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Abstract

Prostate cancer (PCa) is the second most common cause of cancer death in American men. 

Metastatic castration-resistant prostate cancer (mCRPC) is the most lethal form of PCa and 

preferentially metastasizes to the bones through incompletely understood molecular mechanisms. 

Herein, we processed RNA sequencing data from patients with mCRPC (n = 60) and identified 

14 gene clusters (modules) highly correlated with mCRPC bone metastasis. We used a novel 

combination of weighted gene co-expression network analysis (WGCNA) and upstream regulator 

and gene ontology analyses of clinically annotated transcriptomes to identify the genes. The 

cyan module (M14) had the strongest positive correlation (0.81, p = 4 × 10−15) with mCRPC 

bone metastasis. It was associated with two significant biological pathways through KEGG 

enrichment analysis (parathyroid hormone synthesis, secretion, and action and protein digestion 

and absorption). In particular, we identified 10 hub genes (ALPL, PHEX, RUNX2, ENPP1, 

PHOSPHO1, PTH1R, COL11A1, COL24A1, COL22A1, and COL13A1) using cytoHubba of 
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Cytoscape. We also found high gene expression for collagen formation, degradation, absorption, 

cell-signaling peptides, and bone regulation processes through Gene Ontology (GO) enrichment 

analysis.

Simple Summary:

Metastatic castration-resistant prostate cancer (mCRPC) is potentially lethal and often spreads to 

the bones through a biological mechanism we do not completely understand. A previous study 

sequenced RNA from patients with mCRPC, and in this study, we have identified 10 genes 

associated with mCRPC that spread to the bones; two of those genes are novel discoveries that 

could serve as new biomarkers for diagnosis or molecular targets for treatment. However, future 

studies are required to validate these genes’ molecular role in mCRPC progression.

Keywords

transcriptomics; metastasis; tumor microenvironment; prostate cancer; signaling

1. Introduction

The 5-year relative survival rate for prostate cancer (PCa) decreases from >99% to 31% once 

the disease has metastasized to distant sites [1]. The bones are the most common site for 

disease spread for metastatic castration-resistant prostate cancer (mCRPC), suggesting that 

the bone microenvironment is conducive to mCRPC growth and survival.

To date, the molecular mechanisms of mCRPC remain incompletely described. Many 

studies have examined the clinical characteristics of mCRPC, especially in terms of genetic 

alterations and the role of the tumor immune microenvironment (TIME) in dynamic tumor 

evolution. Still, few have fully characterized the mCRPC transcriptome [2–5].

This study captures a global picture of mCRPC cellular function and TIME-related signaling 

networks in bone tissue. We analyzed mRNA expression data from the Database of 

Genotypes and Phenotypes (dbGAP) using WGCNA. We critically assessed the relevance of 

genes differentially expressed in mCRPC by matching clinical annotations with biological 

gene functions that positively correlate with bone mCRPC through functional enrichment, 

pathway, and protein–protein interaction (PPI) analyses. These results further elucidate the 

biological pathways, molecular functions, and clinical events that underpin mCRPC cell 

migration, survival, and bone metastasis.

2. Materials and Methods

2.1. Patient Samples and Quality Control Measures

We retrieved the raw RNA-Seq data and matched clinical annotations for 150 mCRPC 

samples from the 2019 Metastatic Prostate Adenocarcinoma-Standup2Cancer/Prostate 

Cancer Foundation Dream Team: Precision Therapy for Advanced Prostate Cancer study 

(dbGaP Study Accession: phs000915.v2.p2). We used the SRA toolkit version 2.9.6.1 to 

download data with controlled access from the Cbioportal [6] and GitHub [7].
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We performed a quality control assessment on all raw sequence reads ahead of alignment 

to the human reference genome using Fastp v0.20.1 [8]. We removed bad-quality base pairs 

and contaminated adaptors from the dataset and then used Fastp to check for the presence or 

absence of overrepresented sequences, the guanine and cytosine (GC) percent distribution, 

and the proportion of GC base pairs across all reads. Fastp scores the overall sequence 

quality and overrepresentation to diagnose potential sequence quality issues.

We then mapped 269 patient transcriptomes to the human reference genome (GRCh.38.p13) 

using STAR v2.7.3a [9]. We performed a quality control assessment on read alignment 

using FASTQC v0.11.9 by visualization with MULTIQC v1.11 [10]. Low-quality samples, 

samples possessing no matched clinical data, and RNA-Seq samples not prepared using a 

hybrid selection or capture method of enrichment were filtered out and removed. Samples 

prepared using poly-A selection were filtered out because this method would not detect 

non-coding RNAs such as miRNAs and some lncRNAs needed for future analysis; 198 

samples remained.

We then filtered for duplicates/replicates to preserve the integrity of analysis. This reduced 

our sample size, and 89 samples remained. Samples were originally sequenced using 

Illumina HiSeq 2000. Years later, samples were re-sequenced using Illumina HiSeq 2500. 

For consistency, we filtered out the 20 samples that were sequenced using only Illumina 

HiSeq2000 and proceeded with the samples that were sequenced using Illumina HiSeq2500; 

69 samples remained. Finally, we filtered the remaining samples for tissue sites that had n < 

10, as we needed at least 10 samples in each group to detect differences by tissue site in our 

analysis. This resulted in our team proceeding with three mCRPC tissue types (liver, lymph 

node, and bone).

After applying quality control and normalization measures featured in the DESeq2 

package [11], we retained 60 mCRPC samples for analyzing RNA-Seq data and clinical 

characteristics (Table 1). The patients’ median age was 65, and Gleason scores (GS) ranged 

from 6–10, with 24 samples labeled as unknown (UNK). Four patients had a UNK hormone 

therapy status. Less than half of the samples (n = 25) were exposed to abiraterone and 

enzalutamide, whereas the remaining patients (n = 31) were treatment-naïve. The majority 

of patients (n = 37) were treatment-naïve for taxanes. For our final study total, we only 

included patient samples retrieved from single metastatic tissue sites in the bone (n = 15), 

lymph node (n = 34), or liver (n = 11). Other metastatic sites were excluded due to there 

being so few cases.

2.2. Normalization and Gene Expression Quantification

We used featureCounts v1.5.0-p3 to quantify counts from the RNA-Seq data and imported 

that data in R Studio version 3.6.3 [12]. We normalized read counts with respect to library 

size using DESeq2 [11] and applied log2 scale transformations to minimize differences 

between sample rows with <10 counts.

2.3. Co-Expression Network Analysis and Module Identification

We transformed the data frame to match the WGCNA format, with samples arrayed across 

rows and genes across columns. We found no gene or sample outliers that did not pass 
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the criteria on the maximum number of 50% or less missing or low weight values when 

executing the function goodSamplesGenes(). We then uploaded gene expression and clinical 

data as a matrix data table, with read count data across rows and clinical annotations across 

columns. We clustered samples by expression level using signed network connectivity with 

default parameters. We then produced a heatmap and dendrogram of the sample clusters and 

clinical traits to visually identify any sample outliers, one of which we removed (sampleID: 

SRR8311618). We segmented the resultant dataset into three matrices that discerned gene 

clusters by tissue site (bone, liver, or lymph nodes). In each matrix, we coded samples with 

a “1” if they were positive for the respective tissue site, whereas all others were assigned a 

“0”.

We constructed a matrix to correlate tissue sites with co-expression amongst genes in 

the network. We used a manual block-wise network to facilitate WGCNA and perform 

module detection. We chose an appropriate soft threshold power of β for the network 

topology analysis based on the scale-free topology criterion [13]; we chose the lowest β that 

crossed the R2 cut-off of 0.90 to yield an approximately scale-free topology, as measured 

by the scale-free topology fitting index. For the analysis type, we used a signed network 

adjacency calculation to translate the adjacency into a topological overlap matrix (TOM) 

and calculated the corresponding dissimilarity as dissTOM = 1-TOM [14]. We generated 

a cluster tree based on TOM dissimilarity and controlled the minimum number of genes 

clustered in a module by setting minModuleSize/minClusterSize to 30 and deepSplit to 

4, imbuing high sensitivity to cluster splitting. We finally used the Dynamic Cut Tree 

method to show the eigengene network heatmap and gene cluster dendrogram tree for the 14 

eigengene clusters (Figures 1A and 1B, respectively).

We calculated module eigengenes (MEs) based on a vector of color assignments with the 

same length as the number of gene rows in the data frame. The calculation is the first 

principal component of the variance for all members of each respective module. We then 

ranked modules by the number of genes in each module (i.e., the size). We used the 

function signedkME to reassign membership to the MEs based on connectivity and the 

Pearson correlation function to calculate the ME co-expression similarity. We saved the 

resultant consensus kME (eigengene-based connectivity) values and created a heatmap for 

each clinical trait using the first principal component of each module (Figure 2). These MEs 

were representatives of all genes in each module [14,15].

2.4. Enrichment Analysis, Differential Expression Analysis, and Hub Gene Identification

We used functional annotation approaches to explore the biological function of ME genes, 

including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathway analyses. We conducted a pathway enrichment analysis for genes co-expressed in 

the cyan module (Module 14, M14), which had a high corr222-elation with bone tissues 

metastases, using the Database for Annotation, Visualization, and Integrated Discovery 

(DAVID version 6.8) [16]. The cyan (M14) module contained 37 genes, from which we 

identified the top three highly enriched GO terms for each GO subdomain and KEGG 

pathway. In Table 2, we outline a list of significant genes and signaling pathway terms from 

the KEGG pathway analysis.
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We adapted a method for differential gene expression analysis [5] to identify upregulated 

or downregulated genes in the MEs and to analyze differences between the metastatic sites. 

For example, Figure 3 shows differential gene expression for bone metastases versus other 

metastatic sites (lymph node and liver).

We constructed a protein–protein interaction (PPI) network for genes found in the cyan 

(M14) module (Figure 4). For visualization purposes, we constructed a gene co-expression 

network map based on the relationship and connectivity of genes using STRINGdb, a 

database consisting of known and predicted protein–protein interactions [17]. We chose 

genes with a score ≥0.4 to build a network model with 18 gene nodes (proteins) that we 

visualized with Cytoscape version 3.9.0 [18].

We selected candidate hub genes using the Cytoscape plugin called cytoHubba [19], 

which ranks nodes in the PPI network by their network features and scores each node 

gene by the top 10 algorithms: Maximal Clique Centrality (MCC), Density of Maximum 

Neighborhood Component (DMNC), Maximum Neighborhood Component (MNC), Degree, 

Edge Percolated Component (EPC), BottleNeck, EcCentricity, Closeness, Radiality, and 

Betweenness.

2.5. Statistical Analysis

To compare differential expression among tumor sample conditions, we performed statistical 

analyses using an unpaired two-tailed t-test in R Studio version 3.6.3 and considered p < 

0.001 statistically significant.

2.6. Transcriptome Deconvolution and Tissue Expression Correlation Analysis

To estimate the proportion of immune and cancer cell make-up within the TIME from our 

bulk mCRPC RNA-Seq samples, we conducted bulk tissue transcriptome deconvolution 

analysis using a web-based tool called EPIC. A tab-deiminated text file displaying mCRPC 

samples with corresponding bulk gene expression counts given in fragments per kilobase per 

million mapped reads (FPKM) was used as the input into the tool (Table S1).

Finally, we employed GTEx, a web-based tool used to calculate the correlations between 

genotype and tissue-specific gene expression levels. We performed a multigene query 

using the genes most differentially expressed in our analysis. These genes included 

ALPL, CDH15, COL11A1, COL11A2, COL13A1, COL22A1, COL24A1, ENPP1, FOXF1, 

ITGA10, MAMDC2, OMD, PHEX, PHOSPHO1, PTH1R, PTX3, and RUNX2. GTEx did 

not have a bone tissue in their dataset for comparison, but upon comparison of our hub genes 

in prostate versus other tissue sites, we observed expression levels to be lower, on average, 

when compared to other tissue sites such as kidney, lung, whole blood, and spleen (Figure 

5b).

3. Results

3.1. Identification of Co-Expressed Genes

We studied the transcriptomics of 60 mCRPC patient samples with matched clinical 

annotations. We chose the power of β = 9 (scale-free R2 = 0.90) to ensure scale 
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independence for the scale-free network. We performed hierarchical clustering and Dynamic 

Tree Cutting to cluster co-expressed genes into modules (Figure 1).

We identified 14 modules from the construction of the eigengene network. These modules 

contained ≥30 genes per module: 5444 genes in the turquoise module (M1); 2174 genes 

in the blue module (M2); 1670 genes in the brown module (M3); 837 genes in the yellow 

module (M4); 556 genes in the green module (M5); 553 genes in the red module (M6); 

385 genes in the black module (M7); 324 genes in the pink module (M8); 271 genes in the 

magenta module (M9); 125 genes in the purple module (M10); 82 genes in the green-yellow 

module (M11); 77 genes in the tan module (M12); 58 genes in the salmon module (M13); 

and 37 genes in the cyan module (M14).

3.2. Association of Modules with Clinical Traits

Figure 2 relates the clustered dendrogram to the matched clinical annotations, including age, 

tissue site, GS, taxane status, and hormone therapy status. The cyan module (M14) was most 

positively correlated with the presence of bone metastases (r = 0.81, p < 4 × 10−15). We 

found that other modules were positively correlated with the GS, such as the salmon module 

(M13; r = 0.37, p < 0.004), the tan module (M12; r = 0.34, p < 0.009), and the black module 

(M7, r = 0.4, p < 0.002).

3.3. Differential Gene Expression Analysis

We identified 3122 differentially expressed genes in the study dataset (Figure 3). We 

modeled our analysis to compare bone metastases with the other two metastatic sites, the 

lymph nodes and liver. We observed seven upregulated genes (p < 1 × 10−10) within the cyan 

module (M14) and one downregulated gene (FOXF1) in the yellow module (M11).

3.4. Enrichment Analysis of Biological Features

In the cyan module (M14), 23 of the 37 genes had >0.70 consensus kME values: 

MAMDC2, PHOSPHO1, ITGA10, PTH1R, OMD, RUNX2, CTSK, CLMP, COL11A1, 

COL24A1, SHANK1, PTX3, CDH15, PLPP7, ALPL, COL22A1, MMP16, COL13A1, 

ADAMTS6, SATB2, ENPP2, EXTL1, and PHEX. Two genes (NMT1 and PSMD3) were 

negatively correlated with the presence of bone metastases and thus had low connectivity of 

membership to the cyan module (M14). We assessed comparisons with unpaired two-tailed 

t-tests and found p < 0.001 for all.

We used DAVID for GO and KEGG pathway analyses to afford a high-level view of 

the molecular signaling pathways that may drive gene co-expression in the cyan module 

(M14). We divided GO results into subdomains that represented biological processes, 

cellular components, and molecular functions, and we analyzed the top three GO terms 

for molecular functions with p < 0.01. The cyan module (M14) genes were mainly 

associated with endochondral ossification, skeletal system development, and collagen 

catabolic processes. KEGG enrichment analysis identified (p < 0.001) two signaling 

pathways involved in protein digestion and absorption and parathyroid hormone synthesis, 

secretion, and action.
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3.5. Identification of Hub Genes

PPI network analysis provides protein-level context to biological processes and helps predict 

the functional interactions of key genes in pathogenic molecular processes. Our PPI network 

had an enrichment p-value of <1 × 10−16 and contained 18 nodes (proteins) with 31 edges. 

We used cytoHubba to rank the nodes by their network features. We generated a list of 

ranked candidate hub genes in the PPI network using Maximum Clique Centrality as a 

topological analysis method [19,20]. The top 10 candidate hub genes were ALPL, PHEX, 

RUNX2, ENPP1, PHOSPHO1, COL24A1, PTH1R, COL12A1, and COL11A1 (Figure 4).

3.6. Transcriptome Deconvolution and Tissue Gene Expression Analysis

Results of our transcriptome deconvolution analysis showed a heterogenous mix of B-cells, 

cancer-associated fibroblasts (CAFs), T-cells, endothelial cells, macrophages, NK cells, and 

tumor cells (Table S2). Cell fractions per patient sample, on average, contained more than 

60% tumor cells, followed by CAFs (~35%) (Figure 5a). GTEx analysis was performed 

to determine whether genes significantly differentially expressed in our WGCNA analysis 

were highly expressed in normal prostate tissue. Results show that our selected genes were 

not overexpressed in prostate tissue. However, ALPL was highly expressed in whole blood, 

PTX3 in cultured fibroblasts, and PHOSPHO1 in testis, spleen, and a few other tissue types.

4. Discussion

4.1. Key Findings in the Study

WGCNA holds great promise as a tool to interrogate human transcriptome data and 

elucidate molecular and signaling mechanisms for complex diseases, including PCa. In 

this study, we have characterized gene expression networks that may contribute to the 

heterogeneity and complexity of bone metastasis in mCRPC.

We identified 14 MEs positively or negatively correlated with age, GS, tumor site, hormone 

therapy status, and taxane exposure status. The cyan module (M14) was most positively 

correlated to the presence of bone metastases (R = 0.81, p-value = 4 × 10−15), and it 

contained 37 genes with potential clinical value. Enrichment analysis showed biological 

associations with absorption and reabsorption biological processes (e.g., endochondral 

ossification, replacement ossification, and endochondral bone morphogenesis) and signaling 

pathways involved in protein digestion and absorption parathyroid hormone synthesis, 

secretion, and action.

Our analyses revealed 10 hub genes with statistical correlation to bone metastasis in 

patients with mCRPC: ALPL, PHEX, RUNX2, ENPP1, PHOSPHO1, PTH1R, COL11A1, 

COL24A1, COL22A1, and COL13A1. Two of these genes (PHEX and PHOSPHO1) have 

not been previously associated with mCRPC, while all other hub genes have some verified 

association with mCRPC or PCa [21–28]. Together, our analysis showed an interplay 

between the tumor microenvironment, the bone metastatic niche, and our hub genes. Results 

from both EPIC and GTEx show that the tumor leverages the overexpression of genes 

and associated genes to establish, maintain, and survive in an environment suitable for its 
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growth and further metastasis. Here, we propose a model to show the vicious cycle of bone 

metastasis, driven, in part, by genes found significant in our study (Figure 6).

4.2. Hub Genes Not Previously Associated with mCRPC

The PHEX gene codes for an enzyme (phosphate regulating endopeptidase homolog X-

linked) that helps regulate phosphate balance. PHEX has been hypothesized to regulate 

fibroblast growth factor-23 (FGF23), which inhibits 1,25 (OH)2D synthesis and may 

negatively regulate parathyroid hormone (PTH) secretion [29]. We are the first to report 

that PHEX overexpression may be involved with the dysregulated mineralization of skeletal 

tissue during mCRPC bone metastasis. We hypothesize that mCRPC cells may leverage the 

PHEX function to maintain the TIME and impede wound healing in bone.

PHOSPHO1 is well known in wound healing [30] but has not been described within 

the TIME for mCRPC in bone. Our study is the first to suggest that PHOSPHO1 
overexpression, enabled by ALPL and ENPP1 crosstalk, may be involved in mCRPC bone 

metastasis through the dysregulated mineralization of skeletal tissue. PHOSPHO1 is an 

attractive drug target, particularly for a series of benzoisothiazolinone inhibitors that have 

passed medicinal chemistry criteria and pose no cellular toxicity [31], but to our knowledge, 

there have been no therapeutic interventions with PHOSPHO1 inhibitors to date.

Hub genes associated with collagen (COL11A1, COL24A1, COL22A1, and COL13A1) and 

protein digestion and absorption signaling were upregulated in mCRPC samples with bone 

metastases. Cancer cells are known to reversibly reshape collagen to advance progression 

in a reinforcing cell–collagen loop [22], and our findings support and further resolve these 

molecular mechanisms. Further, research suggests that COL11A1 upregulation is associated 

with decreased recurrence-free survival in PCa and could be targeted as a prognostic 

biomarker [32], but we could not expand these findings as survival data were not available in 

this study’s data set.

4.3. Hub Genes Previously Associated with mCRPC

The remaining hub genes (ALPL, RUNX2, ENPP1, and PTH1R) are involved in the 

overexpressed pathway of parathyroid hormone synthesis, secretion, and action signaling. 

A parathyroid hormone-related peptide, PTHrP, is believed to initiate bone resorption by 

upregulating RANKL and releasing other growth factors that promote the vicious cycle of 

bone metastasis into the bone TIME (Figure 6) [33]. The underlying mechanism remains 

poorly understood. Here, we outline the possible mechanisms involved in prostate cancer 

bone metastasis, driven, in part, by the hub genes.

4.3.1. ALPL and RUNX2—ALPL plays a significant role in cell death and epithelial 

plasticity through its association with runt-related transcription factor 2 (RUNX2) and the 

receptor activator of nuclear factor kappa-b ligand (RANKL) signaling, both of which are 

downstream factors of parathyroid hormone signaling in the bone. Localized PCa cells 

express ALPL and significantly upregulate the ALPL gene for metastasis [24].

RUNX2 and RANKL signaling promotes the tumorigenesis of mCRPC in bone [24,34,35]. 

RUNX2 overexpression increases matrix metalloproteinase (MMP) expression and the 
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invasion activity of the tumor, leading to PCa progression and metastasis [36,37]. The 

connective tissue growth factor (CTGF) reduces the ubiquitination-dependent degradation of 

RUNX2 and promotes RUNX2 acetylation in cancer cells, stabilizing RUNX2 and thereby 

increasing the production of RANKL and MMPs. If left unchecked, RUNX2 and RANKL 
signaling promotes osteoclasts to engage in a vicious cycle of bone matrix resorption and 

growth factor release that favors tumor growth and survival [38].

Taken together, our study further correlates ALPL and RUNX2 signaling with the molecular 

signaling of RANKL and MMP, a modulation that affects the tumor cell invasiveness and 

phenotypic plasticity.

4.3.2. ENPP1—Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) codes 

a transmembrane protein upregulated in many cancers, suppresses the innate 

immune response, and promotes tumor cell migration, proliferation, metastasis, and 

angiogenesis [26,39]. ENPP1 inhibits pro-inflammatory cytokine production, stimulates 

anti-inflammatory cytokine synthesis, and leverages two GPCR receptors (A2a A2b) to 

hydrolyze ATP, contributing to increased adenosine signaling in the hypoxic tumor 

microenvironment of metastatic PCa [40–42]. Our GO enrichment indicated that 

phosphodiesterase I activity is highly enriched in the cyan module, results that are supported 

by the ENPP1-to-adenosine signaling axis. Researchers are currently investigating the 

clinical utility of ENPP1 inhibitors in many cancers [25].

4.3.3. PTH1R—The parathyroid hormone 1 receptor (PTH1R) and calcium-sensing 

receptor (CaSR) create a favorable metastatic niche in bone through parathyroid hormone 

synthesis, secretion, and action. Yang and Wang showed that in breast cancer cells, which 

also metastasize to bone, CaSR activation upregulates the parathyroid hormone-related 

protein (PTHrP) and subsequently activates the Gs/cAMP pathway that furthers PTHrP 

production in a “feed-forward” loop. Cancer cells release PTHrP, which binds to PTH1R 

in stromal cells or osteoblasts and causes RANKL production. RANKL then binds to the 

RANK receptor and spurs the maturation of osteoclasts, which reabsorb the bone matrix 

and release the calcium that binds to membrane-bound CaSR on tumor cells [28]. PTHrP 
ablation leads to a significant decrease in tumor growth and metastasis as well as the reduced 

expression of several factors known to support tumor progression, including: CXCR4, Ki67, 

Bcl-2, AKT1, and Cyclin D1 [27]. Our identification of PTH1R as a hub gene further 

supports its role in forming a tumor microenvironment in bone.

4.4. FOXF1

The forkhead box protein F1 (FOXF1) gene codes for a protein that is thought to 

transactivate CDH1 and upregulate the expression of the associated membrane protein, 

Ecadherin. When combined with a mutated or deleted p53 gene, common in PCa 

progression cases, downregulated FOXF1 may reduce E-cadherin expression and promote 

metastasis by creating a survival advantage for motile and invasive tumor cells [6]. Our 

analysis observed FOXF1 downregulation when RUNX2 was upregulated in patients with 

mCRPC in bone.
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4.5. Study Limitations

This study generates novel insights into the biological pathways associated with bone 

metastasis in mCRPC. However, we used bioinformatic analysis for our study, so future 

research is required to validate the role of hub genes in tumorigenesis and progression. 

Furthermore, our analysis was not able to determine the direction of signaling effects. 

Our characterization of signaling and pathways differences was solely assessed based on 

current literature, gene ontology, and protein–protein interaction analysis. Lastly, although 

the validation and replication of these discoveries are important processes that serve to 

support the conclusions made in the current study, the datasets needed for the analysis of 

metastatic prostate tissue to bone are currently not available in a sample size large enough 

for robust comparison.

5. Conclusions

We present a novel and comprehensive systems biology approach to further our 

understanding of the molecular and biological mechanisms involved in the TIME niche 

for mCRPC. We used WGCNA to construct a network and identified 14 modules, and 

the cyan module (M14) was enriched with genes that were positively correlated to bone 

metastasis. We discovered two novel hub genes that warrant further investigation for their 

molecular role in mCRPC, especially as candidate hub genes may serve as molecular targets 

or diagnostic biomarkers for precise diagnosis or cancer treatment.
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Figure 1. 
Bone eigengene network/cluster dendrogram. (A) Eigengene network and heatmap of 

clustered dissimilarity based on consensus topological overlap (14 modules) and eigengene 

heatmap. (B) Based on consensus topological overlap, a cluster dendrogram of clustered 

dissimilarity and module colors.
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Figure 2. 
Module trait relationship. Listed in the heatmap are Pearson rho correlations and p-values 

(in parentheses) defining the relationship between ME expression and clinical traits. Each 

row in the table corresponds to a module with the color shown on the left, and each column 

corresponds to a specific clinical trait.
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Figure 3. 
Differential gene expression analysis identified 3122 genes that were upregulated or 

downregulated when comparing mCRPC samples with bone metastases to samples with 

other metastatic tissue sites (lymph nodes and liver). Differentially expressed genes with p < 

1 × 10−10 are labeled.
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Figure 4. 
A Protein–protein interaction (PPI) network of statistically significant hub genes is 

identified, where the thickness of the edge (line) that connects associated nodes (circles) 

represents the strength of association between nodes. Note that node colors have no meaning 

and do not represent biological significance.
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Figure 5. 
Distribution of tissue cell types and gene expression levels of hub genes across various tissue 

types. (a) The distribution of each cell type (B-cells, cancer-associated fibroblasts (CAFs), 

CD4 T-cells, CD8 T-cells, endothelial cells, macrophages, NK cells, and tumor cells) among 

mCRPC samples in the current dataset; (b) the hierarchical clustering of the diseases is 

shown as a dendrogram by column. The hierarchical clustering of the select differentially 

expressed genes is shown as a dendrogram by row. The center plot shows a correlation heat 
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map of gene expression levels by genotype-tissue expression (GTEx) profiles. Gene and 

transcript expressions on the GTEx portal are shown in transcripts per million (TPM).
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Figure 6. 
CRPC bone model of tumor microenvironment. Model displays the vicious cycle of bone 

metastasis driven by invading tumor cells. (1) PCa cells induce osteoblasts (OBs) to secrete 

RANKL. (2) RANKL binds to osteoclasts (OCs) and increases proliferation. (3) OCs 

promote increased resorption and pro-tumorigenic growth factors. (4) Tumor cells release 

PTHrP to reprogram OBs. (5) PCa cells release several other growth factors to promote 

OC proliferation and differentiation. Cancer-associated fibroblasts (CAFs), endothelial cells, 

myeloid B-cells, macrophages, T-cells, and other immune cell types interact with the tumor 

and the bone metastatic niche to promote tumorigenic activities. (6) PCa cells secrete 

factors that degrade the extracellular matrix, such as MMPs, composed mainly of collagen. 

Collagen may be reshaped, remodeled, or broken down into smaller peptides and proteins 

to be endocytosed via macrophages and fibroblasts to advance tumor growth, recycle 

amino acids, or be used for other functions that are favorable to the TIME. (7) PCa cells 

promote the overexpression of ALPL ENPP1, PHOSPHO1, and PHEX to create a favorable 

tumor microenvironment. (8) FOXF1 transcriptionally regulates cancer cell invasion and 

migration through the repression or silencing of the E-cadherin coding gene, CDH1. The 

downregulation or mutation of the FOXF1 gene increases the expression of E-cadherins, 

which promotes cancer cell invasion and motility. Created with BioRender.com.
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Table 1.

Clinical data for mCPRC patient samples

Clinical variable Total number

Total 60

Age Median [range] 65 [50 – 85]

UNK 8

Tissue Site

Bone 15

Lymph Node 34

Liver 11

Abiraterone and Enzalutamide Exposure (Hormone Therapy) Status

Naïve 31

Exposed 25

UNK 4

Taxane Exposure Status

Naïve 37

Exposed 21

UNK 2

Gleason Score

6 3

7 9

8 9

9 19

10 10

UNK 24

Five clinical traits serve as the variables for this study, as shown in the first column. They include age, tissue site, hormone therapy status, taxane 
exposure status, and Gleason score. In the second column, taxane exposure and hormone therapy status were recoded as binary (0 and 1, Naïve 
and Exposed, respectively). Gleason score was coded as discrete values, and age was coded as continuous values. Tissue site was segmented to be 
binary (0 and 1). For example, bone = 0 for non-bone and 1 for bone. UNK = unknown. A total of 60 patient samples were used in this study, as 
shown in the third top column.
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Table 2.

Signaling pathways from KEGG pathway analysis, including pathway names, gene names, percentage of all 

genes (n=37), p-values, and Benjamini-Hochberg procedure values.

Pathway Genes % p-value Benjamini-Hochberg Value

Protein digestion and absorption COL11A1 10.8 2.2E-3 1.3E-1

COL13A1 

COL22A1 

COL24A1 

Parathyroid hormone synthesis, secretion, and action

RUNX2 8.1 8.6E-1 8.6E-1

MMP16 

PTH1R 
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