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Abstract

The neurocomputational model ‘Directions into Velocities of Articulators’ (DIVA) was developed 

to account for various aspects of normal and disordered speech production and acquisition. 

The neural substrates of DIVA were established through functional magnetic resonance imaging 

(fMRI), providing physiological validation of the model. This study introduces DIVA_EEG an 

extension of DIVA that utilizes electroencephalography (EEG) to leverage the high temporal 

resolution and broad availability of EEG over fMRI. For the development of DIVA_EEG, 

EEG-like signals were derived from original equations describing the activity of the different 

DIVA maps. Synthetic EEG associated with the utterance of syllables was generated when both 

unperturbed and perturbed auditory feedback (first formant perturbations) were simulated. The 

cortical activation maps derived from synthetic EEG closely resembled those of the original 

DIVA model. To validate DIVA_EEG, the EEG of individuals with typical voices (N = 30) 

was acquired during an altered auditory feedback paradigm. The resulting empirical brain 

activity maps significantly overlapped with those predicted by DIVA_EEG. In conjunction with 

other recent model extensions, DIVA_EEG lays the foundations for constructing a complete 

neurocomputational framework to tackle vocal and speech disorders, which can guide model-

driven personalized interventions.
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1. Introduction

Effective oral communication is a basic and valued human daily activity [1,2]. A key aspect 

of this function is the sensory-motor integration for the control of speech production, which 

has been shown to be critical for speech acquisition [3] and that is affected in speech and 

voice disorders including vocal hyperfunction [4,5], stuttering and other disfluencies [6,7], 

as well as in neurodegenerative diseases (Parkinson’s disease) [8,9].

Studies on sensory-motor integration have traditionally used the altered auditory feedback 

paradigm [3], i.e., vocal compensations elicited by perturbations in the intensity, frequency, 

and temporality of the auditory feedback of one’s own voice.

Auditory perturbations have been studied via two approaches: (1) some trials are 

perturbed randomly, generating a reflexive compensatory response on the part of the 

participant, and (2) the perturbation is gradual, inducing the adaptation to the perturbation 

response. Both methods consist of recording the participant’s voice through a microphone, 

artificially altering speech formants or fundamental frequency, and playing back the altered 

vocalization to the participant in near real time through headphones [10]. Only a few 
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studies (e.g., [11–19]) have been carried out regarding compensation in response to formant 

perturbation.

Research on speech production and acquisition has proposed several models of speech 

motor control [20]. For example, the Directions into Velocities of Articulators (DIVA) model 

has been developed using control theory concepts and anatomo-physiological information 

of brain networks. This model represents a unified neurocomputational framework that 

accounts for different aspects of speech production, including compensatory behaviors due 

to sensory feedback perturbations [21,22]. Following predictive coding [3], the DIVA model 

uses sensory feedback information to track and correct transient deviations from the desired 

vocalization. This is achieved by generating error signals that modify previously learned 

speech-motor programs and reconfiguring the set of motor commands associated with the 

activation of the articulatory and laryngeal musculature. Therefore, the DIVA model has 

laid the foundation for a great deal of research regarding the role of auditory feedback on 

speech production and acquisition in both normal-hearing and hearing-impaired populations 

[23–28]. Furthermore, it has become a valuable tool for assessing the etiology of stuttering, 

apraxia, and other speech pathologies [3,29].

The theoretical bases of the DIVA model are supported by empirical work demonstrating 

increased activity of the prefrontal, Rolandic and superior temporal cortices in response 

to auditory feedback perturbations, which has been observed using different functional 

modalities [30–35]. Nevertheless, the match between DIVA model predictions and 

experimentally acquired brain activity has been exclusively tested using functional magnetic 

resonance imaging (fMRI) [3,18,36]. It remains to be seen if a similar match is observed 

when brain activity is assessed through the electroencephalogram (EEG). It may be 

advantageous to the field of speech production to verify the DIVA model with EEG, 

as this neuroimaging modality is a direct measure of the electrical activity of the brain 

and allows for the representation of whole-brain oscillatory dynamics with high temporal 

resolution [37,38]. Furthermore, EEG is a portable, low-cost technology with relatively 

broad availability. Considering the large number of EEG studies assessing vocal and speech 

behaviors in disturbed acoustic environments [39–41], an extension of the DIVA model to 

EEG may contribute to disentangling key neural mechanisms of sensorimotor integration for 

speech-motor control.

Therefore, this study aims to investigate whether the brain activations intrinsic to DIVA 

match the brain activity maps estimated from EEG. To achieve this goal, the dynamics of 

the different DIVA maps (i.e., sets of brain nodes that collectively represent a particular 

type of information) [3] were obtained in three simulated conditions: (1) undisturbed 

auditory feedback; (2) auditory feedback with up-shifted first formant (F1); and (3) auditory 

feedback with down-shifted F1. The DIVA map activations corresponding to each condition 

were the input of a generative EEG model, which allowed for the construction of EEG 

scalp distributions. This extension of the DIVA model will be referred to as DIVA_EEG. 

Using models for solving the inverse problem in EEG, the brain cortical generators of the 

simulated EEG were estimated. These brain activation maps were used as a template in the 

experimental phase of the study, in which the event-related potentials (ERPs) elicited by 

each of the conditions were obtained. The cortical generators of the ERPs were estimated 
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using source localization methods, and empirical cortical activation maps were compared 

with the EEG theoretical templates.

1.1. DIVA Model

DIVA is a neurocomputational model used to simulate speech production and acquisition 

and it is initially designed for the English language. Each module of DIVA corresponds 

to a brain region activated during speech programing and production (e.g., premotor 

cortex, motor cortex, auditory and somatosensory cortex, cerebellum). The DIVA model 

is constructed as an adaptive neural network that allows for the simulation of the movement 

of the vocal articulators (lips, tongue, larynx, palate, and mandible) to generate speech. It 

also contains both a feedforward and a feedback control mechanism [3]. Figure 1 shows the 

structure of the model.

In the model, the production of a phoneme or syllable starts with the activation of the 

Speech Sound Map. Then, this information is sent to the Articulatory Velocity and Positions 

Maps located in the motor cortex, which control the movement of the speech articulators 

(vocal tract). The Auditory State Map and the Somatosensory State Map provide auditory 

and sensory information about how phonemes or syllables are produced. When a mismatch 

between the desired and actual speech production is detected, both the Auditory Error 

map and the Somatosensory Error Map are activated and generate a signal to correct the 

vocalization [3,18,36].

1.2. Electroencephalography (EEG)

EEG is a useful tool in clinical and research for assessing neurodevelopmental and 

behavioral disorders, state of consciousness, as well as in neurofeedback applications, 

brain–computer interfaces, among others [42–44]. The main advantage of EEG lies in its 

non-invasive approach for measuring the electrical activity collectively produced by large 

groups of neurons in the brain during information processing, with resolution in the order 

of milliseconds. Due to the macroscopic character of this activity and the variety of possible 

neural configurations responsible for a particular EEG scalp topography, it is impossible 

to univocally determine the EEG brain generators [45]. There are physical-mathematical 

algorithms that attempt to find a reasonable solution to this issue, termed the EEG inverse 

problem. These methods aim to estimate the brain areas responsible of the electrical 

potential distributions measured on the scalp [46–48].

Considering that measurements (potentials on the scalp) are only possible on a finite set 

of sensors and the geometric and electromagnetic characteristics of the conductive volume 

(head) in a discrete set of points, this relationship can be written as Equation (1), [47,48]:

Φ = K ⋅ J

(1)

in which K is the matrix that expresses the linear relationship between the electric potentials 

on the scalp (Φ) and the average primary current density (J) at the intracerebral points.
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2. Materials and Methods

The construction and the subsequent validation of DIVA_EEG consisted of two phases: 

DIVA model Simulation and Experimental Phase, which are illustrated in Figure 2 and 

described in the following subsections.

2.1. DIVA Model Simulation

In the present study, the main objective was to model the spatio-temporal dynamics of DIVA 

to obtain a template of the cortical activation associated with the DIVA observed via EEG. 

The outcome is the generation of EEG topographical maps that represent the activation 

of the different DIVA maps in each experimental condition (undisturbed, up-disturbed and 

down-disturbed auditory feedback).

2.1.1. Simulated Speech—We chose the phoneme /e/ (defined in the model) as this 

vowel can readily be transformed in sounds to resemble the phoneme /æ/ (by increasing the 

F1 frequency) or the phoneme /I/ (by decreasing the F1 frequency). The perturbation size 

(F1 change in Hz) was 350 Hz. Three simulations were carried out: undisturbed, down-shift, 

and up-shift, under experiment type: ‘Reflexive responses’. The duration of the simulation 

was 550 ms, and the disturbance was applied throughout the simulation.

2.1.2. Generation and Source Localization of Synthetic EEG—During 

simulation, the output of each DIVA node is associated with the computational load (denoted 

L in [3]), a term that represents the instantaneous neural activity of the node. These neural 

activities served as input for the EEG generative model. Therefore, point sources for the 

DIVA-EGG generation were seeded in brain locations that match the different nodes in 

the original DIVA model [3]. Table S1 shows the brain coordinates for the centroids of 

the seeds Traces of the synthetic EEG are displayed in Figure S1. A full-brain activity 

pattern was then constructed by treating the electrical activity of the seeds as Gaussian 

activity sources (J _DIV A) that added-up together at each brain location. The standard 

deviation of the normal distribution was 2. Voxels with amplitudes lower than 0.01 times the 

maximum amplitude were deemed inactive. The synthetic EEG (DIV A_EEG) was obtained 

by multiplying the simulated brain activity (J _DIV A) and the lead field K. The lead field 

K was computed by using a head model of three concentric, piece-wise homogeneous, 

and isotropic spheres [49]. Voltages (DIV A_EEG) were obtained in 64-scalp locations (a 

64-electrode layout that followed the 10/20 international system for electrode placement). 

The DIVA-EEG is expressed by the following equation:

DIV A_EEG = K ⋅ J _DIV A

(2)

where the matrix DIV A_EEG has one row for each EEG sensor and one column for each 

time (size Nsen × Nt), K has the number of DIVA model components as columns and is of 

size Nsen × Nc, and J _DIV A contains the time series of the different seeds of the model 

and is of (size Nc × Nt).
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Brain source localizations were estimated using the standardized Low-Resolution 

Electromagnetic Tomography method (sLORETA, [50]; for a review, see [51]). sLORETA 

is based on an appropriately standardized version of the minimum norm current density 

estimation which overcomes problems intrinsic to the estimation of deep sources of EEG.

2.2. Experimental Phase

2.2.1. Participants—Thirty individuals with typical voices were enrolled in this study 

(mean age 24 ± 3.8 years). This sample size is larger than the minimum sample necessary 

to conduct F-tests (repeated measure ANOVA) sensitive to large effect sizes with a statistical 

power of 0.8. Furthermore, the sample is sufficiently large to conduct two-tailed t-tests, able 

to sense large effect sizes with a statistical power of 0.8. Participants were recruited if they 

(1) were right-handed, (2) had no history of psychological, neurological, or speech-language 

disorders, (3) did not have prior training in singing, and (4) had normal binaural hearing 

(hearing threshold ≤ 20 dB HL at all octave frequencies between 250 and 8000 Hz). Before 

the experimental session, participants signed a written consent form, which was approved by 

the Research and Ethics Committee of the Faculty of Medicine, Universidad de Valparaíso, 

Chile (assessment code 52015), in compliance with the national guidelines for research with 

human subjects and the Declaration of Helsinki.

2.2.2. Experimental Setup—This work reports reflexive responses in controls tested in 

an altered auditory feedback paradigm such as that utilized in [18].

Participants were seated in a comfortable chair inside a double-walled, sound-attenuating 

booth meeting the ANSI S3.1-1999 standard. A microphone (B&K 4961) was positioned 

approximately 10 cm from the participants’ mouth at a 45-degree offset in the axial 

direction. The acoustic signal was calibrated to physical units of dB SPL (dB re 20 μPa) 

using a Larson Davis calibrator (model CAL200, Depew, NY, USA).

Speech was sampled at 48 kHz using a MOTU Microbook IIc sound card and the CueMix 

FX software. Participants’ voices were played back to them over closed-back, over-the-ear 

AKG K240 Studio Headphones, with a mean latency of ~18 ms. This latency is lower than 

that at which feedback delays are perceived (50 ms) [52]. The speech level of the participant 

determined the amplitude of the speech playback.

Participants were instructed to read a series of texts presented on a screen (white font on 

a black background) positioned 70 cm away and adjusted in the vertical axes to the eye 

level of the participants at a comfortable conversational pitch and loudness. The text series 

comprised repetitions of the Spanish monosyllabic words: /mes/, /pep/, and /ten/. Words 

were presented for 2.5 s, at a presentation rate of 0.25 Hz (one word every 4 s to prevent 

the participants from developing a constant rhythm and the automatic character of their 

production). A total of 648 stimuli were presented, distributed in 6 blocks of 108 trials. In 

each block, stimuli were distributed in a random order. Participants were asked to sustain 

the vocalization of the vowel until the end of each word’s presentation. No additional 

instructions were provided.
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A 10-trial training session was conducted prior to the start of the experiment to ensure that 

participants were familiar with the experimental setup, familiar with stimulus timing, and 

comfortable with sustaining vocalizations.

2.2.3. Feedback Perturbation—To apply the auditory perturbations, we used Audapter 

[29,53], a publicly available software for tracking and shifting the frequency of F1 in 

near real time. Both stimulus presentation and data collection were controlled by a custom 

MATLAB (R2022b) script (Mathworks, Natick, MA, USA) (Figure 3).

Following previous studies [18], the frequency of F1 for the auditory feedback was increased 

30 percentage points relative to the produced speech signal on 1/6 of the trials (up-shift 

conditions: 108 trials), decreased 30 percentage points on another 1/6 of the trials (down-

shift condition: 108 trial), and unaltered on the remaining 2/3 of the trials (432). After the 

transformation, the pronunciation of the phoneme /e/ approached either the pronunciation of 

the phoneme /a/ in the words /mas/, /pap/, and /tan/ (up-shifted F1), or the pronunciation of 

the phoneme /i/ in the words /mis/, /pip/, and /tin/ (downshifted F1) [54]. The perturbation 

values were different from that used in the DIVA model because the vowel triangle of the 

vowels in Spanish differ from that of the triangle of vowels in English)

2.2.4. Processing of Acoustic Signals—Vowel onset and offset were first 

automatically identified with a Linear Predictive Coding model to find the frequency of 

F1 [55]. The compensation was evaluated in the time window between 120 and 500 ms 

after the vowel onset. This time window corresponds with the time at which the beginning 

of vocal compensations occurs [9,17,18,56,57]. Previous studies have shown that corrective 

responses begin between 100 and 200 milliseconds (usually 150 ms) after the onset of the 

perturbations and increase at least for the following 400 ms [11,15,19].

The compensatory response for each subject was calculated as follows: First, for each 

stimulus word the average F1 trajectory is calculated for all undisturbed trials (baseline 

trials). Second, the trajectory of F1 from each perturbed trial was normalized to the control 

condition, by subtracting the baseline from the perturbed trials. Compensatory response 

magnitude was calculated for each subject as the average F1 value within 120–500 ms after 

vowel onset [17,57].

2.2.5. EEG Acquisition and Analysis—EEG was recorded using the ActiveTwo 

BioSemi system (BioSemi, Amsterdam, Netherlands) with ActiView acquisition software 

(BioSemi) with 64 scalp electrodes (10–20 electrode placement). External electrodes were 

placed in periocular locations to record blinks and eye movements. Analog filters were set 

at 0.03 and 100 Hz. During the analog/digital conversion, signals were sampled at 4096 

Hz, with 24 bits of resolution. The EEG signal was pre-processed offline using standard 

procedures implemented in Brain Vision Analyzer 2.0® (Brain Products GmbH, Munich, 

Germany). Recordings were re-referenced to the average of all channels and band-pass 

filtered between 0.1 and 40 Hz using a zero-phase shift Butterworth filter of order 8. 

Data were downsampled to 512 Hz. Independent Component Analysis (ICA) was used for 

correcting EEG artifacts induced by blinking and eye movements (following [54]). Data 

were segmented from −200 to 500 ms around the onset of vocalization. Semiautomatic 
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criteria implemented in Brain Vision Analyzer were used for rejecting noisy epochs. ERPs 

were obtained by averaging baseline-corrected epochs. N1 and P2 peaks were identified 

using semiautomatic procedures. Electrodes in occipital, parietal locations and in the midline 

were pooled (Iz, O1, O2, Oz, P10, P7, P8, P9, PO7, PO8), and N1 and P2 amplitudes 

were computed as the average voltage in a two-point window around the corresponding 

peak amplitude. The amplitude of the N1-P2 complex was obtained and compared between 

conditions (unperturbed feedback, up-shifted pitch, and down-shifted pitch) using a repeated 

measure ANOVA (p ≤ 0.05).

2.2.6. ERP Source Localization—Brain generators of the N1-P2 complex were 

estimated using the standardized Low-Resolution Electromagnetic Tomography Analysis 

(sLORETA). For this, the 10–20 electrode layout was registered onto the scalp MNI152 

coordinates. A signal-to-noise ratio of 1 was chosen for the regularization method used to 

compute the EEG transformation matrix (forward operator for the inverse solution problem). 

The standardized current density maps were obtained using a head model of three concentric 

spheres in a predefined source space of 6242 voxels (voxel size of 5 × 5 × 5 mm) of a 

reference brain (MNI 305, Brain Imaging Centre, Montreal Neurologic Institute) [58,59]. A 

brain segmentation of 82 anatomic compartments (cortical areas) was implemented using the 

automated anatomical labeling (AAL90) atlas [60].

The cortical activations (standardized current density) maps were estimated for each scalp 

voltage distribution in the time windows between −5 ms relative to the peak N1 amplitude 

and +5 ms relative to the peak P2 amplitude. Cortical activations maps obtained for the 

different scalp distributions were averaged. Brain cortical activity (voxel-wise activity) of 

the different conditions were paired-wise compared (undisturbed feedback vs. up-shifted 

formant, undisturbed feedback vs. down-shifted formant, and up-shifted formant vs. down-

shifted formant) using two tailed t-test (α = 0.05). Results were corrected for multiple 

comparisons using non-parametric permutation tests (5000 randomizations) as implemented 

in Loreta_Key [61,62].

2.2.7. Match between DIVA Related (Simulated) and ERP (Real) Cortical 
Activation Maps—Binarized representations of the cortical activation maps associated 

with feedback perturbations (maps that resulted from the statistical analyses) were obtained 

for both the model-driven synthetic EEG and the N1-P2 complex of the ERP (real EEG). 

The binarized maps were overlapped. The match between the theoretical (predicted by the 

model) and real (obtained from the experimental data) cortical maps was computed as a 

function of the number of voxels belonging to a particular AAL region that were active 

during the vocalization.

3. Results

3.1. DIVA Model Simulation

The activation of the cortical maps of the DIVA model during the vocalization of the 

phoneme /e/ with undisturbed auditory feedback is illustrated in Figure 4. DIVA maps 

provided by the model activated at different times with respect to the onset of the simulated 

vocalization. The first maps were activated at t = 0 (onset of the vocalization) and were 
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the motivation, initiation, speech, somatosensory target (somato-t) and auditory target 

(auditory-t) maps (Figure 4A). While the activity of the motivation map reduced to 0 directly 

following the vocalization onset, the activity of the initiation map remained constant (value 

of 1) throughout the vocalization. The articulator map (articulator) activated 10 ms after the 

onset of the vocalization. This was followed by the activation of the somatosensory state 

map (somato-s) (25 ms), the somatosensory error (somato-e) (30 ms), the feedback map (35 

ms), and the auditory state (auditory-s) (55 ms after the vocalization onset). As the auditory 

feedback was not disturbed, the auditory error map was not activated.

Cortical activations feed into the EEG generative model, which resulted in EEG scalp 

distributions that characterized the different phases (stages) of the cortical dynamics (Figure 

4B). Current density maps in the cerebral cortex were estimated from the EEG scalp 

distributions using sLORETA (Figure 4B). The EEG sources estimated with the inverse 

solution method closely resembled the brain distribution of DIVA maps (cortical seeds used 

for the EEG generation). Auditory feedback perturbations (both down- and up shift in F1) 

were reflected in the activity profile of the DIVA model (Figure 5A). While the activity 

changes of the Auditory state map clearly followed the direction of the perturbations, 

Somatosensory state maps changed minimally. Evident increases in the activity of the 

Feedback map were obtained in the presence of auditory feedback perturbation. Noteworthy, 

the feedback perturbation triggered the activation of both the Auditory error map and the 

Somatosensory error map, which are typically suppressed in undisturbed conditions.

Due to the auditory feedback perturbation, differences were observed in both the EEG 

scalp distributions and the activity of the EEG generators estimated with sLORETA (Figure 

5B). The shifts in F1 resulted in increased bilateral activation of frontal, temporal and 

parietal cortical areas (Figure 5C, left and middle panels), including the orbital, opercular 

and triangular parts of the inferior frontal gyrus, the middle and superior frontal gyri, the 

Rolandic operculum, the Heschl gyrus, the temporal pole, as well as the middle and superior 

temporal gyri (Table S2, Supplementary Materials). The downward and upward shifts in 

F1, although equal in magnitude, resulted in different EEG source-space maps (Figure 5C, 

right panel). This asymmetry was reflected as an increase in the cortical activity elicited 

by down-shifted feedback perturbations in comparison with that induced by up-shifted 

perturbations. The differences in activity were mainly observed in frontal and parietal 

brain areas (bilaterally), including the primary somatosensory and motor cortices (Table S2, 

Supplementary Materials).

3.2. Behavioral and Physiological Data

During the formant-shift experiment, F1 varied between conditions (F(29,2) = 23.052, p 
< 0.001), as participants compensated for auditory feedback perturbations (Figure 6A, 

right panel). The F1 deviations counteracted the perturbational formant-shifts, such that 

F1 compensations were in the opposite direction to the perturbations (Figure 6A, left panel). 

The F1 of both types of compensations significantly differed from that of vocalizations 

elicited during unperturbed feedback (Holm post hoc test, p < 0.0.5).

F1 perturbation induced changes in the cortical activity associated with monitoring the 

sensory feedback of one’s own voice, which was reflected in the N1-P2 amplitude of the 
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ERP obtained across conditions (F(29,2) = 29.047, p < 0.001) and the changes in ERP 

scalp topography (Figure 6B). The N1-P2 amplitude elicited in response to both upward 

and downward perturbations was higher than that obtained when auditory feedback was 

unperturbed (Holm post hoc test, p < 0.001). The N1-P2 amplitude did not differ when F1 

was upward and downward perturbed (Holm post hoc test, p = 0.36).

The cortical source of the ERP associated with monitoring of one’s own voices were 

estimated in large portions of the frontal, temporal, and parietal lobes (Figure 6C). It is 

worth noting that the activity of the N1-P2 generators significantly varied in response to 

F1 perturbations (t-test, 5000 randomizations) (Figure 6D). Downshifted F1 perturbations 

induced right lateralized activation of areas including the opercular, triangular and orbital 

parts of the inferior frontal gyrus, the Heschl gyrus (primary auditory cortex), the temporal 

pole, the middle and inferior temporal gyri, the Rolandic Operculum (including the primary 

somatosensory and motor cortices), the lingual gyrus (Figure 6D, left panel) and several 

sensory association cortical regions (Table S3, Supplementary Materials). Upshifted F1 

perturbations resulted in a more diffuse cortical activation (Figure 6D, middle panel). 

Nevertheless, the cortical activations elicited by downward and upward shifts in F1 were 

not statistically significantly different (t-test, 5000 randomizations) (Figure 6D, right panel). 

Results for uncorrected comparisons are presented in Table S5, Supplementary Materials.

3.3. Match between DIVA Simulations and Real EEG

As upshifted and downshifted F1 perturbations did not result in statistically different cortical 

activations, current density maps elicited by both types of auditory feedback perturbations 

were merged into a single representation. This was carried out separately for activations 

derived from DIVA simulations (Figure 5C) and real EEG (Figure 6D), respectively. Both 

representations of cortical activations were binarized and contrasted to assess if cortical 

activity derived from DIVA simulations predicted the EEG source space of the ERP elicited 

by auditory feedback perturbations.

A match between the predicted and real cortical activations was obtained. This was reflected 

at the level of brain areas (Figure 6E left panel). Overlapping regions included the opercular 

part of the right inferior frontal gyrus, the Rolandic operculum (bilaterally), the temporal 

pole (bilaterally), the Heshl gyrus (bilaterally), the superior temporal gyrus (bilaterally), 

the left middle temporal gyrus, the supramarginal gyrus (bilaterally), the parietal superior 

gyrus (bilaterally), as well as limbic areas such as the hippocampus (bilaterally) and the 

insula (bilaterally) (Table 1). Overlapping was also obtained at the voxel level (Figure 6E, 

right panel) in frontal, temporal, parietal and limbic areas mentioned above (Table S4, 

Supplementary Materials).

4. Discussion

In this study, an extension of the DIVA model to EEG, referred to as DIVA_EEG, 

is presented. Neural activity of the DIVA maps associated with the vocal production 

and the monitoring of one’s own voice were fed into generative models of EEG. The 

scalp topographies of the EEG obtained in response to auditory feedback perturbations 

were simulated (Figures 4 and 5). Brain sources of the synthetic EEG were estimated 
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and compared with those of the ERP (real EEG) obtained when conducting the altered 

auditory feedback paradigm in healthy participants (Figure 6). At the region level, a 91.5% 

overlapping was obtained between the model-predicted cortical activity for the control 

of speech production and that estimated from the experimentally acquired EEG. The 

overlapping between the real and predicted representations of brain activity was of 57.6% at 

the voxel level. Noteworthy, all the seed regions used for the EEG generative model were 

represented in the brain activity maps estimated from real EEG.

4.1. DIVA_EEG

Other modifications of the DIVA model preceded the development of DIVA_EEG. For 

instance, DIVA has been extended to incorporate physiologically based laryngeal motor 

control [63] or simplified for assessing the relative contribution of feedback and feedforward 

control mechanisms to sensorimotor adaptation [64]. Furthermore, DIVA has been translated 

to open-source codes, thereby facilitating their integration with freely available machine 

learning tools [65]. The DIVA environment, which also comprises the gradient order 

DIVA (GODIVA) for the analysis of speech sequencing [66], is now enriched with a new 

neuroimaging modality (EEG).

Several aspects need to be considered when interpreting the synthetic EEG that resulted 

from the activations of the different DIVA maps. First, DIVA_EEG comprise anatomical 

priors since the locations of seeds for the EEG generation are the same as for the 

nodes in the original DIVA model [3], which in turn were obtained from fMRI feedback 

perturbations protocols [18,21]. Noteworthy, since brain activity reflected in the EEG is 

mainly restricted to the cerebral cortex [18,36], DIVA_EEG does not include subcortical 

regions, which are already considered in DIVA. Second, the brain activity of DIVA_EEG 

seeds are simulated as Gaussian functions that extend 2mm from the centroid. Therefore, 

seeds in the model can be considered as a point source for the EEG generation since the 

seed size is lower than the voxel size of the head model used in this study for solving 

the EEG inverse problem [50]. Third, the main outcome of the study is presenting the 

first version of DIVA_EEG. The scalp topography and the cortical source of the synthetic 

EEG obtained with DIVA_EEG (Figures 4 and 5) are highly dependent on the head model 

and the theoretical considerations selected for constructing the generative EEG model and 

solving the EEG inverse problem. Further refinement of the DIVA_EEG can result from 

including individual head models [67,68], generating brain activity maps that combine the 

EEG obtained from DIVA_EEG and the BOLD signal obtained with DIVA [3], and testing 

the replicability of the results as a function of the EEG generative model [69] and the source 

estimation method [70]. Noteworthy, future developments can use the computational load 

of the nodes (the instantaneous neural activity) as input of mean field models (e.g., neural 

mass models) to generate oscillatory EEG-like signals for assessing the EEG oscillatory 

dynamic [71], including cross-frequency coupling. This aspect is relevant since accurate 

speech encoding has been associated with the coupling of theta oscillations that tracks slow 

speech fluctuations and gamma-spiking activity related to phoneme-level responses [72].
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4.2. Vocal Compensations

Unlike the DIVA simulations, where feedback perturbations are generated by modifying the 

F1 of a close vowel (the English vowel /e/), the behavioral compensations of the participants 

were assessed by modifying an open vowel (the Spanish vowel /e/). Nevertheless, in 

both simulated and real perturbations, upshifts in F1 transformed the target vowel in an 

open vowel (/æ/ and /a/ for English and Spanish, respectively). Likewise, downshifts in 

F1 transformed the target vowel in a close vowel (/I/ and /i/ for English and Spanish, 

respectively). The vocal compensations elicited by these feedback perturbations, which 

typically opposes to the F1 shift (Figure 6A), replicate previous studies in which the 

compensatory behaviors of speakers of the target language have been assessed (e.g., Spanish 

[73], English [15,17,19,22] and Mandarin [74]).

Noteworthy, while compensatory behaviors typically opposed to F1 perturbations, 

compensations in the same direction to the F1 shift occasionally occurred (Figure S2, 

Supplementary Materials). This is in line with previous studies and supports the idea that, 

although compensations are primarily a reflex, their magnitude is modulated by several 

factors including attention [75], the predictability of the perturbation [1,76] and the vocal 

training of the participants [39,77]. Furthermore, the F1 during the compensations (Figure 

6A) were closer to the F1 of the unperturbed auditory feedback than to that of the disturbed 

feedback, a result that has been previously reported [78,79]. Considering the interaction 

between different DIVA cortical maps, this has been explained by a counteracting effect 

of the activation of the somatosensory feedback controller on the activation of the auditory 

feedback controller [80].

4.3. ERP Elicited by Perturbations

The increased amplitude of the N1-P2 complex of the ERP elicited by auditory feedback 

perturbations (Figure 6B) can be considered the electrophysiological hallmark of the 

sensorimotor integration processes underlying the speech production [40,81,82]. The N1 

component has been associated with the activation of the primary and secondary auditory 

cortices [83–85] and reflects the auditory processing of basic properties of acoustic stimuli. 

In addition, it has been suggested that P2 represents the coordinated activity of neural 

generators located in sensory, motor and frontal cortical regions, which might include 

auditory and speech-related motor areas involved in sensorimotor integration [83,86,87]. 

The changes in the ERP elicited by auditory feedback perturbations can be partially 

explained by the predictive coding models, which posits that processing of sensory 

information is facilitated when the sensory input is predictable [88–90]. This idea was 

initially proposed to explain the decreased amplitudes of N1 during active speech as 

compared with that obtained during the passive listening of own voices [34,83,91]. This 

attenuation was supposed to reflect filtering processes in which redundant information in the 

sensory feedback is cancelled by neural codes generated in motor-related cortical areas [92]. 

The hypothesis of predictability has been subsequently refined using feedback perturbations 

protocols [34,83,93]. Evidence shows that, the larger the differences between the expected 

and the incoming auditory feedback, the greater the ERP amplitude [34,83,93]. This is 

likely mediated by learning and reinforcing mechanisms in which predicted perturbations 
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are segregated from the auditory re-afference, such that the disparity between the ongoing 

auditory feedback and the predicted feedback is reduced [1,77,83,85,94].

4.4. EEG Source Localization

Several methodological approaches have been used to assess the neural correlates of vocal 

production and control. They include, for example, the analysis of local field potentials 

with cortical electrodes [83] and the use of transcranial magnetic stimulation [85,95]. While 

these procedures enable the role of anatomically restricted brain regions to be investigated, 

the analysis of the whole brain activity is facilitated by methods to solve the EEG inverse 

problem [96,97]. The latter approach was used in this study to estimate the neural generators 

of the ERP elicited by self-produced speech (Figure 6C). Feedback perturbations resulted 

in increased activity of frontal, temporal and regions that have been traditionally associated 

with speech production and speech motor control (Table S3, Supplementary Materials). 

This group of regions include the precentral gyrus, the supplementary motor area, and the 

Rolandic operculum (frontal lobe), the insula (limbic lobe), the Heschl gyrus as well the 

inferior and superior temporal gyri (temporal lobe), and the postcentral gyrus (parietal lobe) 

[86].

Furthermore, differences in activity were also obtained in the occipital lobe and other 

limbic areas. Although this result needs to be validated, evidence suggest that speech-driven 

spectrotemporal receptive fields that are sensitive to pitch are located in the calcarine area, 

an occipital cortical region that display strong functional connections with early auditory 

areas [98]. Likewise, the medial and the posterior cingulate cortices have been proposed 

as hubs of the syllable and speech production network, respectively [99]. These networks 

also comprise the hippocampus, the amygdala and the insula (limbic areas), as well as the 

cuneus, the lingual gyrus and the inferior, middle and superior occipital gyri (occipital areas) 

[99].

4.5. Comparing Simulated and Experimentally Acquired Brain Cortical Map for Speech 
Motor Control

The cortical activation maps in DIVA_EEG, instead of being represented as the set of 

nodes obtained from DIVA, were constructed by implementing an EEG generative model 

to simulate EEG scalp topographies, from which current density maps in the brain were 

estimated. This allowed for a fair comparison between the model-based brain activity maps 

and those estimated from experimentally acquired EEG. An appropriate match between 

the predicted and the EEG-driven cortical maps was obtained, at the level of both cortical 

regions and voxels (Figure 6E). Differences between these cortical representations may be 

due to different factors, including the use of point sources for generating the synthetic 

EEG. Therefore, tunning the size and shape of the brain areas used as seeds for the EEG 

generation shall be considered for further developments of DIVA_EEG. Noteworthy, all the 

cortical regions selected as seeds in DIVA_EEG were present in the cortical activation maps 

estimated from real EEG (Table S5, Supplementary Materials). The fact that brain activation 

maps estimated from both synthetic and experimentally acquired EEG extends beyond the 

seed regions of DIVA_EEG primarily relies on the following aspects. First, the spatial 

resolution and precision of the EEG source estimation methods in lower than that of the 
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fMRI. In the case of LORETA, the cortical activity is represented in a grid of 6239 voxels, 

each of 5 × 5 × 5 mm [50], which is much larger than the typical 1 × 1 × 1 mm voxel size of 

the fMRI data. Second, one of the assumptions made for solving the EEG inverse problem 

using LORETA is that the electrical activity of neighboring voxels has maximal similarity 

[100], which leads to smooth cortical activations. Third, different statistical approaches have 

been used for estimating speech-related cortical activation maps from fMRI [3,18,86] and 

EEG [95]. Finally, fMRI and EEG reflect the hemodynamic and electrical activity of the 

brain, respectively. In other words, these neuroimaging modalities are different in nature and 

have largely different dynamics. Therefore, complementary but different results are expected 

when assessing brain activity from EEG and fMRI. A less restricted set of cortical regions 

resulted from the EEG feedback perturbation paradigm (Table S4, Supplementary Materials) 

when compared with its analogue fMRI paradigm [3,18,86]. This indicates that speech 

production, rather than relying on a discrete and reduced set of brain areas, is controlled by 

a broadly distributed network in which information is interchanged between primary nodes 

(seeds in DIVA_EEG) and between them and occipital, frontal and limbic areas.

5. Conclusions

The extension of DIVA to include a new neuroimaging modality (EEG) will expand the 

use of this neurocomputational tool for assessing different aspects of speech motor control, 

including sensorimotor integration and predictive coding. DIVA_EEG was validated using 

group-level statistics of the behavior and the EEG acquired from volunteers with typical 

voices. Further research is needed to ascertain if the configuration parameters of DIVA_EEG 

can predict vocal compensatory behaviors and brain activation at individual level. Subject-

specific simulations can be fostered by incorporating vocal fold control models, as carried 

out in LaDIVA [63], which provide a complete set of biomechanical parameters for 

vocal function assessment. In fact, vocal fold models associated with LaDIVA have been 

successfully used for subject-specific modeling of vocal hyperfunction [101]. Likewise, 

further extension of DIVA_EEG may consider neurophysiological muscle activation 

schemes for controlling vocal fold models [102] for assessing reflective and adaptive 

vocal behaviors at the laryngeal level. The latter may incorporate the parametrization 

of the sensory adaptation elicited by continuous and repetitive stimulation [103,104]. 

These developments are the foundations for constructing a complete and comprehensive 

neurocomputational framework to tackle vocal and speech disorder, which can guide model-

driven personalized interventions.
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Figure 1. 
DIVA model scheme. vMC, ventral motor cortex; vPMC, ventral premotor cortex; vSC, 

ventral somatosensory cortex; pAC, posterior auditory cortex.

Cuadros et al. Page 21

Appl Sci (Basel). Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Block diagram illustrating the methodology proposed for the construction of DIVA_EEG. 

Both the DIVA model Simulation and the Experimental Phase of the study are presented.
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Figure 3. 
Schematic of the apparatus for applying formant perturbations. Participants produced 

monosyllabic words containing the vowel /e/ while their auditory feedback was perturbed 

toward the participant-specific vowel /a/ (e.g., participants produced /mes/ but heard a word 

that sounded like /mas/).
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Figure 4. 
Simulations of the brain cortical activity associated with the different DIVA maps during the 

vocalization of the phoneme /e/ with undisturbed feedback: (A) Time course of activity 

of DIVA cortical maps. t: target, s: state, e: error (B) Topographic representations of 

cortical activity for time t = 0, 10, 25, 250, 510, 550 ms relative to the onset of the 

vocalization. top panel: cortical seeds. middle panel: simulated EEG. bottom panel: source 

space representation of the synthetic EEG.
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Figure 5. 
Simulations of the brain cortical activity associated with the different DIVA maps elicited 

by auditory feedback perturbations (F1 shifts) during the vocalization of the phoneme /e/. 

(A) Time course of activity of the DIVA cortical maps whose activity varied in response to 

feedback perturbations. Activities in undisturbed, downshifted, and upshifted conditions are 

presented. The shaded area represents the N1-P2 interval of the ERP. t: target, s: state, e: 

error (B) Scalp topography and source space representation of the synthetic EEG estimated 

in the time interval that corresponds to the generation of the N1-P2 complex. (C) Synthetic 

EEG (N1-P2 interval) contrasted across conditions.
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Figure 6. 
Acoustic and electrophysiological parameters describing the monitoring of one’s own 

vocalization. (A) Examples of vocal compensations elicited by F1 perturbations in the 

auditory feedback. In the left panel, an oscillogram representative of the phoneme /mes/ is 

illustrated. Likewise, the direction of the perturbation is indicated at the top of each chart. 

The mean F1 values of vocalizations produced in unperturbed acoustic conditions and those 

of vocal compensations to perturbed auditory feedback are presented in the right panel, 

along with the corresponding sample distributions. (B) Event-related potential (ERP) elicited 

by actively monitoring the auditory feedback of one’s own vocalizations. In the left panel, 

the grand average of the ERP elicited by both unperturbed and F1-shifted auditory feedback 

are presented. The shaded area indicates the N1-P2 complex. Scalp topography of the N1-P2 

complex is illustrated in the middle panel. The mean amplitude of the N1-P2 complex 

elicited by unperturbed and perturbed auditory feedback are presented in the right panel, 
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along with the corresponding sample distribution. (C) Current density maps illustrating 

the brain generators of the N1-P2 complex in the different conditions (unperturbed and 

perturbated auditory feedback). (D) Differences in the cortical activity obtained in response 

to unperturbed and perturbated auditory feedbacks. The difference between the current 

density maps elicited by F1 perturbations of equal magnitude and opposite directions is 

presented in the right panel. (E) Cortical sources of the N1-P2 complex elicited in response 

to F1 perturbations in the auditory feedback of one’s own vocalizations that are predicted 

by the DIVA model. They are illustrated both areas and voxels for which the activity 

predicted by the model overlapped that estimated from the real EEG. Statistically significant 

differences between groups are represented by *.
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Table 1.

Areas for which DIVA model predictions matches experimentally acquired EEG.

Brain Lobe AAL Region Hemisphere

Precentral (bilateral)

Frontal Frontal_Inf_Oper (right)

Rolandic_Oper (bilateral)

Insula (bilateral)

Cingulum_Mid (bilateral)

Limbic Cingulum_Post (right)

Hippocampus (left)

ParaHippocampal (bilateral)

Heschl (bilateral)

Temporal_Sup (bilateral)

Temporal Temporal_Pole_Sup (bilateral)

Temporal_Mid (bilateral)

Temporal_Pole_Mid (left)

Postcentral (bilateral)

Parietal_Sup (bilateral)

Parietal Parietal_Inf (right)

SupraMarginal (bilateral)

Paracentral (right)

Lingual (bilateral)

Occipital Fusiform (bilateral)
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