for stress/relaxation detection (Supplementary Fig. 38) and an accuracy of over 98.0% 

for stressor classification, which to the best of our knowledge is the highest accuracy 

reported for stressor classification (Fig. 4d, Supplementary Table 4). It should be noted that 

differentiating stressors has high significance, as each stressor carries varying physiological 

and psychological influences and could act as risk factors for coping responses and 

cardiovascular diseases54-56. Distinguishing types of stressors has been recognized as a 

necessary condition for understanding the complex interrelationships among distinct stress 

experiences, as well as the collective impacts of stress on mental health57 (Supplementary 

Note 5). Moreover, it resulted in highly consistent overall accuracies of over 99.3% across 

different individuals (Fig. 4e, Supplementary Note 9).

The Pearson correlation coefficients between all sensors in the CARES show the 

interrelatedness between physiological and chemical biomarkers (Fig. 4f). The relatively 

homogeneous correlation shows the high independence of the extracted features. To evaluate 

each physicochemical sensor’s contribution to the model, feature importance of each 

biomarker towards each stressor was evaluated using a Shapley additive explanation (SHAP) 

(Fig. 4g, Supplementary Fig. 39, and Supplementary Note 9). Through SHAP analysis, 

the feature importance of GSR, pulse, glucose, and Na+ indicate these biomarkers play a 

significant role in stressor classification. These results support the fact that stress responses 

involve participants’ vascular dynamics, neural stimulation, and metabolism.

Based on the classification results, we expanded our analysis to state anxiety level 

evaluation. We adopted a similar XGBoost regression model and could predict state anxiety 

levels with a high confidence level of 98.7% and 98.1% coefficient of determination 

of scores from the STAI-Y (with a standard deviation of 4 points or less48) (Fig. 4h, 

Supplementary Note 6). The relevance of each feature was evaluated using SHAP analysis 

as well (Fig. 4i,j). Through SHAP analysis, it was determined that GSR, pulse, Na+, K+, 

and lactate played the most important role in state anxiety level prediction. Note that SHAP 

values show the relative significance of each feature in the ML model. Additionally, given 

the intrinsic limitations of questionnaires being able to only characterize state anxiety levels 

within a given time period rather than dynamic stress change continuously, we analyzed 

the stress response event as a whole to mimic questionnaire functionalities (Supplementary 

Note 3). In this circumstance, features were extracted from the stress region by taking 

mean signal changes from the moving average (MA) of sensor data rather than segmented 

at each timepoint, and a simple linear regression model was trained with fewer features 

selected to correspond to questionnaire scores and prevent overfitting (Supplementary Fig. 
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40). With the reduced size of dataset and analyzing the overall sensor responses in CARES, 

we performed a brute force feature selection within each biomarker and found that combined 

physicochemical features outperformed that of physical and chemical sensors alone.

To realize convenient data collection for real-life applications, in addition to using flexible 

cables connecting the CARES patch with laboratory instruments (Supplementary Fig. 41), 

we further designed a fully integrated wearable CARES system with a flexible printed 

circuit board (PCB) for multiplexed and multimodal signal processing as well as Bluetooth 

wireless communication (Supplementary Figs. 42-44). The wireless system was successfully 

used for on-body tests and validation of our CARES systems in the laboratory settings 

(Supplementary Fig. 45) and in real-life daily casual activities (Supplementary Fig. 46 and 

Supplementary Video 2). Our ML models obtained from the laboratory tests were able to 

accurately classify the types of stressors and state anxiety levels based on the wirelessly 

collected sensor data in the laboratory (Supplementary Fig. 47) as well as real-life settings 

(Supplementary Fig. 48). We anticipate that for large-scale human trials, the CARES will 

surpass the current gold standards for stress response quantification, and provide a highly 

robust stress response monitoring tool that is not reliant on subjective reporting with its 

potential for errors. In this regard, we envision a high potential for wearable multimodal 

physicochemical monitoring of dynamic stress response.

Conclusions

Here we have presented a CARES platform that performs multiplexed monitoring of 

key physiological signals, metabolites, and electrolytes simultaneously during a prolonged 

operation. Through materials engineering by applying analogous composite materials for 

stabilizing and conserving sensor interfaces, a general approach was developed to prepare 

highly stable and sensitive biochemical sensors including both enzymatic and ISE sensors, 

which has achieved a record-breaking long-term stability of more than 100-hour continuous 

operation with negligible sensor degradation. Continuous 24-hour monitoring of prolonged 

daily activities was also obtained. Real-time multimodal data of the stress response was 

generated from three different stressors utilizing both robust biochemical signals alongside 

physiological ones. With much-enhanced reliability of sensor readings, we demonstrate that 

both 1) a state of stress vs. relaxation and 2) state anxiety as a key psychological response 

to stress can be classified and predicted through multimodal health profiles at the metabolic 

level, with the capability of detecting and classifying stressor types at an accuracy of over 

98.0% and evaluating state anxiety levels at a confidence level of 98.7%. We envision that 

by capturing a broader range of signals through more integrated biosensors, a more complete 

metabolic profile can be achieved for next-generation healthcare and human performance 

monitoring. Our CARES could pave the way for numerous practical wearable applications 

such as intelligent healthcare and personalized medicine.

Methods

Materials

The polystyrene-block-poly (ethylene butylene)-block-polystyrene (SEBS, Tuftec™) was 

provided by the Asahi Kasei Corporation. Uric acid (UA), sodium tetraphenylborate 

Xu et al. Page 9

Nat Electron. Author manuscript; available in PMC 2024 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(NaTPB), and glutaraldehyde (25% aqueous solution) were purchased from Alfa Aesar. 

Agarose, carbachol, bovine serum albumin (BSA), gold chloride trihydrate, hydrochloric 

acid, iron(III) chloride, potassium ferricyanide (III), potassium ferrocyanide (IV), 

polyvinyl chloride (PVC), polyvinyl butyral (PVB), bis(2-ethylhexyl) sebacate (DOS), 

3,4-ethylenedioxythiophene (EDOT), poly(sodium 4-styrenesulfonate) (PSS), aniline, L-

lactic acid, sodium ionophore X, sodium tetrakis[3,5-bis(trifluoromethyl) phenyl] borate 

(Na-TFPB), valinomycin, nonactin, tetrahydrofuran (THF), toluene, glucose oxidase from 

Aspergillus niger (216 U mg−1), uricase from Bacillus fastidiosus (15.6 U mg−1) were 

purchased from Sigma-Aldrich. Methanol, ethanol, sodium chloride, potassium chloride, 

nickel chloride, urea, L-ascorbic acid, dextrose (D-glucose) anhydrous, phosphate buffered 

saline (PBS) were purchased from Thermo Fisher Scientific. Lactate oxidase (106 U mg−1) 

was purchased from Toyobo Co. Medical tapes (M-tapes) were purchased from 3M (468 

MP). Polyethylene terephthalate (PET) films (12 μm thick) were purchased from McMaster-

Carr. Polyimide (PI-2611) was purchased from HD MicroSystems, Inc. Polydimethyl 

siloxane (PDMS, SYLGARD 184) was purchased from Dow Corning. PI film (12.5 μm) 

was purchased from DuPont. STAI questionnaire license was purchased from Mind Garden, 

Inc.

Fabrication and assembly of the CARES device

CARES patch fabrication: The fabrication process of the CARES is illustrated in 

Supplementary Figs. 2 and 3. Polyimide was spin-coated on the silicon oxide wafer at a 

speed of 5000 rpm for 30 s and then cured at 350 °C for 1 hour with a ramping speed of 4 °C 

min−1. The resulting polyimide substrate thickness is about 4 μm. For mass-fabrication, 12.5 

μm PI film was used for large-area patterning demonstration. The CARES patch was then 

patterned with sequential printing of silver (interconnects and pin connections, reference 

electrode, pulse sensor, and galvanic skin response (GSR) sensor), carbon (iontophoresis 

electrodes, counter electrode, temperature sensor, working electrodes for biosensors), and 

polyimide (encapsulation) using an inkjet printer (DMP-2850, Fujifilm). The CARES patch 

was then annealed at 250 °C for 1 hour. A 1:12 mixture of curing agent to PDMS elastomer 

was prepared and stirred thoroughly for 10 minutes, after which the solution was spin-coated 

at the speed of 800 revolutions per minute (rpm) for 30 s onto the inkjet-printed bottom 

layer of CARES patch directly, followed by curing at 60 °C for 1 h. The resulting PDMS 

thickness is about 120 μm. Both the bottom layer and the top layer of the CARES patch 

were then laser patterned to define outlines and sweat outlets using a 50 W CO2 laser 

cutter (Universal Laser System) with power 25%, speed 50%, pulse per inch (PPI) 1000 

in vector mode. The bottom layer was further cut to define iontophoresis reservoirs, sweat 

reservoirs, and airgaps without cutting through the polyimide substrate with an optimized 

parameter of power 2%, speed 20%, PPI 500 in vector mode for 2 times. The PDMS 

layer was cleaned with ethanol and deionized water to remove debris, followed by 30 s 

of O2 plasma surface treatment using Plasma Etch PE-25 (10 cm3 min−1 O2, 100 W, 150 

mTorr) to clean its surface and promote surface adhesion. The whole CARES patch was 

then assembled by dry transferring the top layer onto the bottom layer using a PDMS stamp. 

Biosensors were prepared before microfluidics integration. Note that the sweat reservoir was 

pre-defined during 120 μm-thick PDMS middle layer in CARES patch fabrication, which 

has a dimension of 17.15 mm2 and thereby a reservoir volume of 2.06 μL. The small volume 

Xu et al. Page 10

Nat Electron. Author manuscript; available in PMC 2024 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



allows a fast refreshing rate and enables rapid detection of dynamic changes during human 

performance.

Microfluidics fabrication: The microfluidics layers were fabricated with a laser cutter 

layer-by-layer by patterning double-sided M-tape, PET, and PDMS with iontophoresis 

gel reservoirs, gel electrolytes reservoirs, sweat inlets, flowing channels, and outlets. The 

optimized laser parameters to cut M-tape were set as power 62%, speed 100%, PPI 500 

in vector mode for 2 times, and the optimized parameters to cut PDMS were set as power 

2%, speed 20%, PPI 500 in vector mode for 2 times to minimize debris. The iontophoresis 

gel and gel electrolytes reservoirs were patterned by cutting through all microfluidics layers 

to define gel area and establish gel connection with skin. The first microfluidics layer is a 

PDMS-based sweat channel layer, which was spin-coated on a PET petri dish and cured at 

60 °C for 1 h. The PDMS layer was treated with O2 plasma before laminating a thin layer 

of 12 μm PET, followed by laser-defining sweat inlets. Then the third layer of double-sided 

M-tape was patterned and aligned onto PET, which contacts with the skin and forms the 

sweat accumulation layer. After attaching the microfluidics module to the CARES patch, 

the system was further encapsulated with PDMS backings to avoid potential sweat contact 

and leakage. The device was connected with a flexible printed circuit (FPC) connector for 

further characterizations.

Iontophoresis gel fabrication: Both anode and cathode of iontophoresis gel were 

prepared by mixing agarose (3% w/w) into deionized water and then heated to 250 °C under 

constant stirring until the solution became homogenous. The solution was then cooled down 

to 165 °C, during which 1% w/w carbachol and 1% w/w NaCl were added to the anode 

and cathode solution respectively, and mixed thoroughly. The solution was further cooled 

down and pooled into the iontophoresis gel reservoirs 41.95 mm2 for anode and 28.19 mm2 

for cathode respectively. Together with iontophoresis gels, electrolyte gel (SignaGel, Parker 

laboratories, INC.) was casted onto the GSR electrodes before placing the CARES device on 

human subjects.

Biosensors preparation and characterization

Enzymatic sensor preparation: An electrochemical workstation (CHI 760E, CH 

Instruments, USA) was used to prepare enzymatic biosensors. Pulsed voltammetry from 

−0.9 V to 0.9 V (3000 cycles in total) in 50 mM HAuCl4 was used to deposit Au 

nanoparticles (AuNPs) on the carbon electrode at a signal frequency of 50 Hz, in order 

to increase surface area and enhance sensitivity. A thin Prussian blue transducer layer was 

deposited by applying cyclic voltammetry for 2 cycles for glucose and UA, and 4 cycles for 

lactate (from −0.2 V to 0.6 V with a scan rate of 50 mV s−1) in a fresh solution consisting 

of 2.5 mM FeCl3, 2.5 mM K3Fe(CN)6, 100 mM KCl and 100 mM HCl. The electrodes 

were then deposited with a nickel hexacyanoferrate (NiHCF) protection layer by applying 

cyclic voltammetry for 50 cycles (from 0V to 0.8 V with a scan rate of 100 mV s−1) in 

a fresh solution containing 0.5 mM NiCl2, 0.5 mM K3Fe(CN)6, 100 mM KCl and 100 

mM HCl. The electrodes were then dried before drop-casting enzyme cocktail. For all three 

amperometric enzymatic sensors, the enzyme cocktails were prepared as follows: BSA (1% 

w/w), 2.5% glutaraldehyde (2% v/v), and 10 mg mL−1 enzyme (4% v/v) was mixed in 1 mL 
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PBS. 0.5 μL enzyme cocktail was drop-casted onto each enzymatic sensor electrode surface 

and then dried at 4 °C overnight. For the lactate sensor, a limit diffusion membrane was 

further drop-casted by applying 0.5 μL solution containing 17 mg PVC and 65 mg DOS in 

660 μL THF.

Reference electrode preparation: To prepare the shared reference electrode, 10 μL of 

0.1 M FeCl3 solution was drop-casted onto the Ag surface for 20 s and rinsed with deionized 

water, and then 1.5 μL of PVB reference cocktail was applied on the Ag/AgCl surface by 

dissolving 79.1 mg PVB and 50 mg NaCl into 1 mL methanol and left drying overnight.

ISE sensors preparation: The Na+ selective cocktail was prepared as follows: 1 mg of 

Na ionophore X, 0.55 mg Na-TFPB, 30 mg PVC, 30 mg SEBS, and 65 mg DOS were 

dissolved in 660 μL THF. The K+ selective cocktail was prepared as follows: 2 mg of 

valinomycin, 0.5 mg NaTPB, 30 mg PVC, 25 mg SEBS, and 70 mg DOS were dissolved 

in 350 μL THF. The NH4
+ selective cocktail was prepared as follows: 1 mg of nonactin, 30 

mg PVC, 30 mg SEBS, and 65 mg DOS were dissolved in 660 μL THF. The inkjet carbon 

electrode was activated in 0.5 M HCl with cyclic voltammetry scans of 10 cycles (−0.1 V to 

0.9 V with a scan rate of 100 mV s−1). The electrodes were then baked in a vacuum oven at 

120 °C for 1 hour to remove moisture. 2 μL of Na+ selective cocktail, 2 μL of K+ selective 

cocktail, and 2 μL of NH4
+ selective cocktail was drop-casted onto the carbon electrode and 

dried overnight.

In vitro sensor characterization: To obtain the best performance for long-term 

continuous measurements, all sensors were placed in a buffered solution containing 100 

μM glucose, 5 mM lactate, 25 μM UA, 40 mM NaCl, 8 mM KCl, 2 mM NH4Cl for 

30 minutes to minimize the potential drift. All the in vitro biosensor characterizations 

were performed with cyclic voltammetry and amperometric i-t through a multi-channel 

electrochemical workstation (CHI 1430, CH Instruments, USA). For in vitro enzymatic 

sensor characterizations, analyte solutions were prepared in PBS, with glucose ranging 

from 0–100 μM, lactate ranging from 0–20 mM, and UA ranging from 0–100 μM. For in 

vitro ISE sensor characterizations, analyte solutions were prepared in deionized water, with 

NaCl ranging from 10–160 mM, KCl ranging from 2–32 mM, NH4Cl ranging from 0.5–8 

mM. The enzymatic sensors were characterized chronoamperometrically at a potential of 

0 V, and ISE sensors were characterized using open circuit potential measurement. Both 

potentiometric and chronoamperometric responses were set as 1 s sampling interval, except 

for long-term monitoring where the sampling interval was set as 10 s to minimize data 

overload. To test the pH influence on PB-NiHCF-based enzymatic biosensors, McIlvaine 

buffer solutions were prepared and calibrated containing 0–100 μM H2O2. Temperature 

influence characterizations were carried out on a ceramic hot plate (Thermo Fisher 

Scientific).

To characterize the stability of the PB and PB-NiHCF electrodes, dissolved Fe2+ 

concentrations were determined by inductively coupled plasma–mass spectrometry (ICP–

MS) using an Agilent 8800. The sample introduction system consisted of a micromist 

nebulizer, scott type spray chamber and fixed injector quartz torch. A guard electrode was 
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used and the plasma was operated at 1500 W. All elements were measured in Helium 

MS/MS mode.

Materials characterization

The morphology of materials was characterized by field-emission scanning electron 

microscopy (SEM, Nova 600). Cross-sectional lamella was prepared by standard focus ion 

beam cutting (FIB, Nova 600). The Scanning transmission electron microscopy (STEM) 

characterizations and energy-dispersive X-ray spectroscopy (EDS) analyses were performed 

using a JEOL JEM-ARM300CF S/STEM system (300 keV).

Physical sensors characterization

For in vitro temperature and GSR sensor characterizations, an amperometric method was 

used with an applied voltage of 1 V using a dual-channel electrochemical workstation (CHI 

760E).

For in vitro pulse sensor characterizations, a parameter analyzer (Keithley 4200A-SCS) was 

applied to record the fast-changing capacitive signals at a sampling frequency of around 

137 Hz. The influence of mechanical deformation on the physical sensor performance was 

investigated through pressing-releasing for 5,000 cycles using a Mark-10 force gauge. The 

influence of humidity was investigated by immersing the subject hand with the CARES in a 

customized glove box with a humidity gauge.

Microfluidics evaluation

On-body flow tests were conducted to evaluate the sweat flow of dual-reservoir designs. 

An assembled microfluidic patch pre-deposited with black dye in the sweat reservoir was 

attached to a subject’s forearm, followed by in situ sweat induction using iontophoresis.

Experimental flow tests were also conducted to evaluate the dynamic response of sensors 

using a syringe pump (78-01001, Thermo Fisher Scientific). Different fluids were injected 

into the pre-assembled CARES device with a varying flow rate of 1–4 μL min−1 

(Supplementary Fig. 22).

On-body evaluation of CARES for long-term continuous monitoring

Subject recruitment:  The validation and evaluation of the CARES device were performed 

on healthy human subjects in compliance with the protocols (#19-0892 and #19-0895) 

that were approved by the Institutional Review Board (IRB) at the California Institute of 

Technology (Caltech). Participating subjects were recruited from the Caltech campus and 

the neighboring communities through advertisement by posted notices, word of mouth, and 

email distribution. 10 healthy subjects (8 males and 2 females, age range 23–38 years) were 

included in this study. The participants were healthy without anxiety nor depression issues. 

All subjects gave written informed consent before participation in the study. The study was 

fully voluntary, and no compensation was given.

On-body protocols:  The CARES was mounted on the subject’s wrist after skin cleaning 

with alcohol wipes. Participants were requested to refrain from meals, alcohol, caffeine, and 
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exercise within 3 h prior to the tests. The CARES was sealed in PDMS, leaving output pins 

exposed with an M-tape backing as support for wire connections. We further designed a 

plug-and-play input-output to connect with the flexible flat cable (Supplementary Fig. 41). 

A 50-μA current was implemented on both pairs of iontophoresis electrodes for 5 minutes 

simultaneously for sweat induction. The data was collected with an 8-channel multiplexer 

(CHI Instrument 1430) and a Keithley 4200A-SCS parameter analyzer. A wireless wearable 

CARES system was also developed for convenient data collection in the real-life settings.

Long-term multimodal sensor evaluation during daily activities:  A 24-hour continuous 

monitoring of physiological and biochemical signals was recorded via the CARES device. 5-

minute periodical iontophoresis sweat induction was performed at 7 am, 9:30 am, 12:30 pm, 

4:00 pm, 7:00 pm, 11:00 pm, 1:30 am, and 4:30 am. The physiological data was collected 

continuously while data from the biosensors were collected 10 minutes after iontophoresis.

Questionnaire for state anxiety evaluation:  State-Trait Anxiety Inventory Form Y (STAI-

Y) is a self-evaluation questionnaire that consists of two forms Y-1 and Y-2 to measure 

state and trait anxiety respectively, which has a high internal consistency coefficient of 

0.91–0.93 for college students and working adults48. In our study, we used short form Y-1, 

which measures state anxiety, as a key psychological response to stress. This measure can be 

proctored during real-time experiments without major intervention during the stress event. 

One challenge for quantifying stress is the subjective nature of the questionnaire, which 

inherently holds a small fluctuations of a couple stress points, with a standard deviation of 

more than 4 points in most cases48. In our study, we take ±2 points as the confidence interval 

buffer for state anxiety level evaluation.

Stressor #1: cold pressor test (CPT):  The participants were asked to wear the CARES 

and to relaxation for 10 minutes after iontophoresis sweat induction, during which no 

sensor signals were collected. After the relaxing stage, both physical and biosensors started 

monitoring simultaneously as baseline vital and molecular data. The STAI-Y questionnaire 

was administered to assess state anxiety levels during this relaxed baseline state. The subject 

was asked to relaxation for another 1000 s, after which a 3-minute CPT was conducted. 

Subjects were asked to immerse their other hand without the CARES device into a tank 

containing iced water (0 °C) up to the forearm for 3 minutes. Another STAI-Y questionnaire 

was then given to evaluate the state anxiety levels and the subjects were asked to finish 

within 20 s. Afterward, the subjects were instructed to remove the hand from the iced 

water, and recover in ambient air. Continuous monitoring of multimodal physiological and 

biochemical data was monitored throughout the stress challenge and recovery stage until 

1000 s after the CPT was finished. The subjects were seated during the whole procedure.

Stressor #2: virtual reality test (VR):  The sensor data recording process was the same 

as aforementioned, except that the subjects were asked to play a VR game (Beat Saber) 

by wearing a VR headset (Oculus Quest 2, Meta). The game was set as one-handed mode 

with expert difficulty, and the game screen was projected onto a monitor. The subjects 

were strongly encouraged verbally and asked to compete with other participants’ record 
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scores, so that a mixed physical and psychological stress could be stimulated. The STAI-Y 

questionnaire was used to assess state anxiety levels.

Stressor #3: exercise:  For exercise-induced stress, the sensor data recording process was 

the same as aforementioned. The subject performed the maximum-load cycling (>70 rpm) 

on a stationary exercise bike (Kettler Axos Cycle M-LA) for 3 minutes or until fatigue, 

during which strong verbal encouragement was given. The STAI-Y questionnaire was used 

to assess state anxiety levels.

Data collection in real life activities:  The subject was asked to perform in-door activities, 

including relaxation on the phone, playing a long-term VR game (Superhot VR) by wearing 

a VR headset, and reading journal papers. The subject then performed outdoor activities, 

including running and walking recovery. The STAI-Y questionnaire was used to assess state 

anxiety levels during each activity.

Machine learning (ML) pipeline for stress assessment

Data preprocessing and feature extraction: While all the multimodal sensor signals 

were monitored in real-time, the data pre-processing was performed asynchronously to 

extract features. A pulse feature extraction algorithm was developed due to its unique 

peripheral pulse sampling frequency of T = 0.007 s. To match other sensors sampling 

frequency of T = 1s, each pulse waveform was autonomously analyzed through our pulse 

analysis algorithm, with a floor function afterwards to select the closest pulse feature within 

each time interval. Signals of the biochemical sensors were manually shifted by 300 s to 

align with physical ones due to natural sweat delay; heart rate data in figure plots were 

extracted from the pulse features and smoothed by the moving average of 100 s to show 

the trends more clearly. The time stamp when each subject express stress was recorded 

and manual data labeling was performed. To minimize the variations for inter-subject 

response, all features were normalized before ML pipeline in regards to each subject during 

each stress test, in order to generalize the model among population. After data collection 

and analysis, the training and testing datasets were shuffled and divided 8:2 respectively 

and were randomly selected using an equal representation of each class. ML model was 

developed to link the biological and chemical features to the stress detection, stress types, as 

well as state anxiety levels from questionnaire scores.

Model selection for stress classification: All training model were built using Python 

(Python 3.8) based on the data collected from ten subjects facing three different stressors 

with a set of 60,000 s of CARES recordings. Segmentation of the sensor signals was 

done using a sliding window with a sampling interval of 1 s, given each stress type 

representation. A number of ML models were evaluated according to precision-recall 

curve and their F1 score, including linear and radial basis function (RBF) support vector 

machines (SVM), logistic and ridge regression, conventional decision trees, as well as 

gradient-boosted decision tree XGBoost model. The trained XGBoost model outperformed 

typical ML models for both stress detection and stress type classification.
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Model selection for stress regression: The machine learning algorithms were 

developed on a password-protected local computer with individual GPU module Nvidia 

3080. The training model were built as aforementioned, except that the kernel was changed 

to regressor instead of classifier. For overall stress level evaluations, on the other hand, 

features were extracted from stress region by taking average signal changes from the moving 

average (MA) of sensors rather than segmented at each timepoint, and simpler ML models 

such as linear regression and SVM were evaluated due to the reduced size of dataset to 

prevent overfitting. A brute force examination of features was performed to compare the 

contributions of physicochemical biomarkers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 ∣. A consolidated artificial intelligence-reinforced electronic skin (CARES) for stress 
response monitoring.
a, Illustration of the CARES that continuously monitors multimodal physiological and 

biochemical response from skin, and performs artificial intelligence (AI)-powered stress 

assessment. HPA, hypothalamic-pituitary-adrenal; SAM, sympathetic-adreno-medullar. b, 

Schematic of the flexible CARES sensor patch and main functionalities: vital sign 

monitoring, sweat stimulation and sampling, and key metabolite and electrolyte detection. 

c, Schematic of layered structure of the CARES that assembles sensor and microfluidics 

module. d,e, Optical images of a CARES attached to the skin of a human subject. Scale 

bars, 1 cm. f, Machine learning (ML) pipeline for CARES-enabled stressor classification 

and stress/anxiety level assessment.
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Fig. 2 ∣. Design and characterization of highly robust multimodal sensors.
a, Mechanism of enzymatic metabolite sensors. PB, Prussian blue; NiHCF, nickel 

hexacyanoferrate; AuNPs, gold nanoparticles; GA, glutaraldehyde. b, Cross-sectional STEM 

and EDS images of the PB-NiHCF interface. Scale bar, 100 nm. c, Operational long-term 

stability of enzymatic glucose, lactate, and uric acid (UA) sensors in phosphate buffered 

saline (PBS) and sweat samples for 30 hours. Glu, glucose; Lac, lactate. d, Mechanism of 

ion-selective electrolyte sensors. ISM, ion-selective membrane; PVC, polyvinyl chloride; 

SEBS, polystyrene-block-poly (ethylene butylene)-block-polystyrene. e, SEBS-PVC ratios 

in regards to sensor stability. Insets, contact angle measurements for different SEBS ratios. 

Data is presented as mean ± SD (n = 3 sensors). f, Operational long-term stability of 

ion-selective Na+, K+ and NH4
+ sensors in standard solutions and sweat samples for 30 

hours. g,h, Schematic (g) and on-body evaluation (h) of the microfluidic iontophoresis 

module for autonomous sweat induction and sampling at rest. Timestamps in h represent 

the period after a 5-min iontophoresis session. i, Schematic of the pressure sensor and a 

pulse waveform measured at the wrist. PI, polyimide. j, Pressure versus capacitance (C) 

characterizations of the pressure sensor. C0, flat-state C. Data is presented as mean ± SD (n 

= 3 sensors). k, Repetitive response of the pressure sensor upon small pressure loads. Inset, a 

goose feather placed on a sensor. Scale bar, 1 cm. l, Response of the temperature (T) sensor 
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in the physiological temperature range. R, resistance. m, Impedance of the skin/electrode 

interface measured with inkjet-printed Ag electrodes and commercial electrodes for galvanic 

skin response (GSR) monitoring. n, Performance of encapsulated pulse, T and GSR sensors 

under environmental humidity and body sweat test. All error bars represent the SD from 

three sensors.
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Fig. 3 ∣. On-body evaluation of the CARES in daily activities and under various types of 
physiological and psychological stressors.
a, Continuous 24-hour multimodal monitoring during a subject’s daily activities. IP, 

iontophoresis; HR, heart rate; bpm, beats per minute. b–d, Multimodal monitoring of a 

selected subject’s stress response under three different stressors: cold pressor test (CPT) 

(b) during which the subject was asked to immerse one hand into ice water, virtual reality 

challenge (VR) (c) during which the subject was asked to play a VR rhythm game, and 

cycling exercise test (d) during which the subject was asked to perform a maximum-load 

cycling challenge on a stationary exercise bike.
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Fig. 4 ∣. ML-powered stress response assessment.
a, Schematics of the ML architecture for data preprocessing, feature extraction, supervised 

learning and evaluation. b, t-distributed stochastic neighbor embedding (t-SNE) plot from 

the dataset recorded by the CARES visually showing feature separation in a 2-dimensional 

space. c, Precision-recall curve of different ML models for stressor classification. XGBoost, 

extreme gradient boosting; SVM, support vector machine; RBF, radial basis function. d, 

Confusion matrix displaying the classification accuracy for predicting each type of stressor 

in test set. e, The overall stress classification accuracy based on macro-averaged F1 score 

for each subject. f, A chord diagram showing the relative correlation between different 

sensors. ST, systolicTime; TT, tidalPeakTime; DT, dicroticPeakTime; PD, pulseDuration; 

pAIx, peripheral augmentation index; RI, reflectionIndex. g, Sankey diagram of SHAP 

Xu et al. Page 24

Nat Electron. Author manuscript; available in PMC 2024 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



analysis depicting the relative contribution of different sensors to stressor classification. h, 

True versus the ML-predicted state anxiety scores. Data is presented as ±2 state anxiety 

score buffer based on the potential error in the anxiety questionnaires. i, Shapley additive 

explanation (SHAP) summary plot for state anxiety level evaluation based on the dataset 

collected by the CARES. Each axis plots the distribution of SHAP values of a given 

feature for each prediction instance. j, SHAP decision plot explaining how the ML model 

determines the state anxiety level using both physiological and biochemical features.
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